42.
1031.
THE

ELEMENTS

OF

MATERIA MEDICA

AND

THERAPEUTICS.

BY

JONATHAN PEREIRA, M.D. F.R.S. & L.S.

LICENTIATE OF THE ROYAL COLLEGE OF PHYSICIANS IN LONDON;
MEMBER OF THE ROYAL COLLEGE OF SURGEONS;
FELLOW OF THE ROYAL MEDICAL AND CHIRURGICAL SOCIETY;
CORRESPONDING MEMBER OF THE SOCIETY OF PHARMACY OF PARIS;
HONORARY MEMBER OF THE PHARMACEUTICAL SOCIETY OF GREAT BRITAIN;
EXAMINER IN MATERIA MEDICA AND PHARMACY TO THE UNIVERSITY OF LONDON;
AND ASSISTANT PHYSICIAN TO, AND LECTURER ON MATERIA MEDICA AT, THE LONDON HOSPITAL.

Second Edition,
ENLARGED AND IMPROVED.

VOL. I.

LONDON:
LONGMAN, BROWN, GREEN, AND LONGMANS,
PATERNOSTER ROW.
1842.

1031.
TO

HENRY CLUTTERBUCK, Esq. M.D.

MEMBER OF THE ROYAL COLLEGE OF PHYSICIANS,

PRESIDENT OF THE MEDICAL SOCIETY OF LONDON,

FORMERLY PHYSICIAN TO THE GENERAL DISPENSARY, ALDERSGATE STREET,

AND

LECTURER ON THE THEORY AND PRACTICE OF MEDICINE,

ETC. ETC. ETC.

This Work is Dedicated,

AS A TESTIMONY OF HIGH RESPECT FOR HIS GREAT PROFESSIONAL TALENTS

AND ESTEEM FOR HIS PRIVATE WORTH,

BY HIS FAITHFUL FRIEND,

AND GRATEFUL PUPIL,

THE AUTHOR.
PREFACE

TO THE FIRST EDITION.

The object of the Author, in preparing the present work for the press, has been to supply the Medical Student with a class book on Materia Medica, containing a faithful outline of this department of Medicine, and embracing a concise account of the most important modern discoveries in Natural History, Chemistry, Physiology, and Therapeutics, in so far as they pertain to Pharmacology. These subjects he has treated of in the order of their natural-historical relations. This method he has followed for many years past in his Lectures, believing it to be the most convenient and, on the whole, the least objectionable mode of classifying the objects of Pharmacology: and he is glad to find that some of the most eminent professors (among whom he may mention his friends Drs. Christison and Royle), follow a similar order in their lectures. Hitherto, however, no systematic work has been published in the English language in which this order has been adopted.*

It must be admitted, that, as the ultimate object of all our inquiries into the Materia Medica is the attainment of a knowledge of the physiological effects and therapeutical uses of medicines, an arrangement founded on the effects and uses would be much more valuable to the medical student than one based on properties only indirectly related to those for which the agents possessing them are employed. For it would enable him more readily to practise on general indications, and to substitute one remedy for another, belonging to the same class or

*The Therapeutic Arrangement and Syllabus of Materia Medica, by J. Johnston, M.D., can hardly be regarded as constituting an exception to this statement.
order. Under this point of view, the author is fully impressed with the value of a physiological or therapeutical arrangement of medicines, and, could it be effected, would readily acknowledge its vast superiority, considered in a medical point of view, over all other classifications: but he is of opinion that Pharmacologists are too imperfectly acquainted with the operation of Therapeutical agents to enable them to effect a classification of this kind with much success. Scarcely two medicines give rise to precisely the same effects: and, as we are unable to determine the nature of the modification produced by each, "it is impossible to bring the substances used in medicine under a general good arrangement." Every writer, who has attempted it, has found the facts hitherto ascertained insufficient for his purpose, and has, therefore, been necessarily obliged to call in the aid of theory: hence the so-called physiological classifications of medicines are in reality founded on the prevailing medical doctrines of the day, or on the peculiar notions of the writer.

Opium and mercury may be referred to in illustration of the author's meaning. They are substances in ordinary use, and their effects are well known. Yet writers are neither agreed as to the nature of the primary influence which these agents exercise over the animal economy, nor as to their proper position in a physiological classification.

Thus several physicians (as Dr. John Murray and Dr. A. T. Thomson) consider opium to be primarily stimulant; some (as Dr. Cullen and Barbier) regard it as a sedative; one (Mayer) as both—viz., a stimulant to the nerves and circulatory system, but a sedative to the muscles and digestive organs; another (Orfila) as neither; while others (as Müller) call it alterative.

b *Elements of Physiology.* By J. Müller, M.D.; translated by W. Baly, i. 57.
g Quoted by Orfila (*Toxicologie Générale*).
Again, mercury is by several writers (as Drs. Cullen, Chapman, Young, and Eberle) placed in the class of sialogogues; by many (as Dr. A. T. Thomson, MM. Edwards and Vavasseur, and MM. Troussseau and Pidoux) among excitants; by some (as Conradi, Bertele, and Horn) it is considered to be sedative; by one (Dr. Wilson Philip) to be stimulant in small doses, and sedative in large ones; by some (as Dr. John Murray) it is placed among tonics; by another (Vogt) among the resolventia alterantia; by one (Sundelin) among the liquefacients (verflüssigende Mittel); by the followers of Broussais (as Begin) among revulsives; by the Italians (as Giacomini) among contra-stimulants or hypostenics; by others (as Barbier) among the incerta sedis!

The author is fully aware of the objections which some will be disposed to raise to the natural-historical and chemical details contained in this work. But with due deference to the opinion of others, he thinks the absence of these subjects would render the present volumes incomplete. A knowledge of them, it is true, is not essential to the successful practice of our profession; but surely a physician will not make a worse practitioner because he is acquainted with the natural history and chemistry of the agents he is employing in the treatment of disease. The author is not ambitious to raise into unnecessary importance these topics; yet he cannot help expressing his belief, that they, who are the

3 An Introduction to Medical Literature; art. Pharmacology. 2d ed. London. 1823.
7 Traité de Thérapeutique, tom. i. Paris. 1835.
8 Quoted by Richter (Ausführliche Arzneimittelkunde, Bd. v. 307. 1830).
11 Lehrbuch der Pharmakodynamik. 2 Bd. 2te Aufl. Giessen. 1828.
12 Handbuch der speziellen Heilmittelkunde. 3te Aufl. Berlin. 1833.
14 Trattato filosofico-sperimentale dei Soccorci Terapeutici. Padova. 1833.
loudest in decrying the value and utility of natural history and chemistry to the medical practitioner, are those, for the most part, whose information on these points is most limited.

In drawing up the Historical and Bibliographical Table, the author thinks it but justice to acknowledge the assistance he has received:—In the Hindoo Department, from his friend, Professor Royle; in Scandinavian Pharmacological Literature, from Dr. Holst, Professor in the University of Christiana; in the American department, from Dr. Wood, Professor of Materia Medica and Pharmacy in the University of Pennsylvania,—to all of whom his best thanks are justly due.

London,
Nov. 1838.
PREFACE

TO THE SECOND EDITION.

Encouraged by the rapid sale of a large impression of the first edition of this work, the author has endeavoured to make the present edition still more deserving the favour of the profession, by various additions, alterations, and omissions.

Among the additions will be found articles on Mental Impressions, Light, Heat, Cold, Electricity, Magnetism, Diet, Climate, and Exercise, considered as therapeutic agents. The processes of the British Pharmacopoeias (including those of the new Edinburgh one) have been described in a more detailed manner. Upwards of a hundred woodcuts have been added. They comprise figures of crystals, and of some insects used in medicine; microscopic views of the amylaceous grains of commerce; and illustrations of chemical manufactures, and of the modes of preparing some vegetable products. The text has been disnumbered of the references, which have been thrown into the form of foot-notes—and, in the typographical part, various improvements have also been effected.

As some reviewers have spoken in terms of commendation of the
very extended index, the author thinks it but just to state that it carefully made by his wife, to whose pencil he is indebted for figures of the grains of seca, drawn to one scale, by an exce microscope, and camera lucida, lent him for that purpose by his fr and colleague Mr. Luke.

47, Finsbury Square,
March 17, 1842.
CONTENTS OF VOL. I.

<table>
<thead>
<tr>
<th>Title</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Preface to the First Edition</td>
<td>v</td>
</tr>
<tr>
<td>Preface to the Second Edition</td>
<td>ix</td>
</tr>
<tr>
<td>Table of Contents in Vol. I.</td>
<td>xi</td>
</tr>
<tr>
<td>List of Woodcuts in Vol. I.</td>
<td>xxv</td>
</tr>
<tr>
<td>Errata and Corrigenda in Vol. I.</td>
<td>xxvi</td>
</tr>
<tr>
<td>Historical Table</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

PART FIRST.—GENERAL THERAPEUTICS.

Therapeutics, Acology, Remedies 1

1. Physical or Mental Remedies 2

External affections of the mind 2

Internal affections of the mind 3

2. Somatical or Corporal Remedies 5

1. Physical but Imponderable Agents.

<table>
<thead>
<tr>
<th>Light</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat</td>
<td>5</td>
</tr>
<tr>
<td>a. Radiant heat</td>
<td>8</td>
</tr>
<tr>
<td>a. Solar heat</td>
<td>11</td>
</tr>
<tr>
<td>b. Artificial radiant heat</td>
<td>11</td>
</tr>
<tr>
<td>1. Conducted heat</td>
<td>12</td>
</tr>
<tr>
<td>1. Hot-air-bath</td>
<td>12</td>
</tr>
<tr>
<td>2. Solid substances heated not above 100°</td>
<td>12</td>
</tr>
<tr>
<td>3. Metal heated to 212°</td>
<td>13</td>
</tr>
<tr>
<td>4. The actual cantery</td>
<td>13</td>
</tr>
<tr>
<td>2. Moist heat</td>
<td>14</td>
</tr>
<tr>
<td>a. Aqueous vapour</td>
<td>14</td>
</tr>
<tr>
<td>1. The vapour bath</td>
<td>15</td>
</tr>
<tr>
<td>2. The inhalation of warm vapour</td>
<td>17</td>
</tr>
<tr>
<td>3. Steam</td>
<td>18</td>
</tr>
<tr>
<td>b. Water</td>
<td>18</td>
</tr>
<tr>
<td>1. Tepid, warm, and hot baths</td>
<td>18</td>
</tr>
<tr>
<td>2. Warm Affusion</td>
<td>20</td>
</tr>
<tr>
<td>3. Warm fomentation and poultices</td>
<td>20</td>
</tr>
<tr>
<td>4. Warm aqueous drinks and injections</td>
<td>20</td>
</tr>
<tr>
<td>5. Boiling water</td>
<td>21</td>
</tr>
<tr>
<td>Cold</td>
<td>21</td>
</tr>
<tr>
<td>a. Cool Air</td>
<td>25</td>
</tr>
<tr>
<td>b. Cold Water</td>
<td>25</td>
</tr>
<tr>
<td>1. Cold, cool, and temperate baths</td>
<td>25</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Affusion</td>
<td>26</td>
</tr>
<tr>
<td>3. The shower bath</td>
<td>29</td>
</tr>
<tr>
<td>4. The Douche</td>
<td>30</td>
</tr>
<tr>
<td>5. Lavation, washing, or sponging</td>
<td>31</td>
</tr>
<tr>
<td>6. Cold lotions</td>
<td>31</td>
</tr>
<tr>
<td>7. Cold drinks</td>
<td>32</td>
</tr>
<tr>
<td>8. Cold injections</td>
<td>32</td>
</tr>
<tr>
<td>c. Ice and snow</td>
<td>33</td>
</tr>
<tr>
<td>1. Employed externally</td>
<td>33</td>
</tr>
<tr>
<td>2. Employed internally</td>
<td>34</td>
</tr>
<tr>
<td>Electricity</td>
<td>34</td>
</tr>
<tr>
<td>a. Friction Electricity</td>
<td>36</td>
</tr>
<tr>
<td>1. The electric bath</td>
<td>36</td>
</tr>
<tr>
<td>2. The electric aura</td>
<td>37</td>
</tr>
<tr>
<td>3. The electric spark</td>
<td>37</td>
</tr>
<tr>
<td>4. The electric shock</td>
<td>37</td>
</tr>
<tr>
<td>5. The electric current</td>
<td>39</td>
</tr>
<tr>
<td>β. Voltaic Electricity</td>
<td>40</td>
</tr>
<tr>
<td>Electro-puncture</td>
<td>44</td>
</tr>
<tr>
<td>γ. Magnetic Electricity</td>
<td>44</td>
</tr>
<tr>
<td>Magnetism</td>
<td>45</td>
</tr>
</tbody>
</table>

II. Hygienic Agents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>46</td>
</tr>
<tr>
<td>a. Aliments</td>
<td>47</td>
</tr>
<tr>
<td>1. Alimentary principles</td>
<td>47</td>
</tr>
<tr>
<td>2. Compound aliments</td>
<td>53</td>
</tr>
<tr>
<td>a. Animal</td>
<td>55</td>
</tr>
<tr>
<td>β. Vegetable</td>
<td>63</td>
</tr>
<tr>
<td>b. Drinks</td>
<td>68</td>
</tr>
<tr>
<td>c. Condiments</td>
<td>73</td>
</tr>
<tr>
<td>Dietetical Regimen</td>
<td>75</td>
</tr>
<tr>
<td>Diet tables of the London Hospitals</td>
<td>78</td>
</tr>
<tr>
<td>Exercise</td>
<td>80</td>
</tr>
<tr>
<td>Climate</td>
<td>82</td>
</tr>
<tr>
<td>Circumstances which affect the climate of a country</td>
<td>82</td>
</tr>
<tr>
<td>Varieties of climates</td>
<td>84</td>
</tr>
<tr>
<td>1. Climates of England</td>
<td>84</td>
</tr>
<tr>
<td>2. Climates of France</td>
<td>86</td>
</tr>
<tr>
<td>3. Climates of Spain and Portugal</td>
<td>87</td>
</tr>
<tr>
<td>4. Climates of Italy and the Mediterranean</td>
<td>87</td>
</tr>
<tr>
<td>5. Atlantic Climates</td>
<td>88</td>
</tr>
<tr>
<td>Diseases for which change of climate is resorted to</td>
<td>88</td>
</tr>
</tbody>
</table>

III. Mechanical and Surgical Agents

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
</tr>
</tbody>
</table>

IV. Pharmacological Agents, or Medicines

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pharmacognosy</td>
<td>90</td>
</tr>
<tr>
<td>General observations, works on, &c.</td>
<td>91</td>
</tr>
<tr>
<td>2. Pharmacy</td>
<td>92</td>
</tr>
<tr>
<td>Definition, and works on</td>
<td>92</td>
</tr>
<tr>
<td>3. Pharmacodynamics</td>
<td>92</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER I. On the means of ascertaining the effects of medicines</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER II. Of the active forces of medicines</td>
<td>100</td>
</tr>
<tr>
<td>1. Mechanical</td>
<td>100</td>
</tr>
<tr>
<td>2. Chemical</td>
<td>101</td>
</tr>
<tr>
<td>3. Dynamical</td>
<td>103</td>
</tr>
<tr>
<td>CHAPTER III. On the physiological effects of medicines</td>
<td>104</td>
</tr>
<tr>
<td>1. Local effects</td>
<td>105</td>
</tr>
<tr>
<td>2. Remote effects</td>
<td>106</td>
</tr>
<tr>
<td>CHAPTER IV. On the absorption of medicines</td>
<td>107</td>
</tr>
<tr>
<td>Proofs of absorption</td>
<td>107</td>
</tr>
<tr>
<td>Vessels effecting absorption</td>
<td>109</td>
</tr>
<tr>
<td>Veins</td>
<td>109</td>
</tr>
<tr>
<td>Lacteals and Lymphatics</td>
<td>111</td>
</tr>
<tr>
<td>Mechanism of absorption</td>
<td>112</td>
</tr>
<tr>
<td>Absorption by physical agency (imbibition; exosmose and endosmose)</td>
<td>112</td>
</tr>
<tr>
<td>Absorption by a vital agency</td>
<td>113</td>
</tr>
<tr>
<td>Absorption of a medicine, or poison, essential to the production of its remote effects</td>
<td>113</td>
</tr>
<tr>
<td>How do medicines and poisons, which have entered the blood-vessels, affect distant organs?</td>
<td>117</td>
</tr>
<tr>
<td>By modifying or altering the properties of the blood, and thereby unfitness the functions of the body</td>
<td>118</td>
</tr>
<tr>
<td>By pervading the structure of the organ acted on</td>
<td>120</td>
</tr>
<tr>
<td>By acting on the lining membrane of the blood-vessels</td>
<td>122</td>
</tr>
<tr>
<td>CHAPTER V. On the operation of medicines by nervous agency</td>
<td>123</td>
</tr>
<tr>
<td>CHAPTER VI. Of the parts affected by the remote action of medicines</td>
<td>125</td>
</tr>
<tr>
<td>CHAPTER VII. Of the general nature of the effects of medicines</td>
<td>128</td>
</tr>
<tr>
<td>1. Stimulants</td>
<td>128</td>
</tr>
<tr>
<td>a. General vital stimuli</td>
<td>128</td>
</tr>
<tr>
<td>b. Special stimuli</td>
<td>128</td>
</tr>
<tr>
<td>2. Sedatives</td>
<td>129</td>
</tr>
<tr>
<td>3. Alteratives</td>
<td>129</td>
</tr>
<tr>
<td>1. Brunonian theory</td>
<td>129</td>
</tr>
<tr>
<td>2. Doctrine of contra-stimulus (New Italian Doctrine)</td>
<td>129</td>
</tr>
<tr>
<td>Giacomini's classification of medicines</td>
<td>130</td>
</tr>
<tr>
<td>CHAPTER VIII. On the circumstances which modify the effects of medicines</td>
<td>133</td>
</tr>
<tr>
<td>Relating to the medicine</td>
<td>133</td>
</tr>
<tr>
<td>Relating to the organism</td>
<td>134</td>
</tr>
</tbody>
</table>
CONTENTS

CHAPTER IX. On the therapeutical effects of medicines

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

- Mode of production
- By the influence of a medicine over the causes of disease
- By modifying the actions of one or more parts of the system
- Fundamental methods of cure
- Antipathia
- Homoeopathia
- Allopathia (antagonism, counter-irritation, revulsion, derivation)

CHAPTER X. Of the parts to which medicines are applied

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

- Applications to the skin
- The epidermic method
- The iatralptic method
- The endermic or emplastro-endermic method
- The method by inoculation
- Applications to the mucous membranes
- Gastro-pulmonary membrane
- Urino-genital membrane
- Applications to the serous membranes
- Applications to ulcers, wounds, and abscesses
- Injection of medicines into the veins (infusion)

CHAPTER XI. On pharmacological classification

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

- Empirical arrangements
- Rational arrangements
 - a. Classifications founded on the sensible qualities
 - b. Classifications founded on the natural-historical properties
 - Classification of crystalline forms
 - Artificial method of Linnaeus
 - Methods founded on the parts employed
 - c. Classifications founded on the chemical constituents
 - d. Classifications founded on the physiological effects
 1. According to the general quality of the effects
 2. According to Brunonian principles
 3. According to the doctrine of contra-stimulus
 4. According to the doctrine of Broussais
 5. According to chemico-physiological principles
 6. According to the part affected
 - e. Classifications founded on therapeutical properties

CHAPTER XII. On the physiological classes of medicines

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
</tr>
</tbody>
</table>

- Class 1. Cerebro-spinants
- Class 2. Stimulants
- Class 3. Tonics
- Class 4. Emollients
- Class 5. Refrigerants
- Class 6. Evacuants
 - Sub-class 1. Liquefacients
 - Sub-class 2. Diaphoretics
 - Sub-class 3. Diuretics
 - Sub-class 4. Erthrones
PART SECOND.—SPECIAL PHARMACOLOGY.

Natural-historical arrangement 220

I. INORGANISED KINGDOM.

Class I. Non-Metallic Substances.

Order I. — Oxygen and its aqueous solution.

Oxygenium 220
Aqua oxygenii 224

Order II. — Chlorine and its combinations with oxygen.

Chlorinium 225
Aqua chlorinii 230
•• Hypochlorous, chlorous, chloric, and perchloric acids 231

Order III. — Iodine and its combinations with oxygen.

Iodinium 232
1. Tinctoria iodinii 246
2. Iodidum amyli 247
3. Unguentum iodinii 247
•• Iodic acid 247

Order IV. — Bromine and its combinations with oxygen, chlorine, and iodine.

Brominium 248
•• Compounds of bromine with oxygen, chlorine, and iodine 251
CONTENTS

ORDER V.—Hydrogen and its compounds with oxygen, chlorine, and iodine

Hydrogenium

Aqua

1. Aqua destillata
2. Aqua medicata
3. Infusa
4. Decocta

a. Aque communes

1. Aqua pluvialis
2. Aqua fontana
3. Aqua ex flumine
4. Aqua ex puteo
5. Aqua ex lacu
6. Aqua ex palude

β. Aqua marina

Balneum maris factitium

γ. Aque mineralis

Class I. Chalybeate or ferruginous waters

Order I. Carbonated chalybeates
Order II. Sulphated chalybeates

Class II. Sulphureous or hepatic waters

Class III. Acidulous or carbonated waters

Class IV. Saline waters

Order I. Purging saline waters
Order II. Saline or brine waters
Order III. Calcareous waters
Order IV. Alkaline waters
Order V. Siliceous waters

Artificial mineral waters

Acidum hydrochloricum

1. Gaseous hydrochloric acid
2. Liquid hydrochloric acid

Acidum hydrochloricum dilutum

Acidum hydriodicum

ORDER VI.—Nitrogen and its compounds with oxygen and hydrogen

Nitrogenium

Nitrogenii protoxydum

Aquæ nitrogenii protoxydi

Acidum nitricum

1. Acidum nitricum dilutum
2. Unguentum acidi nitriici

Acidum nitro-hydrochloricum

Balneum nitro-hydrochloricum

Ammonia

Aqua ammoniae (liquor ammoniae)

1. Linimentum ammoniae
2. Linimentum ammoniac compositum
3. Unguentum ammoniae
4. Tinctura ammoniae composita
<table>
<thead>
<tr>
<th>CONTENTS.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammoniae carbonas</td>
<td>305</td>
</tr>
<tr>
<td>1. Spiritus ammoniacum</td>
<td>307</td>
</tr>
<tr>
<td>2. Spiritus ammoniacum factidus</td>
<td>307</td>
</tr>
<tr>
<td>3. Spiritus ammoniacum aromaticus</td>
<td>308</td>
</tr>
<tr>
<td>Ammoniae sesquicarbonas</td>
<td>308</td>
</tr>
<tr>
<td>1. Liquor ammoniacis sesquicarbonatis</td>
<td>313</td>
</tr>
<tr>
<td>2. Linimentum ammoniacis sesquicarbonatis</td>
<td>313</td>
</tr>
<tr>
<td>Ammoniae bicarbonas</td>
<td>314</td>
</tr>
<tr>
<td>Ammoniae hydrochloras</td>
<td>315</td>
</tr>
<tr>
<td>1. Lato ammoniae hydrochloratis</td>
<td>322</td>
</tr>
<tr>
<td>2. Emplastrum ammoniae hydrochloratis</td>
<td>323</td>
</tr>
<tr>
<td>Liquor ammoniae acetatis</td>
<td>323</td>
</tr>
<tr>
<td>* * Sulphate, nitrate, and citrate of ammonia</td>
<td>325</td>
</tr>
</tbody>
</table>

ORDER VII.—Carbon and its compounds with oxygen, hydrogen, and nitrogen.

Section I.—Carbon.

Plumbago | 327 |
Carbo ligni | 328 |
Calaplasma carbo ligni | 330 |
Carbo animalis | 331 |
Carbo animalis purificatus | 332 |

Section II.—Oxycarbons.

Acidum carbonicum | 332 |
Aqua acidi carbonici | 339 |
Acidum oxalicum | 340 |
 1. Ammonia oxalas | 344 |
 2. Potassa quadraxalas | 344 |

Section III.—Oxyhydrocarbons.

Alcohol | 345 |
 1. Spiritus vini gallici (Brandy) | 362 |
 2. Mistura spiritus vini gallici | 363 |
 3. Spiritus sacchari (Rum) | 363 |
 4. Spiritus frumenti compositus (Gin, Whiskey, Compounds) | 364 |
 5. Arrack | 364 |

 1. Tinctura | 365 |
 2. Spiritus | 368 |

Æther sulphuricus | 368 |
 1. Spiritus ætheris sulphurici | 377 |
 2. Spiritus ætheris sulphurici compositus | 377 |
Oleum ætheræm | 378 |
Spiritus ætheris nitrici | 380 |
Æther hydrochloricus | 386 |
 Spiritus ætheris hydrochlorici | 387 |
Æther aceticus | 387 |
Acidum aceticum | 388 |
Malt vinegar | 388 |
Wine vinegar | 390 |
German vinegar
Pyroligneous acid
Pyroxilic spirit
Eblanin
1. Acetum destillatum
2. Acidum aceticum aromaticum
3. Acidum aceticum camphoratum
4. Oxymel
Acidum citricum
1. Artificial lemon juice
2. Effervescing citrates
Acidum tartaricum
1. Trochisci acidi tartarici [omitted at p. 433]
2. Effervescing tartrates
Acidum benzoicum
Cresotum
1. Mistura cresotli
2. Unguentum cresotli
Petroleum
Succinum
1. Oleum succini
2. Acidum succinicum

Section IV.—Compounds containing carbon and nitrogen.

Oleum animale
Acidum hydrocyanicum

ORDER VIII.—Compound of boron and oxygen.

Acidum boracicum

ORDER IX.—Phosphorus and phosphoric acid.

Phosphorus
1. Tinctura etherea cum phosphoro
2. Oleum phosphoratum
Acidum phosphoricum dilutum

ORDER X.—Sulphur and its non-metallic compounds.

Sulphur
1. Unguentum sulphuris
2. Unguentum sulphuris compositum
3. Sulphur precipitatum
4. Oleum sulphuratum
Acidum sulphuricum
1. Acidum sulphuricum dilutum
2. Acidum sulphuricum aromaticum
3. Unguentum acidi sulphurici
Acidum sulphurosum
Sulphuris iodidum
Unguentum sulphuris iodidi
Ammoniac hydrosulphidas
Class II. Metallic Substances.

Order XI.—Compounds of potassium.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassa hydras</td>
<td>480</td>
</tr>
<tr>
<td>1. Liquor potassae</td>
<td>486</td>
</tr>
<tr>
<td>2. Potassa cum calce</td>
<td>488</td>
</tr>
<tr>
<td>Potassii iodidum</td>
<td>488</td>
</tr>
<tr>
<td>1. Unguentum potassii iodidi</td>
<td>495</td>
</tr>
<tr>
<td>2. Unguentum iodinii compositum</td>
<td>495</td>
</tr>
<tr>
<td>3. Tinctura iodinii composita</td>
<td>495</td>
</tr>
<tr>
<td>4. Liquor potassii iodidi compositus</td>
<td>495</td>
</tr>
<tr>
<td>Lago's preparations of iodide of potassium</td>
<td>496</td>
</tr>
<tr>
<td>Potassii bromidum</td>
<td>497</td>
</tr>
<tr>
<td>Unguentum potassii bromidi</td>
<td>499</td>
</tr>
<tr>
<td>Potassii sulphureum</td>
<td>496</td>
</tr>
<tr>
<td>1. Solutio potassii sulphureti</td>
<td>502</td>
</tr>
<tr>
<td>2. Balneum sulphuraturn</td>
<td>502</td>
</tr>
<tr>
<td>3. Balneum sulphuraturn et gelatinosum</td>
<td>502</td>
</tr>
<tr>
<td>Potasse bisulphas</td>
<td>502</td>
</tr>
<tr>
<td>Potasse sulphas</td>
<td>504</td>
</tr>
<tr>
<td>Potasse sulphas cum sulphure</td>
<td>505</td>
</tr>
<tr>
<td>Potasse nitras</td>
<td>506</td>
</tr>
<tr>
<td>Potasse chloras</td>
<td>511</td>
</tr>
<tr>
<td>Potasse carbonas</td>
<td>515</td>
</tr>
<tr>
<td>Liquor potassae carbonatis</td>
<td>519</td>
</tr>
<tr>
<td>Potasse bicarbonas</td>
<td>520</td>
</tr>
<tr>
<td>1. Liquor potassae effervescent</td>
<td>522</td>
</tr>
<tr>
<td>2. Lemon and kali</td>
<td>523</td>
</tr>
<tr>
<td>Potasse acetas</td>
<td>523</td>
</tr>
<tr>
<td>Potasse bitartrats</td>
<td>524</td>
</tr>
<tr>
<td>1. Imperial</td>
<td>527</td>
</tr>
<tr>
<td>2. Serum lactis tartarizatum</td>
<td>527</td>
</tr>
<tr>
<td>Potasse tartras</td>
<td>527</td>
</tr>
</tbody>
</table>

Order XII.—Compounds of sodium.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodi chloridum</td>
<td>529</td>
</tr>
<tr>
<td>Sodæ hypochloris</td>
<td>537</td>
</tr>
<tr>
<td>Sodæ sulphas</td>
<td>542</td>
</tr>
<tr>
<td>Sodæ bichromas</td>
<td>543</td>
</tr>
<tr>
<td>Mel boras</td>
<td>546</td>
</tr>
<tr>
<td>Sodæ nitras</td>
<td>546</td>
</tr>
<tr>
<td>Sodæ phosphas</td>
<td>547</td>
</tr>
<tr>
<td>Solutio sodæ phosphatis</td>
<td>550</td>
</tr>
<tr>
<td>Sodæ carbonas</td>
<td>550</td>
</tr>
<tr>
<td>Sodæ carbonas exsiccata</td>
<td>554</td>
</tr>
<tr>
<td>Sodæ sesquicarbonas</td>
<td>555</td>
</tr>
<tr>
<td>Sodæ bicarbonas</td>
<td>555</td>
</tr>
<tr>
<td>1. Pulveres effervescentes</td>
<td>559</td>
</tr>
</tbody>
</table>
CONTENTS.

<table>
<thead>
<tr>
<th>2. Seidlitz powders</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>559</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Liquor soda efferce()scent</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>559</td>
</tr>
<tr>
<td>4. Soda() carbonate aqua</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>560</td>
</tr>
<tr>
<td>5. Trochisci soda bicarbonatis</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>560</td>
</tr>
<tr>
<td>Potasse et soda() tatras</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>560</td>
</tr>
<tr>
<td>Sode() acetas</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>562</td>
</tr>
<tr>
<td>Sapo</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>563</td>
</tr>
<tr>
<td>1. Linimentum saponis</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>568</td>
</tr>
<tr>
<td>2. Ceratum saponis</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>569</td>
</tr>
<tr>
<td>3. En plastra() m saponis</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>569</td>
</tr>
<tr>
<td>4. En plastra() m saponis compositum vel adherens</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>569</td>
</tr>
</tbody>
</table>

ORDER XIII.—Compounds of barium.

Barytie sulphas	577
Barytie carbonas	570
Barii chloridum	572
Liquor barii chloridi	576
Barytie nitras	576
Solutio barytie nitratis	576

ORDER XIV.—Compounds of calcium.

Calx	576
1. Liquor calcis	581
2. Linimentum calcis	581
Calci chloridum	582
Liquor calcii chloridi	584	
Calcis hypochloris	585
Liquor calcis chlorinatus	594	
Calcis carbonas	594
1. Mistura creta	598
2. Pulvis creta compositus	599
3. Trochisci creta	599
4. Camphorated cretaceous tooth-powder	599
Calcis subphosphas	599

ORDER XV.—Compounds of magnesium.

Magnesia	601
Magnesia carbonas	604
1. Trochisci magnesiae	608
2. Aqua magnesiae bicarbonatis	608
Magnesia sulphas	608
Pulvis salinus compositus	612

ORDER XVI.—Compounds of aluminum.

Alumen	613
1. Alumen exsiccatum	630
2. Liquor aluminis compositus	630
3. Pulvis aluminis compositus	630
4. Cataplasma aluminis	630

*•• Other compounds of aluminum (red Armenian bole) | ... | ... | ... | ... | ... | 621
CONTENTS.

ORDER XVIII.—Compounds of antimony.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimonii sesquisulphuretum</td>
<td>651</td>
</tr>
<tr>
<td>Antimonii sulphuretum preparatum</td>
<td>654</td>
</tr>
<tr>
<td>Antimonii sesquichloridum</td>
<td>654</td>
</tr>
<tr>
<td>Antimonii oxy sulphuretum</td>
<td>656</td>
</tr>
<tr>
<td>Antimonii sesqui oxydum</td>
<td>668</td>
</tr>
<tr>
<td>Fulvis antimonii compositus</td>
<td>660</td>
</tr>
<tr>
<td>Potassae antimonio-tartras</td>
<td>664</td>
</tr>
<tr>
<td>1. Vinum antimonii potassio-tartratis</td>
<td>680</td>
</tr>
<tr>
<td>2. Unguentum antimonii potassio-tartratis</td>
<td>680</td>
</tr>
</tbody>
</table>

ORDER XIX.—Gold and its compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aurum</td>
<td>681</td>
</tr>
<tr>
<td>... Fulvis aurii</td>
<td>682</td>
</tr>
<tr>
<td>Aurii tecloridum</td>
<td>682</td>
</tr>
<tr>
<td>Aurei auro-chloridum</td>
<td>684</td>
</tr>
<tr>
<td>Aurii teroxydum</td>
<td>686</td>
</tr>
<tr>
<td>1. Aurate of ammonia</td>
<td>686</td>
</tr>
<tr>
<td>2. Purple of Cassius</td>
<td>686</td>
</tr>
<tr>
<td>Aurii iodidum</td>
<td>686</td>
</tr>
<tr>
<td>Aurii terecyanidum</td>
<td>686</td>
</tr>
</tbody>
</table>

ORDER XX.—Silver and its compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentum</td>
<td>686</td>
</tr>
<tr>
<td>Argenti nitratis</td>
<td>686</td>
</tr>
<tr>
<td>1. Liquor argenti nitratis</td>
<td>698</td>
</tr>
<tr>
<td>2. Solutio argenti ammoniatii</td>
<td>698</td>
</tr>
<tr>
<td>Hair-dye and marking-ink</td>
<td>699</td>
</tr>
<tr>
<td>Argenti cyanidum</td>
<td>699</td>
</tr>
<tr>
<td>... Other compounds of silver (chloride and oxide)</td>
<td>700</td>
</tr>
</tbody>
</table>

ORDER XXI.—Mercury and its compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrargyrum</td>
<td>700</td>
</tr>
<tr>
<td>Hydrargyrum purificatum</td>
<td>722</td>
</tr>
<tr>
<td>Hydrargyrum cum creta</td>
<td>723</td>
</tr>
<tr>
<td>Hydrargyrum cum magnesia</td>
<td>724</td>
</tr>
<tr>
<td>Filiae hydrargyri</td>
<td>724</td>
</tr>
<tr>
<td>Unguentum hydrargyri</td>
<td>725</td>
</tr>
<tr>
<td>1. Unguentum hydrargyri mitius</td>
<td>728</td>
</tr>
<tr>
<td>2. Ceratum hydrargyri compositum</td>
<td>728</td>
</tr>
<tr>
<td>3. Linimentum hydrargyri compositum</td>
<td>728</td>
</tr>
<tr>
<td>Empleastrum hydrargyri</td>
<td>728</td>
</tr>
<tr>
<td>1. Empleastrum amoniaci cum hydrargyro</td>
<td>729</td>
</tr>
<tr>
<td>Hydrargyri oxydum</td>
<td>729</td>
</tr>
<tr>
<td>Lotio nigra</td>
<td>731</td>
</tr>
<tr>
<td>Hydrargyri binoxydum</td>
<td>731</td>
</tr>
<tr>
<td>Lotio flava</td>
<td>733</td>
</tr>
<tr>
<td>Hydrargyri nitrico-oxydum</td>
<td>733</td>
</tr>
<tr>
<td>Unguentum hydrargyri nitrico-oxydi</td>
<td>735</td>
</tr>
<tr>
<td>CONTENTS</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Hydrargyri chloridum</td>
<td>.................................</td>
</tr>
<tr>
<td>1. Pitule hydrargyri chloridi composita</td>
<td>.................................</td>
</tr>
<tr>
<td>2. Pitule cathartica composita</td>
<td>.................................</td>
</tr>
<tr>
<td>3. Unguentum hydrargyri chloridi</td>
<td>.................................</td>
</tr>
<tr>
<td>4. Pitule calomeanos et opii</td>
<td>.................................</td>
</tr>
<tr>
<td>Hydrargyri bichloridum</td>
<td>.................................</td>
</tr>
<tr>
<td>Liquor hydrargyri bichloridi</td>
<td>.................................</td>
</tr>
<tr>
<td>Hydrargyri ammonio-chloridum</td>
<td>.................................</td>
</tr>
<tr>
<td>Unguement hydrargyri ammonio-chloridi</td>
<td>.................................</td>
</tr>
<tr>
<td>Hydrargyri iodidum</td>
<td>.................................</td>
</tr>
<tr>
<td>1. Pitule hydrargyri iodidi</td>
<td>.................................</td>
</tr>
<tr>
<td>2. Unguement hydrargyri iodidi</td>
<td>.................................</td>
</tr>
<tr>
<td>Hydrargyri biniodidum</td>
<td>.................................</td>
</tr>
<tr>
<td>Unguement hydrargyri biniodidi</td>
<td>.................................</td>
</tr>
<tr>
<td>Hydrargyri bisulphuretum</td>
<td>.................................</td>
</tr>
<tr>
<td>Hydrargyri bisulphuretum cum sulphure</td>
<td>.................................</td>
</tr>
<tr>
<td>Hydrargyri bicyanidum</td>
<td>.................................</td>
</tr>
<tr>
<td>Unguement hydrargyri nitratiss</td>
<td>.................................</td>
</tr>
<tr>
<td>Hydrargyri acetas</td>
<td>.................................</td>
</tr>
<tr>
<td>Hydrargyri subsulphas flavus</td>
<td>.................................</td>
</tr>
</tbody>
</table>

ORDER XXII.—Copper and its compounds.

Copper
Cupri sulphas
Ammoniae cupro-sulphas
1. *Pitule cupri ammoniati*
2. *Liquor cupri ammonio-sulphatis*
Cupri subacetats
1. *Cupri subacetats preparatum*
2. *Linimentum eruginis*
3. *Unguement cupri subacetatis*
Cupri acetas

ORDER XXIII.—Bismuth and its compounds.

| Bismuth | |
| Bismuthi trisnitas | |

ORDER XXIV.—Tin.

| Stannum | |
| Putois stanni | |

ORDER XXV.—Lead and its compounds.

<p>| Plumbum | |
| Plumbi oxydum | |
| 1. Plumbi oxydumhydratum | |
| 2. Calcis plumbis | |
| Plumbi oxydum rubrum | |
| Plumbi chloridum | |</p>
<table>
<thead>
<tr>
<th>CONTENTS.</th>
<th>PAGE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>iodidum</td>
<td>800</td>
</tr>
<tr>
<td>aquentum plumbi iodidi</td>
<td>803</td>
</tr>
<tr>
<td>carbonas</td>
<td>802</td>
</tr>
<tr>
<td>aquentum plumbi carbonatis</td>
<td>805</td>
</tr>
<tr>
<td>acetas</td>
<td>805</td>
</tr>
<tr>
<td>Ceratum plumbi acetatis</td>
<td>809</td>
</tr>
<tr>
<td>Pilula plumbi opiate</td>
<td>810</td>
</tr>
<tr>
<td>plumbi diacetatis</td>
<td>819</td>
</tr>
<tr>
<td>Liquor plumbi diacetatis dilutus</td>
<td>812</td>
</tr>
<tr>
<td>Ceratum plumbi compositum</td>
<td>812</td>
</tr>
<tr>
<td>Ceratum saponis</td>
<td>812</td>
</tr>
<tr>
<td>trum plumbi</td>
<td>813</td>
</tr>
<tr>
<td>Emplastrum resinæ</td>
<td>814</td>
</tr>
<tr>
<td>Emplastrum saponis</td>
<td>814</td>
</tr>
<tr>
<td>Unguentum plumbi compositum</td>
<td>814</td>
</tr>
</tbody>
</table>

ORDER XXVI.—Zinc and its compounds.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>814</td>
</tr>
<tr>
<td>816</td>
</tr>
<tr>
<td>819</td>
</tr>
<tr>
<td>819</td>
</tr>
<tr>
<td>820</td>
</tr>
<tr>
<td>822</td>
</tr>
<tr>
<td>825</td>
</tr>
<tr>
<td>826</td>
</tr>
<tr>
<td>826</td>
</tr>
<tr>
<td>827</td>
</tr>
<tr>
<td>827</td>
</tr>
<tr>
<td>828</td>
</tr>
</tbody>
</table>

ORDER XXVII.—Iron and its compounds.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>828</td>
</tr>
<tr>
<td>835</td>
</tr>
<tr>
<td>837</td>
</tr>
<tr>
<td>839</td>
</tr>
<tr>
<td>839</td>
</tr>
<tr>
<td>842</td>
</tr>
<tr>
<td>844</td>
</tr>
<tr>
<td>845</td>
</tr>
<tr>
<td>846</td>
</tr>
<tr>
<td>848</td>
</tr>
<tr>
<td>849</td>
</tr>
<tr>
<td>857</td>
</tr>
<tr>
<td>860</td>
</tr>
<tr>
<td>860</td>
</tr>
<tr>
<td>860</td>
</tr>
<tr>
<td>860</td>
</tr>
<tr>
<td>862</td>
</tr>
</tbody>
</table>
CONTENTS.

3. *Pilula ferri composite* 863
4. *Supercarbonated chalybeates* 863
Potassae ferro-tartras 863
Ferri acetas 866
1. *Ferri acetatis tinctura* 867
2. *Tinctura acetatis ferri cum alcohole* 867
 * & * Other feruginous compounds (persulphate, pernitrate
 of iron, ferro-tartrate of ammonia, and iron wine) 867

ORDER XXVIII.—Binoxide of manganese.

Manganesii binöxydum 868
LIST OF WOODCUTS IN VOL. I.

figs. Page
1. Ancient baths 14
2. Apparatus for medical electricity 38
3. Flower of raphanus sativus 94
4. Flower of glechoma hederacea 94
5. Fruit of picea vulgaris 94
6. Inflorescence of fuciculum vulgare 95
7. Lolium temulentum 95
8. Pestac quadri dentata 96
9. Cactus opuntia 108
10. Amanita muscaria 109
11. Apparatus to illustrate physical absorption 112
12. Apparatus used by Messrs. Morgan and Addison in their experiments on the absorption of poisons 116
13. Ditto 121
14. Ditto 122
15. Inhaling bottles 152
16. Octahedron 162
17. Dodecahedron 162
18. Cube 162
19. Hexahedron or tetrahedron 162
20. Square octahedron 163
21. Square prism 163
22. Combination of octahedron and prism 163
23. Images caused by the action of calceous spar on polarized light 163
24. Rhombohedron 163
25. Hexagonal prism 163
26. Combination of the rhombobedron with the hexagonal prism 163
27. Scalenohedron 163
28. Images caused by the action of nitre on polarized light 164
29. Octahedron with a rectangular base 164
30. Right rectangular prism 164
31. Octahedron with a rhombic base 164
32. Right rhombic prism 164
33. Oblique octahedron with a rectangular base 165
34. Oblique rectangular prism 165
35. Oblique octahedron with a rhombic base 165
36. Oblique rhombic prism 165
37. Doubly oblique octahedron 165
38. Doubly oblique prism 165
39. Fused yielding iodine 233
40. Iodine leiden still and glass receivers 234
41. New Geyser 265
42. Apparatus for making hydrochloric acid 277
43. Nitric acid apparatus 286
44. Apparatus for the purification of coloured nitric acid 286
45. Apparatus for testing nitrates 289
46. Manufacture of sesquicarbonate of ammonia 309
47. Sublimation of hydrochlorate of ammonia 316
48. Manufacture of animal charcoal and bone spirit 318
49. Tyler's improved soda water apparatus 339
50. Hydrometer 352
51. Tincture percolators 367
52. Vinegar generator 391
53. Section of a pyroligneous acid still 393
54. Citric acid manufactory 406
55. Crystal of citric acid 406
56. Crystals of tartaric acid 410
57. Boracic acid lagoons 448
58. Chambers for crystallizing and drying boric acid 449
59. Distillation of sulphur 457
60. Sarcoptes hominis 461
61. Cascade de Vinage 464
62. Oil of vitriol manufactory 465
63. Oil of vitriol chamber 465
64. Plan of an oil of vitriol manufactory 467
65. Prism of bisulphate of potash 503
66. Crystals of sulphate of potash 504
67. Tessellated appearance of a plate of sulphate of potash in polarized light 505
68. Crystal of nitre 508
69. Prism of ditto 508
70. Crystals of carbonate of potash 521
71. Ditto of bitartrate of potash 525
72. Crystal of tartrate of potash 528
73. Section of a salt mine 530
74. Common salt pan 531
75. Plan of salt marshes 532
76. Prism of sulphate of soda 542
77. Carbonate of soda furnace 552
LIST OF WOODCUTS.

Figs. Page
95.§ Crystals of carbonate of soda 552
96.§ Ditto, of tartarized soda 561
98.§ Apparatus for the manufacture of 586
100.§ Chloride of lime 589
101. Chlorometer 589
102. Calcined magnesia furnace 602
103. Manufacture of heavy carbonate of magnesia 605
104.§ Crystals of sulphate of magnesia 610
105.§ Crystal of alum 614
107. Section of an arsenic roasting furnace 622
108. Arsenic condensing chamber 622
109. Arsenic refining furnace 622
110. Berzelius's reduction tube for arsenic 625
111. Apparatus for passing sulphuretted hydrogen through metallic solutions 629
112.
113.
114.
115. Marsh's apparatus 631

CORRIGENDA ET ERRATA.

The reader is requested to correct with the pen the following typographical errors.

Page, line.
55, 11, for gluten, read glutin.
55, 14, for gluten, read glutin.
121, last line but one, for minutes, read seconds.
125, 26, for direct, read indirect.
156, 14, for This history, read The history.
162, last line but two, for class, read system.
201, after line 22, insert ORDER 8.
218, 10, transpose șii. and șii.
276, last line but three, insert before the word chlorine, those of.
308, last line but 11, for sesquicarbon'nas, read sesquicarbon'nas.

Page, line.
329, line 18, for hue, read trace.
450, line 23, for two-thirds, read \frac{3}{4}.
498, line 8, for bicarbonate, read bichlorate.
595, 35, for durs, read dura.
598, last line but 4, for common, read cinnamon.
623, 2, for Mundie, read Mundie.
657, the right-hand bracket in the 6 should include only the three lines of the diagram, instead of seven.
663, last line but 3, for inclusive, read inconclusive.
THE
ELEMENTS
OF
MATERIA MEDICA.

Part First.

Therapeutics (Therapeia, Therapeutice, Therapeutica, from Ἰατρική ἢ, I cure) is that branch of medicine which has for its object the treatment of diseases. It is divided into general (Therapeia generalis) and special (Therapeia specialis).

Authors are not agreed as to the proper limits of Therapeutics. In the most extended sense of the word, and which I have adopted in the text, it embraces all the known means of cure, and, consequently, all surgical operations. Guerreau; however, excludes Amputations, Lithotomy, Tracheotomy, &c. from its domains, though he includes Bloodletting, Issues, Setons, Acupuncture, and all those operations which are useful in the treatment of diseases, by producing modifications of the vital properties.

Sprengel applies the term "Intrepelia" (from ἰατροπεία, I cure; and λέγω, a discourse) to general Therapeutics.

Acology (Acologia, from ἰατρος, a remedy, and λέγω, a discourse), or Intamutologia (from ἰατρομα, a remedy, and λέγω, a discourse), is that department of Therapeutics devoted to the consideration of remedies.

Some authors limit Acology to the consideration of surgical and mechanical remedies.

Remedies (Remedia, from re and medeo, I heal; Auxilia medica) are agents used in palliating or curing diseases.

They are of two kinds: psychological, or mental; and somatical, or corporeal. The first affect the bodily functions, and influence disease by the agency of the mind; the second act on the body directly.

1 Dictionnaire de Médecine, tom. xx, art. Thérapeutique. 1828.
2 Institutions Medica, tom. i. p. 7.
4 Sprengel, and C. H. K. Bischoff; op. supra cit.
5 Strictly speaking, this division may, perhaps, be inaccurate. We know that changes in the condition of the brain produce corresponding alterations in the state of the mind; and it may be fairly inferred that changes in the state of the mental faculties are necessarily associated with some molecular changes in the cerebral substance. If this be true, all remedies are somatical or corporeal. But, in the absence of direct and positive evidence of this, we may continue to speak of mental as distinguished from corporeal agents, just as we speak of functional as distinguished from organic diseases.
1. REMEDIA PSYCHICA.—PSYCHICAL OR MENTAL REMEDIES.

Affections of the mind influence the corporal functions, favour or oppose the action of morific causes on the system, and modify the progress of diseases. Their employment as therapeutic agents is necessarily limited; on account of the difficulty experienced in producing, regulating, and controlling them. Yet they are by no means unimportant, or to be neglected.

They may be conveniently divided into two sets or classes,—the one including those affections which immediately result from the presence of objects external to the mind, and which may be denominated external affections;—the other comprising those affections which arise in consequence of certain preceding affections of the mind itself and which may be termed internal affections.

CLASS 1. EXTERNAL AFFECTIONS OF THE MIND.—To this division belong those phenomena or states of the mind commonly termed sensations, and which may arise either from influences external to the body (external sensations), or from organic causes existing within the body (internal sensations). They suggest, by the association of ideas, other affections, which, as they arise from preceding states of the mind, are truly internal. But, in considering external affections as remedial agents, it is scarcely possible to estimate their influence independent of the internal affections which immediately arise from them. Indeed, the great remedial value of some external affections depends on the internal affections which they suggest; as in the case of Music, the therapeutical effects of which are referrible, not to the mere perception of the sounds, but to the resulting emotions.

The mental affections of this class, which will require a brief notice, are the external sensations; viz. those ascribed to the organs of smell, taste, hearing, vision, and touch.

1. & 2. SMELL AND TASTE.—a. An important object in the art of prescribing is to cover the unpleasant taste and smell of medicines by other substances possessed of an agreeable flavour and odour.

b. In some nervous affections we endeavour to increase the faith of our patients in the powerful agency of the remedies employed, by augmenting the odorous and rapid qualities of the substances used.

3. HEARING.—a. Monotonous noises favour sleep; as the humming of bees, the ticking of a clock, the murmur of a rivulet, a dull discourse, &c. We avail ourselves of this fact in therapeutics, and combat want of sleep by directing a attendant to read aloud to our patient.

b. Silence frequently disposes to sleep. Under some circumstances, however, it "may become a stimulus, while sound ceases to be so. Thus, a miller being very ill, his mill was stopped, that he might not be disturbed by its noise; but this, so far from inducing sleep, prevented it altogether; and it did not take place till the mill was set a-going again."

7. MUSIC has been employed in the treatment of diseases (especially those of the mind) from very remote times (F. A. Steinbeck, Diss. Inaug. De Musicæ...
pedal means, its effects being usually only temporary. Violent patients come silent, and then moved to weeping, when the piano is played to—As, in the therapeutic employment of music in insanity, our object is agreeable emotions, by recalling the happy events of by-gone times, restoring old associations and trains of thought, particular attention be paid to adapt the character of the music to the peculiarities of each or it is obvious that what may prove beneficial to one patient, may be so to another.

S. Sleep is promoted by the sight of any thing waving; as of a standing corn, or of the hand drawn up and down before the face by aiser, attracting attention much more than an object at restm.

sense of light is one of the circumstances which usually dispose to

uch.—a. Gentle friction with the fingers, on some part of the body, dis- 16 sleep. Its soothing and lulling effects I have repeatedly experienced suffering with severe headache. "I know a lady," says Dr. Elliotson, 17 then remains awake, in spite of every thing, till her husband very gently 18 feet; and, by asserting to a patient my conviction that the secret of an 19 ing hypnologist, whom I allowed to try his art upon the sleepless individ- 20 which he did for a time successfully, was to make him rub some part 21 body till he slept, he confessed this to be the fact."

Gentle friction acts on the same sense; and a combination is still more c: whence experience has taught nurses to rock, and otherwise agitate while they hum them to sleep."

from pain and uneasiness of any kind favours sleep.

some soporose affections, as poisoning by opium, apoplexy, &c. remedies 22 to which, by exciting the sensibility of the body, are calculated to the patient. Various methods of causing pain have been devised: one of 23 is articulation, or flagellation by a bunch of nettles (Urtica dioica). This 24 is mentioned by Celsus."

ess 2. Internal Affections of the Mind.—This class in- 25 the intellectual states of the mind and our emotions. But, as observations which I have to make on the therapeutic employment of 26 class, are rather general than specific, it will be unnecessary except any systematic division of the internal affections.
either have produced or keep up the morbid condition. This, however, cannot be
affected in many cases, or only with extreme difficulty. In a considerable num-
er of nervous and hypochondriacal affections, appeals to the reasoning faculties
are not only useless, but, in many instances, absolutely injurious, “by exciting
irritation in the mind of the sufferer, who thinks his counsellors are either un-
feeling or incredulous towards his complaints.” In such cases no remedy is
equal to travelling, especially in a mountainous country; for it combines the
salutary influence of abstraction of mind from painful reflections, change of
scene, respiration of pure air, and employment of bodily exercise. If the extent
of the mental disorder, or the circumstances of the patient, preclude the trial of
this remedy, removal from home is calculated to act beneficially, by withdrawing
the patient from the influence of domestic circumstances calculated to add to,
or at least to keep up, the morbid condition, and by presenting new objects to
his view, which arrest his attention, and excite new trains of ideas. In lunatic
asylums, seclusion proves a simple but most valuable means of tranquillizing
violent maniacs. Amusement and employment are powerful psychical remedies
in the treatment of the insane.

5. Emotions and passions of the mind have a most powerful influence upon the
disorders of the body. Much of the evidence, however, which establishes the truth
of this statement, is rather curious than practically useful, and as the general fact
is well known and admitted, I shall confine myself to a few practical illustrations.
Hope is a mildly stimulating or tonic passion, which may be beneficially employed
in all diseases, and which proves injurious in few, if in any cases. Most patients
receive with satisfaction and benefit assurances of the prospect of recovery from
their medical attendant. Even in diseases of a mortal character, life may be some-
times prolonged by concealing from the sufferer the fatal nature of his malady.
Faith in the beneficial agency of the remedies employed, and confidence in the
skill of the medical attendant, are important adjuvants in the treatment of most
diseases. To them both physician and empiric owe part of their success; and if
it is, therefore, the duty of the practitioner to encourage these feelings in his
patient by every legitimate and honourable means. The influence of the imagi-
nation on disease has long been known, and is a fruitful source of fallacy in
therapeutics. Extraordinary cures have frequently been ascribed to inert and
useless means, when, in fact, they were referrible to the influence of the imagi-
nation. Fear is a depressing and debilitating passion, of whose power over
disease the practitioner has sometimes availed himself. Thus Boerhaave pre-
vented the recurrence of epileptic attacks (brought on by a person falling down
in a fit in the sight of the hospital patients,) by directing a red-hot iron to be
applied to the person who should next be affected.

* Change of Air, or the Pursuit of Health and Recreation; illustrating the beneficial influence of
bodily exercise, change of scene, pure air, and temporary relaxation, in sickness and health. By
James Johnson, M.D. 4th ed. 1838.
* On this subject consult Esquirol, op. supra cit. tom. ii. p. 745.
* See Dr. Comly’s Report before referred to, p. 38.—Bodily coercion is now no longer resorted to
at the Hanwell Lunatic Asylum. Further experience, however, is still required to establish the propriety
or even humanity of omitting it in all cases.
* Consult Sir W. C. Ellis’s Treatise on the Nature, Symptoms, Causes, and Treatment of Insanity,
1838; and Dr. Comly’s Report before quoted, p. 31.
* See Dr. Wm. Falconer’s Dissertation on the Influence of the Passions upon Disorders of the Body.
* For some judicious remarks, by Sir H. Halford, on the duty of the physician, in withholding from, or
communicating to, a patient the probable issue of a disease displaying mortal symptoms, see
London Medical Gazette, vol. vii. p. 692. I fully agree with the learned President of the College of
Physicians, that the first duty of the physician is “to protract the life of his patient by all practicable
means.”
* See Dr. Hargrav’s Of the Imagination, as a Cause and a Cure of Disorders of the Body; re-
empted by fictitious Tractates and epidemical Convulsions; in the London Medical Review, vol. iii.
p. 98, 1800. Also Dr. Lind’s Treatise on the Scurvy, p. 343, et seq.; and p. 535. 3d ed. 1772.
* Falconer’s Dissert. before quoted, p. 100.
REMEDIA SOMATICA.—SOMATIC OR CORPORAL REMEDIES.

remedies which act on the body directly, and which we
ominated Somatical or Corporal, admit of arrangement into
es, as follows:—

1. *Irical but Imponderable Agents*, as Light, Heat, Electricity, and

2. *emic Agents*, as Diet, Exercise, and Climate.

3. *nnical and Surgical Agents.*

4. *rnological Agents* or *Medicals.*

TIA PHYSICA.—PHYSICAL BUT IMPONDERABLE

AGENTS.

I. LUX.—LIGHT.

(Lumen.)

LOGICAL EFFECTS.—Light acts as a vivifying or vital stimul
living beings. It promotes the nutritive processes of
a, and its absence is the cause of that curious phenomenon
ed the *sleep of plants.* A morbid condition, called
, or *blanching,* is induced in vegetables by growing them re places . On animals, light operates in a two-fold man-
rn mates their development and nutrition, and it acts as a
mulus to the eye, as the organ of vision . Privation of
oses to inactivity and sleep. The disease, called *Anemia
ia* in man, is analogous to the condition termed etiolation
es; and, like the latter, is sometimes referrible to depriva-
light, combined, however, with other deleterious causes,
(a retinitis?) occasionally results from the exposure of the
ong light. The effect of the sun-stroke (*coup de soleil,* or
iris), in inducing inflammation of the brain, may be, in part,
owing to the influence of the light of the solar rays.

—in maladies characterized by imperfect nutrition and san-
, as scrofula, rickets, and anemia, and in weakly subjects

see *vividad or vital stimuli* is used to designate those external conditions necessary to the
of life in organized beings; such as heat, air, water, and nutriment. They are to be
d from the *alterative or medicinal stimuli,* which, while they cause temporary excite-
tly exhaust (see Müller’s *Elements of Physiology,* by Baly, vol. 1, pp. 26 and 57).

As respecting the influence of light on vegetation, consult J. C. Ebermaier, _Versuch
icht des Lichtes,* Onnbiück, 1799; Landgrebe, _Uber das Licht vorzugsweise über die
und physiologischen Wirkungen desselben,* p. 187, Marburg, 1834.—Also De Candolle,
vegiales, t. i., p. 1009, Paris, 1832.

Influence of light on animals, see J. C. Ebermaier, _op. supr.* et.; E. Horn, _Uber die
des Lichtes auf den lebenden menschlichen Körper,* Königsberg, 1799; Landgrebe, _op.

Case of the workmen employed in a French coal-mine, detailed in the *Dictionnaire de
Animaux* and M. André’s *Treatise on Pathological Anatomy,* translated by Drs.
and West, vol. 1, p. 97.—When a gardener wishes to etiolate, that is, to blanch, soften,
juicy, vegetable, as lettuce, celery, &c., he binds the leaves together, so that the light
little reaches them to their surfaces. In like manner, if we wish to etiolate men and
have only to congregate them in cities, where they are pretty securely kept out of the
are they become as white, tender, and watery, as the finest celery. For the more ex-
ience of this human etiolation, we must survey the inhabitants of mines, dungeons, and
traneous abodes; and for complete contrasts to these, we have only to examine the com-
achmen, shepherds, and the sailor on the high and giddy mast.” (Dr. James
with œdematous limbs, &c. free exposure to solar light is indicated. Its use is sometimes attended with very happy effects. Open and elevated situations probably owe part of their healthy qualities to their position with regard to solar light. The observations of Dr. Edwards, on the influence of light in promoting the perfect development of animals, led him to conclude, that in climates, where nudity is not incompatible with health, exposure of the whole surface of the body to light is favourable to the regular conformation of the body; and he, therefore, has suggested insolation in the open air as a means calculated to restore healthy conformation in children affected with scrofula, whose deviations of form do not appear to be incurable.

As in bright solar light we feel more active, cheerful, and happy,—while obscurity and darkness give rise to a gloomy and depressed condition of mind,—so we employ insolation in the open air as a mental stimulus in melancholy, lowness of spirits, and despondency.

In amaurosis, supposed to depend on, or be connected with, a languid condition of the vital actions going on in the tunics of the eye, exposure to strong solar light (concentrated by a lens) has been proposed as a remedy. But notwithstanding that Hufeland reports a case said to have been cured by it, its value is exceedingly doubtful, and its use requires extreme caution.

a. Darkness.

In many maladies light acts injuriously on the system, and its exclusion is attended with benefit to the patient.

In all diseases of the eye attended with local vascular or nervous excitement, darkness or obscurity should be employed. In inflammatory conditions of the brain, in fever, and in mental irritation, whether attended or not with vascular excitement, the stimulus of light proves injurious, and in such darkness of the chamber should be enjoined. After parturition, severe wounds, and surgical operations, and in all inflammatory conditions, the exclusion of light contributes to the well-doing of the patient. Lastly, darkness is employed to promote sleep. In most cases where obscurity is indicated, rest and quietude are to be enjoined.

b. Dioptic Instruments.

When vision is imperfect, from defect of focal distance, the remedy consists in the use of dioptic or refracting instruments (eye-glasses; spectacles). In Myopia (i.e. Short- or Near-sightedness), doubly concave lenses (whose focal lengths vary from about 24 to 48 inches) are usually employed to counteract the over refractive power of the humors; while, in Presbyopia (Long- or Far-sightedness), doubly convex lenses (whose focal lengths vary from about 6 to 48 inches) are generally used to obviate the diminished refractive power of the humors of the eye. Lenses, for the above purposes, are commonly

2 Quoted by Sundelin, Handbuch der speziellen Heilmittelkunde, Bd. ii. S. 72. 3te. Aufl. 1833.
3 See p. 3.
4 In opticians' shops two trial boxes, or frames of sight, are kept; the one comprises the range of doubly convex—the other, of the doubly concave lenses. These are used for trying myopic or presbyopic eyes.
made either of flint-glass or of Brazilian quartz. The latter, called pebble, has the advantage of greater hardness, and its surface, therefore, is not so readily scratched. The diathermancy of quartz is about the same as that of mirror-glass.

Occasionally lenses of other forms, than those above enumerated, are employed; but the only one deserving of special notice is the periscope or meniscus (concavo-convex) lens, recommended by Dr. Wollaston for enlarging the field of vision.

C. CHROMATIC INSTRUMENTS.

In some affections of the eye (popularly known as weakness of sight), coloured glasses are employed, with occasional relief, to diminish the intensity of the light. Those with a neutral tint (or twilight tinge) prove the most agreeable to the eye.

White light is most fatiguing and hurtful to the eye. The disease, called snow-blindness, which sometimes results from the long contemplation of a country covered with snow, is probably retilinitia. Both red and yellow light are injurious to the eye. To the excess of the yellow and red rays, in common artificial light, may be in part ascribed the baneful influence of this light in causing impaired vision. Two modes of preventing its insidious effects have been suggested; viz. the addition, by reflection, of the blue rays that are deficient (as by the use of conical blue shades or reflectors around the flame), or the subtraction, by absorption, of the red or yellow rays that are in excess (as by passing the light through some transparent medium of a blue tint). Green, blue, indigo, and violet lights, are much less injurious than either red or yellow. Spectacles of these colours have been made for the use of those suffering with sensitive eyes, but they are inferior to the neutral tint before mentioned, since after their removal from the eyes every object sometimes presents for a short period complimentary tints; showing that these colours have fatigued the retina. All dark-coloured glasses, however, and especially black crêpe spectacles, are objectionable, on account of their greater power of absorbing and radiating caloric, by which they prove heating to the eyes.

1. Quartz presents some remarkable optical phenomena. It possesses the property of double refraction in the direction of its axis. In this it differs from every other known uniaxial crystal. Moreover, when a plane-polarized ray is transmitted through a prism of quartz, the two pencils into which the ray is divided, are, at their emergence, elliptically polarized (Arly, in The Transactions of the Cambridge Philosophical Society, vol. iv. 1833).

2. Lenses made of amber are readily scratched and soon lose their polish.

3. Melloni, Taylor's Scientific Memoirs, vol. i. p. 1. The transparency or diathermancy of several transparent solids is as follows:—Of 100 rays of heat proceeding from the flame of an Argand lamp, there were transmitted by Rock Salt 92 Mirror Glass 62
 Iceland Spar 62 Alum 12
 Quartz 62 Sulphate of Copper (diaphanous) 0

In another series of experiments Melloni ascertained the relative diathermancy of Flint-Glass, Mirror (Plate) Glass, and Crown-Glass, to be respectively 83, 62, and 49.

6. The intense light caused by the explosion of charcoal and the combustion of the metals effected by the Volcano Battery constructed by Professor Groves, has produced on my own, as well as on some others, temporary blindness. The symptoms (which lasted two days in my case) were those of inanity, with profuse lachrymation.

8. Lenses are amber lenses are objectionable.

10. Melloni (op. supra cit.) ascertained the diathermancy of coloured glasses to be as follows:—Of 100 incident rays, there are transmitted by

<table>
<thead>
<tr>
<th>Coloured glass</th>
<th>Rays transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep violet</td>
<td>53</td>
</tr>
<tr>
<td>Vivid yellow</td>
<td>47</td>
</tr>
<tr>
<td>Clear blue</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coloured glass</th>
<th>Rays transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright yellow</td>
<td>34</td>
</tr>
<tr>
<td>Mineral green</td>
<td>23</td>
</tr>
<tr>
<td>Very deep blue</td>
<td>19</td>
</tr>
</tbody>
</table>

Physiological Effects.—All living beings, but especially the animals denominated warm-blooded, generate heat. To all a certain temperature (which differs in different individuals) is essential to the maintenance of life; and hence caloric or heat is a vital stimulus*. Increased beyond a certain degree, it ceases to be vivifying: it may cause inflammation or apoplexy; it may exhaust by its prolonged stimulant operation; or, when its action is very violent, it may decompose the organized tissues by its chemical influence.

There are three modes of promoting or raising the temperature of warm-blooded animals, viz.:—

1. The communication from without of sensible heat, either by the application of heated substances to the body, or by the introduction of radiant heat.
2. By augmenting the generation of heat within the body; as by the use of stimulant foods and drinks.
3. By diminishing the cooling influence of surrounding bodies; as by the use of clothing made of substances which are bad conductors of caloric.

The effects of caloric communicated from without, on living beings, are threefold, viz.:—

1. Physical; including expansion or dilatation, and fluidity.
2. Chemical; comprising increased tendency to changes of composition and decomposition.
3. Dynamical, physiological, or vital; comprehending all changes in the condition of the vital properties produced by heat. These changes are of two kinds:—
 a. Primary: excitement, or augmentation, of vital action.
 b. Secondary: exhaustion, or diminution, of vital action.

a. On Vegetables.—A certain degree of heat promotes all the vital processes of plants. It accelerates germination, the growth and development of all vegetable organs, inflorescence, fecundation, and the ripening of the fruit; and it quickens the movements of parts susceptible of motion. Too elevated a temperature, accompanied with dryness, deranges the health of plants*. An intense heat decomposes the vegetable tissues.

b. On Man and other Animals.—A certain degree of external heat (different in different beings) promotes the vital manifestations of animals, and hence we denominate it an excitant or stimulant. Its prolonged operation, however, is followed by debility and exhaustion proportionate to the previous excitement.

The influence of tropical heat on the human species furnishes an instructive example of the effects just mentioned. It is well known that the mental powers of children are sooner developed, and the sexes arrive earlier at puberty, in warm than in cold countries. Moreover, the languor, indolence, and relaxed fibres, so commonly observed in the inhabitants of tropical climates, are probably to be ascribed, in a great measure, to the exhausting and enervating influence of external heat.

* See foot-note at p. 3.

The effects of topical heat are, first, a sensation of warmth, redness, turgescence, and a slight augmentation of temperature of the part heated. The diameters of the minute capillary vessels expand under the influence of caloric, and thus the red blood-disks are enabled to enter tubes previously impervious to them. The augmented volume of the part arises, therefore, in a great measure from the presence of an increased quantity of blood; but in part also from the dilatation of the solids and fluids caused by their augmented temperature. The living tissues become more relaxed, soft, and flexible, under the influence of a moderate heat, and admit of a more rapid transpiration.

A more violent degree of heat causes burning pain, redness, and vesication. A still more intense heat destroys vitality and organization. Whenever a large portion of the surface of the body is destroyed (as in burns and scalds), great constitutional disturbance, or even death, results from the shock given to the nervous system.

If the whole body be subjected to an elevated temperature, not incompatible with prolonged life, its effects are manifested first in the vascular system, and in the organs connected therewith. The superficial vessels enlarge; the skin becomes redder; and the pulse quicker and fuller: respiration is more frequent; the animal heat is augmented; and the expired air is hotter, and more loaded with vapour.

The exciting influence of heat, on the vascular system, points out the impro priety of employing this agent in inflammation or congestion of the organs (heart and lungs) engaged in the circulation of the blood; in dilatations of the heart; in aneurism; in apoplexy; and many other cases which will readily suggest themselves.

Increased exhalation (first of insensible and vaporous matter, then of visible and liquid sweat) and augmented secretion of the periphery soon succeed. The rapid conversion of a liquid into an aeriform fluid (insensible perspiration) is attended with the production of cold; and thus animals are enabled to counteract external heat, and to maintain nearly their original temperature, when exposed to a temperature considerably higher than that of their own bodies, by the increased perspiration which they suffer under these circumstances. The determination to the surface, and the increased transpiration and secretion of the skin, are attended with a contemporaneous diminution of activity in some of the internal organs. Thus, the secretions of the kidneys and the mucous membranes are diminished in consequence of the increased secretion and exhalation of the skin.

The mutually antagonizing influence of determinations of blood to different parts— as well as of the secretions of different tissues—is a circumstance the knowledge of which is of great practical value in therapeutics. We avail ourselves of this influence, and employ external heat to produce determination of blood to, and augmented secretion of, the skin on various occasions; as when an internal malady is attended with coldness of surface, or appears to be connected with the sudden disappearance of a cutaneous eruption. The benefit obtained by the use of external heat in gastritis, enteritis, cystitis, and nephritis, is in part referrible to the same antagonising influence. External heat is also an important adjuvant.

* See some valuable remarks on the "antagonism" of the secretions, in Müller's Elements of Physiology, 2nd ed., vol. i. p. 473.
in the treatment of diabetes: it checks the excessive secretion of urine, and relieves the dry and unperspirable state of the skin. Whenever we exhibit sudorific medicines, we promote their operation by keeping the surface warm; while when we employ diuretics, the skin should be kept cool. The agency of tropical heat in weakening the digestive organs, and the efficacy of spices, taken as condiments, in counteracting this effect, are clearly referrible to the principle of antagonism above explained.

The augmented secretion of bile, and the tendency to hepatic diseases, so commonly observed in Europeans when they become residents in warm climates, are other effects of the continued operation of heat on the body.

That heat, aided by inactivity, abundance of solid food, and little or no drink, is capable of inducing hepatic disease, is well shown on the goose. The celebrated pâtés de foies gras, prepared at Strasburg and Metz, are made from the livers of geese artificially enlarged. These animals are crammed with food, kept from drink, nailed to a plank by the webs of their feet, and placed quite close to a fire: and, in due time, their livers become greatly enlarged.

Relaxation of the living tissues is another consequence of the employment of moderate heat. This effect, which is best observed when moisture is conjoined with caloric, commences first in the part to which heat is applied: and, when the whole surface of the body has been subjected to an increased temperature, its relaxing influence soon extends to internal parts: hence arise atony, diminution of muscular power, a feeling of languor or fatigue, and an indisposition to corporal exertion.

We take advantage of this relaxing influence of heat in the treatment of spasmodic diseases, in the reduction of dislocations, in the application of the taxis in hernia, and on many other occasions where our object is to relax or soften muscular or other tissues. On the other hand, we avoid the employment of heat where preternatural relaxation or atony of the general system, but especially of the surface, exists.

The primary effect of moderate heat on the nervous system is excitation; the secondary effect, exhaustion. In the first instance sensibility is agreeably promoted, the action of the voluntary muscles assisted, and the intellect somewhat exalted. But to these effects succeed languor, relaxation, listlessness, indisposition to corporal and mental labour, and tendency to sleep.

Lastly, the prevailing maladies of hot climates may be referred to as farther illustrations of the effect of continued heat on the body. Fevers, diarrhoea, dysentery, cholera, and liver diseases, may be regarded as the special maladies of the burning equatorial regions.

The exhaustion, which follows the excitation caused by heat and other stimuli, would seem, to use the words of Müller, to "show that the organic force is consumed, as it were, by the exercise of the functions;" and to employ a simile of Dr. Priestley, we may say, that as a candle burns out much faster in oxygen gas than in air, so we may be said to live out too fast when under the exciting influence of an elevated temperature.

Radiant Heat.

Uses.—Heat is employed as a remedial agent for various purposes, of which the following are the principal:

1. To cause an afflux of blood to a part; by which,—
 a. Healthy circulation and temperature may be restored.
 b. The equalization of the distribution of blood may be effected; and thereby a supernormal afflux to other organs checked.
 c. The secretions and exhalations of a part may be re-established or increased.

2. To promote the general circulation of blood.
3. To relax tense, rigid, or spasmodically contracted tissues.
4. To alleviate pain.
5. To hasten organic changes; as the termination (resolution or suppuration) of inflammation.
6. To destroy the vitality and organization of a part.

The most important circumstances which contra-indicate its employment, are—

1. Great vascular excitement, plethora, aneurism, hemorrhage, &c.
2. Great relaxation and flabbiness, especially in the superficial organs.
3. Profuse secretion and exhalation.
4. Great nervous excitability, with little power.

Heat is communicated to the body in two ways; viz. by radiation and by conduction.

a. Radiant Heat.

Radiant heat proceeds from the sun and terrestrial bodies, in straight lines or rays. Therapeutically it has been employed as a stimulant or excitant, to promote circulation and warmth in the old, the debilitated, and the paralytic; and as a cauterity.

a. Solar Heat.—The rays, which proceed from the sun, are of three kinds—illuminating, heat-making, and chemical. Their important influence—as illuminating rays—have been already alluded to.

The ancients were well acquainted with the salutary influence of solar heat on the human frame, and frequently employed it for therapeutic purposes.

Insolation (insolatio, apricatio, solicatio, heliosis, ηλιασις) may be employed as a stimulant for the purposes already mentioned. It is also valuable in scrofula, and as a restorative after lingering and painful maladies. Whenever it is used the head should be carefully guarded from the direct influence of the sun, in order to prevent the occurrence of the sun-stroke, or ictus solaris, before referred to. Occasionally erythema or erysipelas is produced by the direct action of the sun on the naked skin.

Faure concentrated the solar rays by a burning-glass, and employed them to stimulate indolent ulcers, especially those which follow frost-bites. Formerly cauterization was effected in the same way.

1 See p. 5.
2 Hippocrates, De Morbis, lib. ii. 66 & 68; Celsus, lib. i. cap. 2 & 3; Celsus Aurelianus, Morb. Chemic. lib. iv. cap. 2.
3 Page 5.
4 Marjolin, in Diet. de Médecine, art. Cauterisation. Most, in his Encyclopädie der gesammten medizin. u. chirurg. Praxie, Leipzig, 1837, art. Insolation, quotes two authors on Insolation, whom I have had no opportunity of consulting: they are Drezig, De solicatione, vulgo insolations veterum, Lpz. 1727; and Richter, Diet. Insolatio, seu pellacis solis in corpus humanum, Gotting, 1747.
2. Artificial Radiant Heat.—Exposure to the rays of a common fire is resorted to, as a stimulant and calefactor, in old paralytic and other cases attended with coldness and blueness of the extremities, and other symptoms of insufficient circulation of the blood.

The heat radiating from a burning body (as a candle), or ignited iron, is sometimes employed as a stimulant to produce rubefaction in the tract of the vertebral column, in paralytic and neuralgic affections of the spinal cord. "A much more durable impression of heat," observes Müller¹, "better than moxa or the actual cautery, is produced by holding a burning candle near to the affected part for a long time, so as to produce pain; by which means all the beneficial effect of heat is obtained, without the formation of an eschar and the subsequent suppuration, which is often of no service. The mode in which the calorific acts in these cases is not evident."

The radiant heat from a red-hot iron or burning coal has been employed as a cauterizer to check hemorrhages, and to promote the reduction of prolapsus of the rectum and uterus, and of hernia. This practice constitutes the cautérisation objective of the French writers.

β. Conducted Heat.

1. Calor siccus.—Dry Heat.

This includes hot air, bottles filled with hot water, hot sand, &c.

1. Hot-Air Bath.—Air, at a temperature of from 100° to 130° F., is a powerful stimulant and calefactor, but is less relaxing and soothing than moist vapour. When required to operate as a sudorific, a temperature of from 90° to 100° F. (Dr. Gower says 85°) is found most advantageous. The hot air bath is principally valuable as a remedial agent when the blood has receded from the superficial parts of the body, and the internal organs are in a state of congestion; as in some forms of fever, and in spasmodic cholera. In asphyxia from drowning, and from some other causes, it is also highly useful. Furthermore, in chronic rheumatism, stiffness of the joints, and chronic skin diseases (especially the dry scaly eruptions), it also proves beneficial².

The medicated hot-air bath is prepared by impregnating the hot air with some gas or vapour; as with sulphurous acid gas or chlorine³.

2. Solid Substances, Heated not beyond 100°.—Bottles filled with hot water are applied to the feet to excite the circulation and augment the animal heat, in various diseases attended with cold extremities. The same remedy is conveniently applied to the abdomen, to relieve spasmodic pain. Hot sand (arena calida), enclosed

² For further information respecting the hot-air bath, consult the Cyclopaedia of Practical Medicine, vol. i. p. 353. art. Warm-Air Bath, by Dr. Forbes.—Also Dr. Gower's Antiquities of Medicine, Lond. 1819, Tract 1. An account of the Sudatorium.
³ Various simple and ready modes of making a hot-air bath have been suggested. A very simple method is that recommended by Mr. Alcock (Lancet, 1833-4, vol. ix. p. 828). It consists in burning spirit in a cup or saucer under a blanket; the patient lying on the bed with his head and face outside the blanket, as the air is not fit for respiration. The blanket is supported over the bed by a cord.

⁴ See Chlorine and Sulphurous Acid.
in a bag or bladder, may be employed for similar purposes. Sometimes hot sand is used as a bath. It is rarely resorted to in this country, but is had recourse to in the maritime departments of the South of France. A sand-bath operates as a stimulant and sudorific; and is employed in rheumatism, spasm, paralysis, &c. Hot ashes or bran have been applied to similar uses; as also hot bricks. The leaves of the common birch (Betula alba) are employed in Sweden.

3. Metal heated to 212°.—The late Sir Anthony Carlisle proposed to excite speedy vesication by the application to the skin of a polished plate of metal, heated to 212° by immersion in boiling water. He recommended it as a substitute for cantharides, than which he declared it to be less painful. Moreover, it is not liable to cause strangury.

4. The Actual Cautery (Cauterium actuale).—The term actual cautery is used to indicate a heated substance, employed to burn or disorganize a portion of the living body, to which it is applied.

A potential cautery disorganizes by its affinity for the constituents of the living tissues.

Several agents have been employed as actual cauteries, viz. red-hot iron, maza, and the flame of hydrogen. The first, however, is the one generally used, and commonly meant, when we speak of the actual cautery. The two latter will be noticed in subsequent parts of the work.

I have excluded boiling water, steam, and metal heated to 212°, from the list of cauteries. These agents coagulate and harden the albuminous and fibrinous portions of the living tissues, and excite acute inflammation; that is, they scald. They neither decompose nor effect any chemical change in the organic principles; and, therefore, chemically speaking, they do not burn the living tissues.

In this country the actual cautery (red-hot iron) is seldom used. It is sometimes resorted to as a styptic, where the hemorrhage is from a great number of small vessels, or from a vessel so situated that the ligature cannot be applied. It is also used to destroy morbid growths, which cannot be reached by the knife—as fungus of the antrum. Lastly, it has been applied to stop caries, to excite an artificial ulcer, to open abscesses, to close fistulous ulcers, in bites by poisonous animals, and in some affections of the brain—as epilepsy, to destroy the part from whence the aura epileptica sets out.

1 The phrase balneum araneum is incorrect. Celsius (lib. ii. cap. 17) limits the term balneum to a water-bath artificially heated in a private house.

2 Schenck, Traité de Matière Médicale, t. ii. p. 231.

3 The therapeutical use of sand is denominated arnatio or parumiumes (ψαμμισμάς, from ἄρμαμ; sand). See Quiring, De balneis arte paranda. Diss. Inaug. Berol. 1837.—“Sabration was a species of bathing in ancient use. The body was buried in sand, and exposed to the sun” (Sutherland’s Attempts to revive Ancient Medical Doctrines, vol. i. p. 48. Lond. 1705.).—Sand is employed therapeutically for other purposes than to communicate heat. Thus, a bag of sand has been applied to the abdomen, to compress, by its weight, the uterus, and thereby to restrain uterine hemorrhage after the removal of the placenta; but incomplete inversion of the uterus is said to have been produced by it (see Most, Encycl. der gesamm. med. u. chr. Praxis, Bd. i. S. 175. Leipzig, 1806). Sand has also been used as a mechanical support in fractures of the leg.

4 Bergius, Materia Medica, t. ii. 778. ed. 2o. Stockh. 1782.

6 See Hydrogen, and Artemisia Maza.

For further details respecting the actual cautery and cauterization, I must refer the reader to Pouteau’s Précis de chirurgie pratique, Paris, 1811; Martinin, Art. Cauterium et Cauterization, in the Dict. de Médecine; and Sauvan, in the Dict. de Méd. et Chir. praticiens.
2. Color humidis.—Moist Heat.

a. Aqueous Vapour.

The practice of bathing is of great antiquity, and precedes the date of our earliest records. It was adopted sometimes for the purpose of cleanliness, sometimes for the preservation of health, and frequently as a recreation and luxury. The ancient Hebrews' practised ablutions. Josephus⁵ mentions that Herod was let down into a bath of oil. The Greeks employed bathing. Homer¹, on various occasions, mentions hot baths and ablutions. In the writings ascribed to Hippocrates⁶, baths are mentioned, and their effects described. Baths are also noticed by Celsus⁷, Pliny⁸, and other Roman writers. Prosper Alpinus⁹ says, that the Egyptians employed hot baths for cleanliness and health; and Freind states, that when Alexandria was plundered, in A.D. 640, there were 4000 baths in that city⁹. Among the Persians, baths were in use⁹. The Arabians also were acquainted with hot baths, as we learn from Avicenna³. The ancient Hindoos employed baths and aspersions with water⁴.

These examples sufficiently establish the great antiquity of the practice of bathing⁹.

The following is a sketch of the baths of the Romans, copied from a painting found at the Thermae of Titus⁹.

![Ancient Baths](image)

On the right is the cleotherium (ἄλειθηριον), where the oils and perfumes are kept in vessels; next to this is the frigidarium (ἀγαθακόμης) or dressing-room; the third apartment is the tepidarium: the fourth is the sudatory (καταναταρας συμφορίας), in which are seen the lacunium (so called from being first used in Laconia), a brazen furnace to heat the room, and persons sitting on the steps: the fifth is the balneum, with its huge basin (labrum), supplied

* Levitica, xiv. 8.—2 Kings, v. 10.
* Bell. Jud. lib. i. cap. 33, § 3.
* Iliad, xxii. 444. Odys, viii. 431.—It would appear from Homer, that the offices of the baths were performed by females; though, from a passage in Herodotus (Erato, xiv.), we may infer that this custom was not peculiar to the Greeks.
* De diete, lib. ii. § 38. De affectionibus, § 47.
* Lib. i. cap. 3; and lib. ii. cap. 17.
* Medicina Egyptiorkes, lib. iii. cap. 14—16.
* History of Physic, part i. p. 7. 3d ed. Lond. 1797.
* Xenophon, Cyropedia, lib. viii.—Plutarch, in his life of Alexander the Great, mentions that this celebrated conqueror was astonished at the sight of the baths of Darius.
* Canon, lib. iii. fen. xvi. tract. iv. cap. 10.
* Boyle's Essay on the Antiquity of Hindoo Medicine, p. 53. Lond. 1837.
* For further information respecting ancient baths, consult An Account of the Ancient Baths, and Their Use in Physic, by Thos. Glass, M.D. Lond. 1732.—Attempts to revive Ancient Medical Doctrines, by Alexander Shippen, M.D. Vol. i. p. 19; et seq. Lond. 1763.—Also, De Balneis omnis quae extant apud Graecos, Latinos et Arabos. Venet. 1553.
by pipes, communicating with three large bronze vases, called *miliaria*, from their capaciousness; the lower one contained hot, the upper one cold, and the middle one tepid water. The bathers returned back to the frigidarium, which sometimes contained a cold bath. The subterranean portion of the building, where the fires were placed for heating the baths, was called the *hypocaustum*.

1. The *Vapour Bath.*—As aqueous vapour, like air, is a worse conductor of caloric than liquid water, its influence, as a source of either heat or cold, is neither so powerfully nor so speedily felt as that of the latter. Hence, therefore, the temperature of the vapour bath should always exceed that of the water bath. If, however, the whole body be immersed in vapour, which is consequently inhaled, the temperature must be a little less than if the trunk and limbs alone were subjected to the influence of vapour; because the inhalation of vapour stops the cooling process of evaporation from the lungs. The following is a comparative view of the heating powers of water and of vapour, distinguishing the latter according as it is or is not breathed.

<table>
<thead>
<tr>
<th>Water.</th>
<th>Vapour.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not breathed.</td>
</tr>
<tr>
<td>Tepid bath</td>
<td>85°—92°</td>
</tr>
<tr>
<td>Warm bath</td>
<td>92°—98°</td>
</tr>
<tr>
<td>Hot bath</td>
<td>98°—106°</td>
</tr>
</tbody>
</table>

The general effects of the vapour bath are those of a powerful stimulant and sudorific. It softens and relaxes the cutaneous tissue, expands the superficial vessels, accelerates the circulation of blood, augments the frequency of the pulse and respiration, and produces copious perspiration. These effects are succeeded by a feeling of languor and a tendency to sleep.

The vapour bath is distinguished from the hot-air bath by its soothing, relaxing, and greater sudorific influence; from the hot-water bath, by its inferior power of communicating heat, by its greater sudorific tendency, and by its causing scarcely any superficial compression of the body, whereby it does not occasion the precordial oppression experienced on entering the water bath.

The vapour bath, like the hot-air bath, may be employed when the blood has receded from superficial parts, and congestion of internal organs has in consequence occurred;—as during the cold stage of intermittent fever, in malignant cholera, and during the stage of chilliness which ushers in various febrile complaints. But its great value is experienced when our object is to relax the skin, and to produce profuse sweating. Thus in chronic rheumatism and gout, in slight colds from checked perspiration, and in chronic skin diseases, accompanied with a dry state of the cutaneous surface, it often proves highly serviceable. In old paralytic cases, unaccompanied with signs of vascular excitement of the brain, it sometimes gives relief. In some uterine affections, as chlorosis, amenorrhea,
and irritation of the womb; in dropsy of old debilitated subjects in old liver complaints; and in some scrofulous affections, the vapour bath is occasionally employed with advantage.

In this country the vapour bath is employed for therapeutic purposes only. In Egypt, Turkey, Persia, and some other parts of the East, and in Russia, however, it is in common use as a hygienic age and luxury; and is accompanied by a process of friction, kneading, and extension of the muscles, tendons, and ligaments, constituting the massing of the Egyptians, and the shampooing of the East Indians. This process is thus described by Dr. Gibney:

"After exposure to the bath, while the body is yet warm from the effects of the vapour, the shampoonan proceeds, according to the circumstances of the case, from gentle friction gradually increasing to pressure, along the fleshy and tendinous parts of the limb;— he kneads and grasps the muscle repeatedly, presses with the points of his fingers along its course, and then follows friction, in a greater or less degree, alternating one with the other, while the hand is smeared with a medicated oil, in the specific influence of which the operator has considerable confidence. This process is continued for a short or longer space of time, and, according to circumstances, is either succeeded or preceded by an extension of the capsular ligament of each joint, from the larger to the smaller, causing each to crack, so that to be distinctly heard, which also succeeds from the process being extended to each connecting ligament of the vertebrae of the back and loins. The sensation at the moment is far from agreeable, but is succeeded by effects not dissimilar to what arise from brisk electric sparks, taken from the joints in quick succession."

In rigidity and stiffness of joints this process of massing or shampooing may prove of considerable service.

The Russian Vapour Baths have long been celebrated. The vapour is produced by throwing water over red-hot stones. Its temperature, according to Lyall, from 122° to 144° F. Besides being exposed to the influence of this vapour, the bathers are subjected to a system of friction, flogging with the leafy branches of the birch, and affusions of warm or cold water. It is customary with the to issue from the bathing-houses while quite hot, and, in the summer, to plunge into cold water,—in the winter, to roll themselves naked in the snow, without sustaining injury or ever catching cold. Bremner describes the supposing effects as being all imaginary; and declares that the practice of bathin followed by the Russians, rapidly enervates and undermines the constitution. Several medical writers have borne testimony to the efficacy of the baths in alleviating rheumatism.

The Egyptian Vapour Baths are in constant and general use. The bathers having been subjected to the operation of massing, already described, are then rubbed..."
MOIST HEAT.

Topical or local vapour baths are sometimes employed in the treatment of local diseases, as affections of the joints. Dr. Macartney recommends the topical use of vapour, as a soothing and anodyne application, in painful wounds, contusions, and fractures, and has invented an apparatus for generating and applying it, which is sold by Mr. Stoddart, 401, Strand, London.

The vapour douché may be regarded as a topical vapour bath. It is a jet of aqueous vapour (whose temperature does not exceed that of a general vapour bath) directed on some part of the body, and its action depends principally on the temperature of the fluid; for its mechanical effects are comparatively trifling. In some affections of the ear, as otitis, otorrhœa, and otalgia, a stream of warm aqueous vapour is sometimes introduced into the meatus auditorius externus with considerable relief; and the most ready means of effecting it is by a funnel inverted over a vessel of hot water, the meatus being applied to the orifice of the funnel.

The medicated vapour bath is prepared by impregnating aqueous vapour with the odour of medicinal plants. There is no good reason, however, for supposing that it possesses any advantage over the simple vapour bath.

Sulphur vapour, sulphurous acid gas, chlorine gas, and the vapour of camphor, are sometimes employed in conjunction with aqueous vapour. Their effects will be described hereafter.

The application of vapour to particular parts of the body has been accompanied with the simultaneous removal of atmospheric pressure, constituting the air-pump vapour bath. It has been employed in gout, rheumatism, and paralysis.

2. Inhalation of Warm Vapour.—The inhalation of warm aqueous vapour proves highly serviceable, as an emollient remedy, in irritation or inflammation of the tonsils, or of the membrane lining the larynx, trachea, or bronchial tubes. It may be employed by Mudge’s inhaler, or by inspiring the vapour arising from warm water. Various narcotic and emollient substances are frequently added to the water, but without adding much (if any thing) to its therapeutical power. Dr. Paris states that, in some pulmonary complaints, he has been long in the habit of recommending persons confined in artificially-warmed apartments to evaporate a certain portion of water, whenever the external air has become excessively dry by the preva-

* D’Ohsson’s Tableau Général de l’Empire Ottoman, tom. i. p. 160, Paris, 1767.—An engraving of a bath is given.

* Fothergill’s Three Years in Persia, vol. i. p. 269. Lond. 1841.

* A Treatise on Inflammation, p. 176. Lond. 1838.

lence of the north-east winds, which so frequently infest this island during the months of spring; and the most marked advantage has attended the practice. In rooms artificially heated by hot-air stoves, the necessity for this proceeding is still more obvious.

The benefit which pulmonary invalids are said to have derived from a residence in cow-houses is in part referrible to the moist warm air with which such places are filled, though something, perhaps, may be ascribed to the carbonic acid gas which is present.

3. Steam.—Steam (i.e. aqueous vapour heated at least to 212° F.) is sometimes employed as a powerful rubefacient and caustic. It contains more specific and latent heat than boiling water, but its conducting power is less. It is applied by a small copper or tin boiler (called an colipile) furnished with a tubular mouth and stopcock, and heated by a spirit-lamp. Its action on the body is limited by a perforated piece of pasteboard. If applied sufficiently long, it causes an extensive and deep eschar. In this respect its action is similar to that of boiling water, from which it principally differs in the circumstance of having a much larger quantity of specific heat, and in the greater facility with which we can limit its effects. It greatly resembles moxa, but its action is less readily localized, and the wound which it causes is less manageable. It has been used as a powerful counter-irritant in diseases of the hip-joint, neuralgic pains, chronic rheumatism, &c. The objections to its employment are the great pain which it causes, and the danger of its effects.

Hot, but not scalding water, augments the temperature, volume, and redness of living parts, relaxes the tissues, and increases the vital actions.

1. TEPID, WARM, AND HOT BATHS.—a. The Tepid Bath has a temperature of from 85° to 92° F. It gives rise to a sensation of either heat or cold, according to the temperature of the body at the time of immersion. It cleanses the skin, promotes perspiration, and allays thirst. It is sometimes employed as a preparative to the tem-
cool, or cold bath. When there is a tendency to apoplexy, multaneous immersion in the tepid bath, and affusion of cold over the head, have been recommended.

The Warm Bath has a temperature of from 92° to 98° F.;—about that of the body, or a little below it. In general it has a sensation of warmth, which is more obvious when the body is previously cooled. It renders the pulse fuller and more frequent, accelerates respiration, and augments perspiration. It causes diminution of muscular power, faintness, and a tendency to As a relaxant, it is employed to assist reduction in dislocation of the larger joints, and in hernia. In the passage of calculi, or urinary or biliary, it is used with the greatest advantage: it softens the ducts, and thereby alleviates the pain, and facilitates discharge of the concretion. In gastritis, enteritis, cystitis, and cystis, it proves a valuable and powerful agent. In exanthematous diseases, when the eruption has receded from the skin, in cutaneous diseases, rheumatism, amenorrhea, and dysmenorrhea, it is highly serviceable.

Coxal Bath, or hip-bath, is resorted to in inflammatory or spasmodic affections of the abdominal and pelvic viscera, and in amenorrhea and in dysmenorrhea. It is also sometimes employed as a last resource for the general bath, where some affection of the lungs, or great vessels, prohibits the use of the latter. The bidet is used in piles, prolapsed rectum, strangury, ischuria, &c. The foot-bath, or foot-bath, is used as a revulsive or counter-irritant in colds; to promote the menstrual and hemorrhoidal discharges; or various topical purposes. The Brachial Bath, or arm-bath, and hand-bath, are principally applied in topical substances of the upper extremities.

The Hot Bath has a temperature of from 98° to 112° F. It has a sensation of heat, renders the pulse fuller and stronger, excites respiration, occasions intense redness of the skin, and suddenly copious perspiration; gives rise to violent throbbing, and a sense of distension of the vessels of the head, with a feeling of tension and anxiety. Long immersion may cause apoplexy. A powerful excitant, its use requires considerable caution. It is particularly employed in paralysis, rheumatism, and some other diseases.

Above remarks apply to common or fresh water-baths. But Sea Water, Waters, and various Medicated Waters, are employed for general or topical purposes. Of the medicated water-baths, those in most frequent use are the St. Thomas, the St. Helens, the salt water, the alkaline, and the alkaline sulphate. These will be described hereafter. A decoction or infusion of brine, solution of bicarbonate of mercury, are used as pediluvia. Milk and gelatinous substances are employed as nourishing baths. Blood, and the soft parts of recently inflected animals, were formerly used as baths.

Bathing (illudatio, from in, upon; and latum, mud) is a very ancient practice of the Nile was formerly in great request for this purpose.
The saline mud found on the sea-shore has been employed, in very hot weather, as a bath, by the inhabitants of Crimea, and especially by the Tartars, against hypochondriasis, scurvy, scrofula, &c. It operates as an excitant and sudorific. *Hot dung* is used in France, as a kind of bath against rheumatism, and in Poland against syphilis. *The husk of the grape, and the refuse of the olive*, from which the oil has been drawn, undergo fermentation, and, in this state, have been successfully employed in Paris against acute rheumatism.

2. **Warm Affusion.**—Warm affusion excites very pleasant sensation, followed by chilliness, and often by pulmonary affections. It has, however, been used in mania. It reduces the frequency of the pulse and of respiration, and occasions a tendency to repose; but its effects are much more temporary than those of the warm bath.

3. **Warm Fomentations and Poultices.**—Warm fomentations are employed to relieve inflammation, pain, tension, and spasm. In inflammation of the abdominal and pelvic viscera, and in strangury, they are highly serviceable. My friend and colleague, Mr. Luke, has employed, for several years, warm water as an emollient application to burns and scalds, and his account of its effects is as follows:—“After several years’ experience in the use of warm water as an application in the first treatment of scalds and burns admitted into the London Hospital, I am enabled to say, that the general result has been very satisfactory. It has, almost in every instance, appeared to soothe and mitigate pain; and, in many instances, to facilitate the recovery of the patient from the great constitutional depression so frequently attendant upon cases of severity. In these respects I think it exceeds in value all other means which I have seen used. It appears also to me to have exerted a beneficial influence in mitigating the consecutive inflammation, rendering the after consequences less severe locally, and the reparative process more speedy, than under other modes of treatment. The most striking exemplifications of its value have been seen in the treatment of the scalds and burns of young children, and of those cases where the vitality of the skin has not been completely destroyed. The water has generally been used in the form of fomentations; repeatedly changing the flannels, and taking care that the surface of the skin was exposed as little as possible. The occasional use of poultices has also been adopted, and with much benefit; although their weight, when large, has rendered them not so convenient as fomentations: they obviate, however, the evil arising from the frequent renewal of the latter, and the consequent mechanical irritation. Inability to continue the warm bath, for the requisite length of time, has been the reason for its not being used in these cases.”

Emollient poultices act as a kind of local bath. They are employed to relieve pain, spasm, and tension, and to promote the termination of inflammation by resolution or suppuration.

4. **Warm Aqueous Drinks and Injections.**—Tepid or warm water is *taken into the stomach* to promote vomiting; to dilute the...
COLD.

Contents of the stomach, in cases of poisoning by acrid substances; to excite diaphoresis in rheumatism, catarrh, gout, &c.; and to allay troublesome cough, especially when dependent on irritation at the top of the larynx. Warm water is injected into the rectum to excite alvine evacuations; to promote the hemorrhoidal flux; to diminish irritation in the large intestine, or in some neighbouring organs, as the uterus, bladder, prostate gland, &c.; and to bring on the menstrual secretion. Thrown into the vagina, it is used to allay uterine irritation and pain, and to promote the lochial discharge. Injected into the bladder, it is sometimes employed to relieve vesical irritation, or to distend the bladder previously to the operation of lithotry. It has also been injected into the urethra to allay pain, irritation, inflammation, and spasm.

Lastly, Magendie injected warm water into the veins in hydrophobia, but without saving the life of the patients. I have repeated the experiment, but without any successful result. The same remedy has been employed by Vernière to distend the venous system, and thereby to check or stop absorption in cases of poisoning by those substances (opium, for example), which operate by getting into the blood. Moreover, warm water is sometimes used as a medium for the introduction of more powerful agents (as emetic tartar) into the circulating system.

5. Boiling Water.—Water at the temperature of 212° F. is a powerful irritant, vesicant, and cautery. Its effects are similar to those of steam before mentioned. It has been applied to the skin as a powerful counter-irritant in maladies of internal organs, and as a speedy vesicant when the object is to introduce medicinal substances (morphia, for example) into the system by the cutis vera. But the excessive pain which it gives rise to, the uncertainty of its effects, and the difficulty of localizing its action, are great and almost insuperable objections to its use.

FRIGUS.—COLD.

Physiological Effects.—The general effect of cold on living bodies is a diminution of vital activity; which terminates, if the cold be intense and its application continued, in death; but, if moderate and temporary, in increased activity of the vital powers, i.e. in reaction. Hence, then, we distinguish two orders of effects:

1. The direct, primary, or immediate.
2. The indirect, secondary, or mediate.

In the warm-blooded animals there are two modes of checking or diminishing their temperature:

1. The abstraction of caloric, by the application of cold substances to the body.
2. The diminution of the generation of heat within the body, by use of refrigerants or sedatives.

The influence of cold is threefold:—

1. Physical; including diminution of volume, of temperature, and of fluidity.
2. Chemical; comprising a diminished tendency to changes of composition, and to decomposition.
3. Dynamical, Physiological, or Vital; comprehending changes in the condition of the vital properties, induced by cold. These changes are of two kinds:—
 a. Primary; sedation, or a diminution of vital activity.
 b. Secondary; reaction.

a. On Vegetables.—The effects of cold on plants are greater in proportion to the combined humidity. The first effect is a certain state of languor or torpor manifested in germination, the growth and development of all the vegetable organs, inflorescence, fecundation, and maturation of the fruit. Cold also favours the disarticulation of articulated parts. Lastly, by an intense frost the aqueous juices freeze,—an effect which is often attended with the death of part or the whole of a plant.

b. On Man, and other Animals.—The first effect of diminished temperature is that which we denominate a sensation of cold. Its intensity depends not merely on the actual degree of cold to which the living surface is exposed, but is in proportion to the conducting power of the cooling agent, as well as to the previous heat of the living surface.

"If, in winter, a person, with bare feet, were to step from the carpet to the wooden floor, from this to the hearth-stone, and from the stone to the steel-fender, his sensation would deem each of these in succession colder than the preceding. Now the truth being that all had the same temperature, only a temperature inferior to that of the living body, the best conductor, when in contact with the body, would carry off heat the fastest, and would, therefore, be deemed the coldest."

A substance, having a temperature of 60° F., will feel warm to the hand or other living part previously exposed to a temperature of 32° F., but cold to a part which immediately before was exposed to a heat of 96° or 98° F.

The sensation of cold is soon followed by a reduction of temperature and a diminution of volume of the part. This last effect is partly physical, partly vital. Of course the solids and fluids of the body, in common with inorganic substances, must have their bulk reduced when their temperature is diminished. But a living part lessens in size from a vital manifestation—viz. the contraction of the living tissues. This contraction, or striction, is especially manifested in the skin when exposed to a cooling influence. The cutaneous tissue becomes dry and shrivelled, while the bulbs of the hairs become elevated and manifested; constituting the state called goose-skin (cutis anserina). In muscular tissues, spasmodic contraction results from cold. Moreover, this effect extends by sympathy to other muscular parts beyond those to which the cold is applied. The blood vessels, in common with all other living parts, suffer contraction and the quantity of blood circulating in them is thereby lessened.
COLD.

while its motion is retarded. The secretions and exhalations are checked or stopped; partly as a consequence of the effect on the circulation of the part, partly by the contraction of the secreting and exhaling vessels. If the cold be excessive, or its action prolonged, the part, after suffering more or less uneasiness, loses its sensibility. This state of torpitude, or benumbing, when fully established, is denominated frost-bite; and, unless speedily relieved, will be soon followed by the death of the part.

"I perceived one day on a journey," says Beaupré, "that two officers, prisoners of war, and my companions in misfortune, had the points of their noses of a horn white, the colour of old wax. I warned them, and frictions with snow were sufficient to remove this first stage of congelation, which they had not suspected. But what appeared to them very singular was, that, while I gave them advice, I myself needed the same—my nose was in the same condition; sibi non cnmite et alis consilium dare. From that moment we were on the alert; we kept our guard; and, that we might not fall victims to a security alike fatal and involuntary, each begged his neighbour, on terms of reciprocal service, to watch over his nose and ears."

"After entire cessation of pain, the part remains cold and insensible; sometimes phlyctene arise; sometimes the change of colour in the skin, which is livid and blackish, evinces from the commencement that there is mortification."

Such is a sketch of the primary topical action of continued intense cold. When, however, it is either moderate or only temporarily applied, reaction is readily induced. The disagreeable feeling of cold is succeeded by an agreeable sensation of warmth; the natural temperature returns, relaxation takes place, and the parts acquire their usual volume, colour, and sensibility. When the cold to which the part has been exposed is excessive, and the heat subsequently employed to excite reaction be too suddenly applied, inflammation and gangrene ensue.

Pernio, or chilblain, is the effect of inflammation caused by cold. That gangrene and death readily result from the sudden application of warmth to a frozen part, was known to Hippocrates, who states that a man having had his feet frozen, lost them by the application of warm water.

The true method of recovering frost-bitten parts consists in very gradually restoring their natural temperature by the use, first, of snow or ice frictions, then of cold water, and subsequently of lukewarm water.

Hitherto I have considered the effects of cold used topically: I must now notice its effects when employed generally.

Temporary exposure to moderately cold air (from 30° to 45° F.) is agreeable, and, by the re-action which it establishes, exciting to the young and the vigorous. The coldness of surface and diminished capillary circulation, which it at first occasions, are soon followed by re-action, especially if exercise be conjoined. Perspiration is checked and urine promoted. A more intense or a longer continued cold causes shivering, goose-skin, determination of blood to internal

1 A Treatise on the Effects and Properties of Cold, p. 132. Translated by Dr. Cleland. Edinb. 1859.

2 Ibid.

Boe war liquido, p. 425, ed. Fessi.
organs, coldness of surface, and a kind of spasmodic stiffness. These effects are much more severely experienced by the old, the debilitated, and the paralytic.

When the degree of cold is excessive, or its application too prolonged, it causes torpor, irresistible tendency to sleep, apoplexy, asphyxia, and death.

A remarkable and well-known instance of the strong tendency to sleep induced by cold occurred in one of Captain Cook’s voyages. Sir Joseph Banks, Dr. Solander, and some others, landed on Terra del Fuego, and were overtaken by night on the hills. Dr. Solander warned the party against giving way to sleep. “Whoever sits down,” he observed, “will sleep, and whoever sleeps will wake no more.” Yet he was the first who experienced this irresistible desire to sleep, and he insisted upon being suffered to lie down. He was, however, dragged along. Nevertheless, he slept for five minutes, and it was discovered that the muscles of his feet were so contracted that his shoes dropped off.

In both ancient and modern times, military expeditions have furnished dreadful and notorious illustrations of the disastrous effects of cold on the human frame. The Greeks, under the command of Xenophon, in their retreat from Persia, and on two occasions under the command of Alexander the Great, suffered severely from cold. In more modern times, we have examples of much greater military disasters from cold. In 1719, the Swedes lost, by cold, 5,200 out of 7,300 men in their retreat from Norway. In 1742, in the retreat of Prague, 4,000 Frenchmen perished from cold and misery in ten days. The dreadful sufferings of the French army, in 1812, on its return from Moscow, are too well known to need much notice on the present occasion. Buonaparte invaded Russia with an army of 400,000 men; he left Moscow with only 120,000; and, by the time he arrived at Smolensko, great difficulty was experienced in assembling 40,000 men in fighting order. About 10,000 Frenchmen, and 25,000 auxiliaries, alone remained to return to their native country.

The diseases produced by cold are numerous. Chilblains and frost-bites have been already referred to. Pulmonary affections are by far the most common of the internal maladies induced by cold. Scrofula is a disease of cold and moist climates. Rheumatism is another malady brought on by cold and moisture conjoined. Apoplexy and paralysis, especially in the aged, are occasioned by cold. In addition to the diseases now mentioned, there are many others, the progress of which are more or less promoted by cold.

On examining the bodies of persons killed by cold, congestion of the cerebral vessels, and effusion into the ventricles of the brain, have always been found.

Therapeutic Uses.—We employ cold for the purpose of obtaining its primary, its secondary, or its total effects. When our object is to procure the first of these effects, we use a more intense
degree of cold, and continue it for a longer period than if we are desirous of obtaining the secondary effects only.

The following are the principal purposes for which we use cold:—
1. To lessen preternatural heat; as in ardent fever.
2. To reduce excessive vascular action; as in inflammation.
3. To allay exalted sensibility and pain; as in burns.
4. To constringe the living tissues; as when we apply cold to arrest hemorrhage, to relieve congestion, to check profuse exhalation or secretion, to counteract relaxation, and to reduce the volume of enlarged or displaced parts.
5. To make a sudden and powerful impression on the nervous system; as when we use aspersions of cold water to relieve syncope, and immersion in cold water to allay spasm.
6. To strengthen or give tone to a part or the whole of the body; as in the ordinary hygienic uses of the cold plunge-bath and the cold shower-bath.

As cold is thus adapted to produce several objects, so it frequently happens in practice that it is employed to fulfil, simultaneously, several indications.

a. Cool Air.

In febrile diseases, accompanied with preternatural heat, exposure to moderately cool air (from 50° to 60° F.) is both grateful and efficacious. It diminishes the temperature of the body, and reduces excessive vascular action. In the admission of fresh and cool air to patients affected with febrile disorders, consists one of the most important features of the modern improved methods of treating fevers.

b. Cold Water.

1. Cold, Cool, and Temperate Baths. — a. Cold-Bath. The temperature of this ranges from 33° to about 60° F. When below 50° F., the bath is considered very cold. Its primary effects constitute the shock,—its secondary effects, the reaction or glow.

The sudden abstraction of heat from the surface of the body, and the pressure of the water, produce a powerful effect on the system: a sensation of cold (speedily followed by one of warmth), contraction of the cutaneous vessels, paleness of the skin, diminution of perspiration, and reduction of the volume of the body, are the immediate effects. Shivering, and, as the water rises to the chest, a kind of convulsive sobbing, are also experienced. Continued immersion renders the pulse small, and, ultimately, imperceptible, and the respiration difficult and irregular; a feeling of inactivity succeeds; the joints become rigid and inflexible; pain in the head, drowsiness, and cramps, are experienced; the temperature of the body falls rapidly; and faintness, followed by death, comes on. Many of these symptoms are readily accounted for: the contracted state of the superficial vessels produced by the cold, and the pressure of the water, together cause the blood to accumulate in the internal vessels. The palpitations arise from the efforts made by the heart to rid itself of the increased quantity of blood thrown on it; but the pulse continues small, because the arteries remain contracted. The internal veins becoming engorged, the functions of the brain necessarily suffer:—and hence arise
headache, drowsiness, cramps, and, in some cases, apoplexy. The difficult respiration depends on the accumulation of blood in the lungs. The contracted state of the superficial vessels accounts for the diminished perspiration; while the increased secretion of urine is referrible to the blood being driven towards the internal organs.

In general, the immersion being only temporary, reaction quickly takes place; a sensation of warmth soon returns; the cutaneous circulation is speedily re-established; a glow is felt; perspiration commences; the pulse becomes full and frequent; and the body feelsigorated. In weakly and debilitated subjects, however, this state of reaction may not occur, or at least may be imperfectly effected; and usually, in such cases, the cold bath will be found to act injuriously.

The cold bath is employed with the view of obtaining the nervous impression or shock,—the refrigeration,—or the re-action or glow. It is evident that it ought not to be applied unless there be a sufficient degree of tone and vigour in the system to cause a perfect state of re-action; and, therefore, in weak subjects, its use should be prohibited. So also, in visceral inflammation, more especially peritonitis, it is a dangerous remedy; since the determination of blood to the internal organs is increased by the cold, and it seems even with the range of probability that death might be the immediate result. Apoplectic subjects, who are unaccustomed to cold bathing, are also, for a similar reason, better avoid trying it. In some affecting the nervous system it has been found highly useful; for example, in tetanus and insanity. In many cases, where it is desirable to increase the tone and vigour of the body, and where the above-mentioned objections do not exist, the cold bath may be employed advantageously. It is a common opinion that immersion in water is dangerous when the body is heated by exercise, or over-exertion; and hence it is customary with bathers to wait until they become cool. Dr. Currie has strongly combated both the opinion and the practice: the first, he says, is erroneous, the second jurious.

b. The Cool Bath (whose temperature is from 60° to about 75°) is analogous in its operation to the cold bath, but is less powerful. It is commonly used as a luxury, and for cleanliness; but it may be employed, therapeutically, in the same diseases as the cold bath, where we are in doubt as to the power of the patient’s constitution to establish full re-action, after the cold bath. It is frequently resorted to as a preparative to the cold bath.

c. The Temperate Bath ranges from 75° to 85° F. Its effects are similar to the cool bath.

2. AFFUSION (Perfusio; Κατάχυσις). Affusion was employed as a hygienic agent and luxury, by the Greeks and Orientalists at
Cold Water.

Homer makes some allusions to it; Hippocrates recommends it in some affections of the head; and Celsus recommends it in some affections of hot intermittents. The last-mentioned writer also states, that Cleophantus a man who lived about 300 years before Christ) employed hot intermittents.

Affusion on the head is thus effected:—The water is to be poured over the head (inclined over a pan or tub), by means of an ewer from a height of two or three feet. If the patient be in bed, the head should be inclined over the side of the bed. If the patient be sitting in a chair, it is sufficient to squeeze a large sponge (pre-soaked in water) at some height above the head, as recommended by Dr. Copland. When the object is to apply affusion to the body, the patient is placed in a large tub or pan (e.g., a washtub or washing pan), and then an attendant, standing on a ladder, effect it. The time that the affusion should be continued varies, according to circumstances, from a quarter of an hour to two or three minutes; but in some cases it has been employed for as long as 20 minutes. After the affusion the body should be dried dry, the patient wrapped up warm, and placed in bed.

The effects of affusion depend partly on the temperature of the water; partly on the sudden and violent shock given to the body; partly on the mechanical impulse; hence the reason why the height from which the water is poured is so important. Affusion. When water whose temperature is between 60° and 70° F. is used, we denominate the affusion cold. To a certain extent the effect of cold affusion is analogous to that of the application of ice, but modified by two circumstances, namely, the short period for which the cold is applied, and the mechanical influence of the stream; hence, its primary effects are very transient, but the secondarily, the effects of the body is considerably reduced, and the diminution of vital action occurs as when the cold water

The sensation of cold, the constriction of the superficial vessels, first excites a feeling in the part to which the water is applied, and this sensation is speedily communicated to the rest of the system by sympathy; and the feeling is transferred to the nervous, muscular, secretory, and cutaneous systems. The temperature of the whole body falls, the pulse is suspended, and the respiration becomes irregular, the muscles tremble, and the patient feels faint. When, according to Dr. Copland, the effects of cold are produced. During this time the perspiration is suspended. "When," says Dr. Copland, "the application of water is considerable, and falls from some height upon the body, the effect on the nervous system is often very remarkable, but in no case more nearly than any other phenomenon with which the patient is subjected to electro-motive or galvanic agency."
After affusion, re-action is soon set up, the heat of the body is re-established, the pulse becomes full and regular, though sometimes reduced in frequency, the thirst is diminished, and frequently perspiration and tendency to sleep are observed.

Cold affusion is used principally in those cases where it is considered desirable to make a powerful and sudden impression on the system: for as a mere cooling agent it is inferior to some other modes of applying water. It is objectionable in visceral inflammation, on account of the determination of blood which it produces to the internal parts. It has been employed with great benefit in fevers, both continued and intermittent. It may be used with safety, according to Dr. Currie and others, "when there is no sense of chilliness present, when the heat of the surface is steadily above what is natural, and when there is no general or profuse perspiration." It is inadmissible during either the cold or the sweating stage of fever, as also in the hot stage, when the heat is not greater than ordinary. In some instances it seems to act by the shock it communicates to the system; for the effect is almost immediate, the disease being at once cut short. The patient has fallen asleep immediately afterwards, profuse perspiration has succeeded, and for that time recovery commenced. This plan of extinguishing a fever, however, frequently fails; and in that event the patient may be in worse condition; hence the practice is not often adopted. I think the cases best adapted for the use of cold affusion are those in which there is great cerebral disorder,—either violent delirium or soporose condition. My friend, Dr. Clutterbuck, says he has seen pulmonic inflammation and rheumatism brought on by cold affusion in typhus; but he adds, "I have not, in general, observed that the situation of the patient was rendered materially worse by the combination."

In the exanthemata, cold affusion has been applied during the fever which precedes the eruption, as also after this has been established; it has been used in scarlet fever, and also in small-pox likewise in measles; but its employment in the latter disease is objectionable, on account of the tendency to pulmonary inflammation, in which affection cold affusion is prejudicial.

Croup is another disease in which cold affusion has been used with advantage, principally with the view of removing the spasm of the glottis, which endangers the life of the patient.

In inflammatory affections of the brain, especially of children, after proper evacuations have been made, it is useful. In many cases of narcotic poisoning, cold affusion is of the greatest service; as in poisoning by hydrocyanic acid, and in asphyxia caused by the inhalation of carbonic acid; so also in poisoning by opium, belladonna, and other narcotic substances; in intoxication; in asphyxia from the inhalation of sulphuretted hydrogen gas or of the vapour of burning charcoal, it is most advantageous. In hysterial an-
Tepid effusion.—The affusion of tepid water is frequently resorted to as a substitute for that of cold water, where great dread is entertained of the latter agent, or where there is doubt as to the action of a perfect reaction after the application of cold water, where there is some pulmonary disease. It may be regarded as a less powerful means. Thus it is very useful in febrile patients, especially of children. It is very beneficial in scarlet fever as I have seen on several occasions. Dr. Currie thinks that reduces the temperature more than cold affusion; first, because evaporation is greater; secondly, because it does not excite that reaction by which heat is evolved. It diminishes the frequency of pulse and of respiration, and causes a tendency to sleep. The writer tells us that he has not found its effects so permanent as those of the cold affusion; and that he never saw it followed by the cessation of regular fever. In other words, it produces a much more powerful shock to the system, and, therefore, is less influential. In hectic fever, however, the paroxysm is sometimes fatally extinguished by the affusion of tepid water at the commencement of the hot stage.

The shower-bath (impluvium).—The shower-bath is very far in its effects to, but milder than, affusion. It is frequently resorted to as a hygienic agent. In insanity it is used with the best benefit to allay mental excitement. In violent cases, “the application of the shower-bath, the patient being up to the middle in water, seldom fails to subdue the paroxysms.” The period during which it should be continued is a circumstance of some moment. Dr. Conolly observes that it “should be suspended in the patient, nervous paroxysms, and instantly renewed
Calmness and sleep are the usual results: and more permanent effects frequently follow. A bath of this kind appears to produce a moral as well as a physical impression; being succeeded, in recent cases, by tranquillity for a few days, and in chronic cases by quietness and improved behaviour for many weeks, and sometimes even for months."

The shower-bath is sometimes a valuable substitute for the cold bath or cold affusion, than which it is less likely to occasion cramp or other disorder of the nervous system. Tepid or even warm water may be used where we wish to reduce the violence of the shock.

An extemporaneous shower-bath may be produced by the aid of a cullender. It may be used to allay the violent delirium of fever; and is rendered more beneficial if the patient can be persuaded to sit in a semicupium of warm water.¹

4. The Douche (Duccie). The term douche is applied to a column or current of fluid directed to, or made to fall on, some part of the body. It is uncertain at what time it came into use. Cælius Aurelianus¹ has been supposed by some to refer to it in the following passage:—"Item aquarum ruinis partes in passione constitutæ sunt subjiciendæ, quas Graeci κατακλυσμοὺς appellant, plurimum etenim earum percussiones corporum, faciunt mutationem."

The fluid employed is either water or aqueous vapour: hence we have the liquid douche and the vapour douche. According to the direction in which the fluid is applied, we have the descending, the lateral, and the ascending douche.

The effect of the liquid douche depends in part on mechanical action or percussion, which, by continuance, excites topical pain and inflammation; and in part on the temperature of the liquid. The local excitement more speedily occurs from hot than cold water; indeed the long continued action of a stream of cold water may act as a sedative, and cause the primary effects of cold before described. The effect of the douche is not wholly local, since the neighbouring parts, and even the whole animal economy, soon become affected. A column of water twelve feet high, made to fall perpendicularly on the top of the head, excites such a painful sensation, that, it is said, the most furious maniacs, who have once tried it, may sometimes be awed merely by the threat of its application; and hence one of its uses in madness, as a means of controlling the unfortunate patient. "At this moment a controversy is proceeding among certain French physicians concerning the application of the douche; which some are disposed to use as a specific against delusive notions. The patient is kept under the douche until he entirely recants. The principle is extremely doubtful; and it should be remembered of every severe application, that lunatics are seldom able to make their real sufferings distinctly known. M. Esquirol subjected himself to the douche; and he describes the sensation as very painful; resembling the continued breaking of a column of ice on the head.

¹ Marco. Chron. lib. ii. cap. 1.
the feet. In some of the preceding cases a warm, is used instead of cold, douche.

The operation of pumping practised at Bath, may be regarded as a kind of douche, and is used in the same cases. The degree of the application is determined by the number of times the plunger of the pump is raised or depressed. From 20 to 200 times is the number generally directed to be taken at a time, which, however, may be increased or diminished according to age, sex, strength, or other circumstances of the patient. The water does not issue in gushes, but in a continuous stream.

Lavage, Washing, or Sponging.—Cold, cool, or tepid washing or sponging, may be used in febrile diseases, with great advantage, in many cases where affusion is not admissible, or where timidity on the part of the patient or practitioner prevents the employment of the latter. Dr. Currie remarks, that in all cases of fever where the intense heat of the palms of the hands and soles of the feet is present, a method of cooling them should be resorted to. A little vinegar frequently mixed with the water, to make the effect more refreshing. Washing or sponging must be effected under precisely the same regulations as those already laid down for affusion.

Cold Lotions.—Aqueous and spirituous liquors are employed to generate cold by evaporation, and thereby to relieve irritation and inflammation. They should be applied by means of a single layer of thin muslin or linen, and not by a compress. The cold is considerably increased by blowing on the liquid. Evaporating lotions are applied to the head with great advantage in cephalalgia, phrenitis, fever with disorder of the cerebrospinal faculties, and poisoning by opium. In ophthalmia, fractures of the bones of the extremities, severe bruises, and erysipelas, cold lotions are used with benefit. Dr. Kinglake recommended the application of cold water to parts affected with inflammation, is somewhat hazardous. One method of
for this plan, which proves more successful in scalds and slight burns. The burnt part should be covered with rags, and kept constantly wetted with water, in which ice is placed from time to time; "care being taken never to remove the rags from the burnt surface."

If the cold fluid be continually renewed, the practice has been called **irrigation**. It is effected either by allowing cold water to drop on the affected part, from a stopcock inserted in the side of a bucket of water, or by conducting a stream of water from a vessel by means of a strip of cloth, on the principle of a syphon.

7. **Cold Drinks.**—Hippocrates, Celsus, and other ancient writers, employed cold water as a drink in ardent fever. In modern times also it has been extensively used in the same malady. Dr. Hancock called it the *febris fugum magnum*. Its employment, however, has not been limited to fever. From its supposed great efficacy in gouty complaints, Heyden termed it the *arthritis fugum magnum*. Within the last ten years, thirteen or fourteen establishments have been set up in Germany, for the cure of diseases by cold water. This mode of treatment is denominated *Wasserheilkunst*, or *Wasserkur* (Water-cure).

We are indebted to Dr. Currie for the examination of the circumstances under which the employment of cold water in fever is proper. According to him, it is inadmissible during the cold or sweating stage, but may be employed with safety and advantage when the skin is dry and burning: in other words, the regulations for its administration are precisely the same as for cold affusion. When exhibited under proper circumstances, it operates as a real refrigerant, reducing preternatural heat, lowering the pulse, and disposing to sweating. Occasionally, however, serious and even fatal consequences have resulted from the employment of large quantities of cold water by persons who have been rendered warm by exercise and fatigue.

Besides fever, there are several other affections in which cold water is an useful remedy. For example, to facilitate recovery from epilepsy, hysteria, and fainting; and to alleviate gastric pain and spasm. Large draughts of cold water have sometimes caused the expulsion of intestinal worms, (*Tenia* and *Ascaris vermicularis*).

8. **Cold Injections.**—a. Cold water is thrown into the rectum to check hemorrhage, to expel worms, to allay local pain, to rouse the patient in poisoning by opium, to stop hemorrhage, and to diminish vascular action in enteritis.

b. Dr. A. T. Thomson speaks very favourably of the effects of cold water introduced into the vagina, by means of the stomach-pump, in uterine hemorrhage.

* Two Lectures on the Primary and Secondary Treatment of Burns, by H. Earle. Lond. 1832.
* De vac liquidorum.
* Lab. iii, cap. 7.
* *Febris fugum Magnum*; or Common Water the best Cure for Fevers, and probably for the Plague. 5th ed. Lond. 1723.
* *Arthritis fugum Magnum*: A Physical Discourse on the Wonderful Virtues of Cold Water. Lond 1724.
* I must refer the reader to the article *Aqua*, for a short notice of this mode of treatment.
3. **ICE AND SNOW.**

The temperature of these agents does not exceed 32° F. They are employed internally and externally.

iced externally.—The topical effects (primary and secondary) of cold agents have been already described. Ice, snow, and water, are employed externally to obtain sometimes the secondary, effects of cold.

Primary Effects.—Ice is used to check hemorrhage, especially when the bleeding vessel cannot be easily got at by pressure. After operations about the rectum (more especially in fistula), bleeding sometimes occurs to a most alarming degree, and in such cases, our principal reliance must be on the cold. In two instances that have fallen under my own observation, the lives of the patients were preserved by the introduction of ice within the rectum. In many other cases of hemorrhage, the external application of ice (either in the form of ice or snow) is exceedingly useful. Thus, applied to the chest in empyema, and to the abdomen in violent floodings, it is very beneficial. In some of these cases, especially hemorrhage, more benefit is obtained by pouring cold water, containing pounded ice, has been applied to hernial limbs to diminish their size and facilitate their reduction; but the practice has been generally abandoned.

Secondary Effects.—Friction with ice or snow is employed to introduce the secondary effects of cold in diminished sensibility, and in the rheumatism or gout of old and enfeebled persons. Its most common use is as an application to frost-bitten skin.
parts. The feet, hands, tip of the nose, and pinna of the ear, are the organs most frequently attacked. In order to guard against mortification, and other ill effects arising from a too rapid change of temperature, the vital properties must be slowly and gradually recalled. In order to effect this, the frostbitten part should be rubbed with snow or pounded ice, or bathed in ice-cold water, very gradually raising the temperature of the applications until the part acquires its natural heat.

2. Employed Internally.—When ice or ice-cold water is swallowed, the sensation of cold which it produces is neither so acute as that occasioned by the application of ice to the skin, nor so prolonged. For the sensibility of the alimentary tube is less than that of the external integument, while its temperature is higher; so that the ice is sooner melted, and the liquid quickly raised to the temperature of the body. But when swallowed in considerable quantity, the effects of ice are of the same kind as those already described for cold generally. A sensation of cold at the epigastrium is experienced, and sometimes shivering occurs. The pulse is diminished in frequency. Temporary contraction of the alimentary canal, and diminution of irritability and secretion, are produced. When ice is taken in small quantity only, these primary effects are very slight or scarcely noticed, and the stage of re-action quickly succeeds. A feeling of warmth follows that of cold at the epigastrium, and quickly extends over the whole body; the circulation is somewhat accelerated; and the secretions of the alimentary canal, of the kidneys, and of the skin, are promoted. If the re-action be excessive, gastric inflammation may be induced.

Ice, or ice-cold water, is swallowed for the purpose of obtaining either the primary or secondary effects of cold. Thus it is taken to cause contraction of the gastric vessels, and thereby to check or stop sanguineous exhalation from the mucous membrane of the stomach. It has also been found beneficial in nasal, bronchial, and uterine hemorrhage. In the latter cases, the constriction of the bleeding vessels must be effected through sympathetic relations which exist between the stomach and other organs. Ice is also employed to relieve cardialgia, vomiting, and spasmodic pain of the stomach. In the latter stage of typhus fever, the internal use of ice is sometimes beneficial.

3. Electritas.—Electricity.

Physiologists™ have long suspected that electricity was the cause of some vital phenomena; and various circumstances lend support

™ Mr. Abernethy (Enquiry into the Probability and Rationality of Mr. Hunter's Theory of Life. Lond. 1814), adopting the notion of several preceding physiologists, that life depended on an internal principle distinct from the body,—suggested that this principle was electricity; or if not electricity, "at least we have reason to believe," he says, that "it is of a similar nature, and has the power of regulating electrical operations."—In 1829, Dr. Wollaston (Phil. Mag. vol. xxxii. p. 488) suggested that the products of secretion might be due to electricity of low tension; and the accuracy of this opinion Dr. Wilson Philip (An Experimental Enquiry into the Laws of the Vital Functions) has endeavoured to prove experimentally. Meissner has carried the hypothesis of electricity being the cause of vital phenomena to a most extravagant length (see Müller's Elem. of Phys. trans. by Bayly, vol. I. p. 73). That the active principle of the nerves is electricity has long been a favourite opinion. Though many objections have been raised to it (see Müller, op. supra cit. pp. 73 & 633), yet it has recently received additional support from Prof. Zanetideschi and Favia (Lond. Ed. 4. Dutt Phil. Mag.}
to this notion. Among these may be mentioned the extensive agency of this force in the production of the physical and chemical phenomena of the external world;—its well-known remarkable influence on the animal economy;—and, lastly, its development by some fishes, as the *Torpedo vulgaris* and *Gymnotus electricus*. Hitherto, however, no one has succeeded in establishing the identity of electricity and the cause of vital phenomena.

Electricity may be obtained from various sources; but the quantity and condition of this agent, as procured by different methods, are by no means uniform. The *common electric machine* yields, by the friction of its glass cylinder or plate on the rubber, a small quantity of electricity whose tension or elasticity is great, and which, therefore, is capable of exerting attractive and repulsive forces not merely at sensible, but at considerable, distances. We denominate this, *friction, ordinary, common*, or *Franklin's electricity*. The electricity procured from the atmosphere, by the cleavage of crystals, and by *pressure*, is of the same kind. By chemical action, however, we put in motion an immense quantity of electricity, whose tension is very low, and we distinguish it by the name of *Voltaic electricity* or *Galvanism*. The electricity obtained by a *magneto-electric machine* is of the latter kind.

![Diagram](image)

Electrical Apparatus for Medical Purposes.

Friction Electricity.

b. Medical Electrometer.
c. Insulating Stool.
d. d. Leyden Jars.
ee e. Insulated Directors.
f. Discharging Rod.
g. Glass Tube traversed by a wire, which terminates at one end by a loop, at the other by a brass ball.

Voltaic Electricity.

h. Cruickshank's Wooden Trough.
i.e i. Directors, each consisting of a glass tube traversed by a wire, an extremity of which is connected with one end of the trough,—while the other extremity is surrounded by sponge or flannel moistened with salt and water.

Magnetic Electricity.

l. Directors.

For April, 1841, who assert, that independent of *common electro-chemical and thermo-electric currents*, there exist in animals two *electro-vascular or nervous currents*—one external or cutaneous, moving from the extremities to the cerebro-spinal axis; the other internal, going from the cerebro-spinal axis to the internal organs situated beneath the skin. Pain, it is said, weakens or suspends the current, while the voluntary or convulsive automatic movements give a very strong current, which may be named discharge of current.
a. Friction Electricity.

(Common or Franklin Electricity.)

The apparatus, requisite for the medical application of friction electricity, consists of the following instruments:—

1. A cylindrical or a plate machine. If a cylinder, the diameter should be at least from 8 to 14 inches; if a plate, from 18 to 24 inches. The amalgam used for the rubber is composed of one part tin, two parts zine, and six parts mercury.

2. A medical electrometer, to regulate the force of the spark or shock.

3. One or two Leyden jars.

4. An insulating stool or chair.

5. A discharging rod.

6. Two or three insulated directors. The brass ball which surmounts each director may be occasionally unscrewed and removed, and a point brought into view.

7. Flexible metallic wire or chain. A brass chain is generally employed; but the spiral brass wire employed for braces is more convenient: it may be enclosed by a silk ribbon.

Physiological Effects. a. On Vegetables.—It is a popular opinion, perhaps founded in fact, that atmospheric electricity promotes vegetation; but the arguments adduced to prove it are somewhat vague. It is said that those years in which the greatest number of thunder-storms occur are the most productive; and that hops, barley, wheat, vines, &c. shoot up much more rapidly after a storm. These statements may, however, be true, without the inference which has been drawn from them being correct. Mushrooms form, it has been said, an exception to this statement; their growth being retarded by electricity*. Some electricians have affirmed that artificial electricity promotes the germination of seeds as well as the growth and green colour of plants; but the accuracy of the statement is exceedingly doubtful. De Candolle says he has observed transpiration increased by it. The movements of the sensitive plant and of the stamens of the barberry may be excited by electricity.

b. On man and other animals.—The effects of electricity on animals vary according to the mode of applying it; and hence they may be conveniently described under five heads:—

1. The Electric Bath.—In this mode of employing electricity the patient is placed on the insulating stool (or chair), and in connexion with the prime conductor of the machine. The whole surface of the body becomes electro-positive, while the air which surrounds the body is, by induction, rendered electro-negative. The positive electricity is constantly and silently discharged from all pointed parts of the surface, as from the hairs, fingers, &c. In a darkened room the discharge is seen to be attended with the evolution of light. The effect of the electric bath does not appear to be uniform on different individuals. In some the pulse is at first quickened, in others it is unchanged; while in some it is, after ten or fifteen minutes, reduced in frequency*. These different effects are, undoubtedly, in part

* De Candolle, Physiol. Vég. t. iii. p. 1091.

* See Mr. Smith's experiments, in Dr. Hodgkin's Translation of Edwards' work, On the Influence of Physical Agents on Life, p. 335. Lond. 1832.
The electric spark is a most stimulating and is usually employed when we are desirous of electrifying delicate parts — the eye, ulcers, excoriated surfaces, the testicles, &c.

The Electric Spark. — This is one form of the disruptive disease. It may be communicated by presenting to the part to be treated, the ball or knob of an insulated director connected with the prime conductor. Or it may be drawn from the patient by placing him on the insulating stool (or chair), and bringing the knob, or the ball of an uninsulated director near him. The smooth surfaces, between which the spark passes, are in opposite electrified conditions. The nearer they are together, and the softer the ball, the weaker is the force of the spark. A succession of very small sparks is obtained by substituting a wooden rod for the metallic ball.

The spark occasions a sharp, painful, pungent sensation, redness, sometimes a small circumscribed spot or wheal, which, however, soon quickly disappears.

At internal parts, as the bottom of the meatus auditorius externus, a glass tube is used to insulate the conducting wire, the end which terminates in a very small knob, contained within, or at the end of, the tube (fig. 2, g.)

Favourable mode of employing electric sparks is to draw them through flannel, as recommended by Cavallo, and since practised with great success by my friend, Mr. Charles Woodward. This rod is called by some electricians *electric friction*. The patient, placed on the insulating stool, takes hold of the chain conducting with the prime conductor, by the hand opposite to the one to be electrified. Over the naked part is then placed a piece of flannel, and, the machine being turned, the operator places the knob of an uninsulated director in close contact with the flannel, and
discharge, and is thus effected. Charge a Leyden jar: then connect
its outside by a chain or wire with the ball of an insulated director,
which is applied to one extremity of the part through which the
electricity is intended to pass. The knob of the jar is then applied
to the other extremity of the part, and the discharge instantaneously
takes place.

The force or the strength of the charge is graduated by inter-
posing in the circuit a medical electrometer (see fig. 2, b), which
is employed thus:—Place the Leyden jar so that its interior may be
in communication with the prime conductor, while its exterior is
connected with the patient by a chain and insulated director. One of
the knobs of the electrometer is then put in communication with the
opposite side of the patient by a second chain and director. If the
machine be now turned, the jar charges, and, when the tension is
sufficiently high, a spark passes from the prime conductor to the ball
of the electrometer, and the discharge takes place, the patient expe-
riencing the shock. To increase or diminish the force or strength of
the shock, we augment or lessen the space between the prime con-
ductor and the ball of the electrometer.

Sometimes a coated glass tube is substituted for the Leyden phial
in the above arrangement, the medical electrometer being employed.
The patient then receives a rapid succession of slight shocks, constitu-
ting what some electricians denominate electrical vibration.

When a portion of the body makes part of the circuit through
which the discharge of a Leyden phial is effected, a sudden, instan-
taneous, and painful sensation is produced, which is denominate the
shock. If the charge be passed through the arms, the effects are
principally experienced in the wrists, elbows, and across the breast.
"If the charge is passed through the spine, it produces a degree of
incapacity in the lower extremities; so that if a person be standing
at the time, he sometimes drops on his knees, or falls prostrate on
the floor." If the diaphragm form part of the circuit, it is imme-
diately thrown into a temporary state of contraction. Mr. Singer
"once accidentally received a considerable charge from a battery
through the head; the sensation was that of a violent but universal
blow, followed by a transient loss of memory and indistinctness of
vision, but no permanent injury ensued." If a strong charge of a bat-
tery be passed through the head of a rabbit, temporary blindness
or death ensues. In persons killed by lightning, red streaks are
frequently observed on the skin. It is said that marks are often
observed indicating the passage of the electric fluid along the spine.
The blood is usually fluid, and the muscles flaccid; though occa-
sionally rigidity of muscles has been found.

The greater or less violence of the shock depends not on the quan-
tity merely, but on the intensity of the charge. Thus a small jar
highly charged will produce a greater effect than a large battery
feebly charged. But of course if the intensities be equal, the great-
shock is perceived when the largest quantity is employed.

* Singer, Elements of Electricity, p. 296. Lond. 1814.
5. The Electric Current.—To cause a current to pass through a patient to the ground, connect some part of the body directly, or indirectly by a chain or wire, with the prime conductor of the machine; the patient standing on the ground. By this means the current passes into the body at the point of connexion, and escapes by the feet. Its effects are exceedingly slight, and scarcely, if at all, obvious.

Uses.—The uses of electricity are partly rational, partly empirical. When the indications are to excite a nerve of sensation or of motion, or to produce a temporary contraction of muscles, or to promote transpiration and secretion, its employment may be regarded as rational. But it is used, sometimes beneficially, in several diseases in which these indications are by no means obvious. In such, its methodus medendi is unknown, and its use may be regarded as empirical.

1. To stimulate the nerves of sensation.—In nervous deafness electricity is sometimes employed. Sparks are thrown on, or drawn from, the mastoid process, the parts around the meatus auditorius externus, or the bottom of the meatus. In some cases slight temporary relief is obtained. In amaurosis, the current, the aura, and sometimes slight sparks and shocks have been tried, but rarely with success. In topical numbness unconnected with lesion of the nervous centres, electric friction, sparks, or very slight shocks, are occasionally serviceable.

2. To excite the motor nerves.—In partial paralysis, benefit is at times obtained by the use of electric friction and slight shocks. When the disease depends on some lesion of the cerebro-spinal centre, relief by electricity is not to be expected. Electricity is calculated to be serviceable when the malady arises from some functional disorder of the nerves. It may also contribute to restore the use of parts originally paralysed by effusion in some part of the cerebro-spinal centre, but which has been gradually absorbed, leaving the limb paralysed from desuetude. These cases, however, are comparatively rare. Notwithstanding the favourable account of its efficacy given by Dr. Golding Bird, my own experience of its use leads me to give an unfavourable report of it in cases of paralysis properly so called. In chronic rheumatism I have occasionally seen benefit from the use of electricity. In stiffness and rigidity, after sprains and bruises, when all inflammation and tenderness have subsided, it has also been employed.

3. To promote secretion.—In amenorrhea, considerable benefit is obtained by passing shocks through the pelvis (from the sacrum to the pubis). I have, on several occasions, found the practice successful. Electric friction, or slight shocks, are sometimes employed to promote the biliary secretion. My friend, Mr. Woodward, is very sanguine as to its efficacy for this purpose; but I have had no experience of it.

* Mr. Hey published several successful cases of its use in amaurosis. He never saw the least benefit from its employment when the disease had existed for two years (Med. Observ. and Ing. vol. 7, p. 1. Lond. 1779. 2d ed.)
* Guy's Hospital Reports, vol. vi. p. 38.
4. To promote absorption.—In indolent tumours, electricity, in the form of sparks, slight shocks, and friction, has been employed, and, it is said, with occasional benefit. In enlarged cervical glands I have tried it in several cases, but without observing that any benefit resulted therefrom.

5. In chorea and some other allied convulsive disorders, considerable benefit is occasionally obtained from the employment of electricity, in the form of friction or slight shocks in the course of the spine and limbs. I am acquainted with several remarkably successful cases of its use. Dr. Addison\(^1\) and Dr. Golding Bird\(^2\) have also found it beneficial. Its methodus medendi is quite inexplicable.

β. VOLTAIC ELECTRICITY.

(Galvanism; Voltaism.)

The apparatus usually employed for the medical application of voltaic electricity consists of—

1. Two wooden troughs (devised by Mr. Cruickshanks), each containing 50 pairs of copper and zinc plates, 2 or 2½ inches square. These may be charged with a solution of common salt, or with a weak acid liquor. Some electricians employ 1 part of common muriatic acid, and 16 or 20 parts of water. Singer thinks that 1/30 of muriatic acid will be found the most useful. In some cases where the skin was very susceptible I have used water only.

2. A pair of insulated directors, each consisting of a glass tube traversed by a copper wire. One extremity of the wire is in communication with one end of the trough; the other extremity is covered with sponge or flannel, moistened with a solution of common salt.

3. Copper wire to connect the directors with the ends of the troughs. Harrington's electizers are plates of copper and zinc, or silver and zinc, made in various forms. Thus for the toothache a plate of copper is soldered edgewise to one of zinc, and wound in the mouth: the saliva serves to excite the apparatus. In another contrivance an hexagonal plate of zinc is connected by its face to a plate of silver: and a series of these compound plates are connected together by wire, so as to move on each other like hinges. These are worn next the skin for the relief of rheumatism. The perspiration serves to excite the plates. Silver and zinc spangles also have been employed, instead of the plates just mentioned.

PHYSIOLOGICAL EFFECTS.—The physiological effects of voltaic electricity are threefold; viz.—

1. The production of certain sensations.
2. The contraction of muscular fibre.
3. An influence over secreting organs.

1. Production of certain sensations.—Although electricity acts on all the organs of sense, yet the nerve of each sense is affected in a manner peculiar to itself. Thus, by acting on the nerves of touch, we produce pain, the shock, and other disagreeable sensations; by affecting the optic nerve, we occasion a sensation of light; by influencing the gustatory nerve, a remarkable taste is excited; by affecting the auditory nerve, a peculiar sound is excited*. The olfactory nerve is influenced by electricity with more difficulty. Volti could not succeed in producing an effect on the sense of smell;

\(^1\) Guy's Hospital Reports, vol. ii. p. 409.
\(^2\) Volta, Phil. Trans. for 1800, p. 409.
\(^*\) Ibid. vol. vi. p.84.
which he ascribes to the circumstance of the electric effluvia not being expanded in and conveyed by the air, which, it is thought, is the proper vehicle for exciting sensations in the olfactory nerves. Cavallo and Ritter each assert, however, that they have produced peculiar smells by electricity.

The sensations excited by the passage of the voltaic current through the sensitive nerves may be owing to the mechanical or chemical influence of the current; and not any thing peculiar to the electricity. Thus the nerves of touch, the optic nerve, and the auditory nerves, have each their special sensations excited by mechanical violence. The acid, or the alkaline taste produced by electricity, may be referred to the electrolysis of the salts of the saliva, and the development of an acid and an alkali at the opposite electrodes; and the metallic taste may be owing to the chemical action of the constituents of the saliva on the electrode, by which a soluble metallic compound is produced.

2. Contraction of muscular fibre. — Voltaic electricity excites muscular contractions when applied to the motor nerves, or to the central organs of the nervous system. The effect is produced not only on living, but on recently killed, animals; and is more powerful on the voluntary, than on the involuntary, muscles.

MM. Prevost and Dumas have proposed an electrical theory of muscular contraction, which appears to me to be disproved by anatomical and physiological, as well as by physical, considerations. They assert that the nervous fibres run transversely across the muscular fasciculi; that when the muscular fibres become shorter by contraction, they do so by assuming a zig-zag inflexion; that the nervous fibres are conductors of a voltaic current; and, lastly, that zig-zag inflexion is produced by the mutual attraction of the parallel rectilinear currents in the nerves, the muscular fibre itself being passive. But not one of these assumptions can be admitted. Schwann has shewn that Prevost and Dumas mistook entire nervous fasciculi for primitive nervous fibres. Prof. Owen and Dr. A. Thompson doubt whether the zig-zag inflexion exists during contraction. Prof. Owen says that the fibres become shorter and thicker, and only assume a straight or zig-zag arrangement after contraction has ceased. Lastly, we have yet to learn how the voltaic current is insulated in the nerves, and prevented from passing off laterally; for the neurilemma, and the other soft tissues, are excellent conductors of electricity.

3. Influence over the secreting organs. — Of the great influence exercised by the nerves in the process of secretion, no doubt can be entertained. Now, it appears highly probable, that as the voltaic current excites the functions of the sensitive and motor nerves, it also may exercise a similar influence over those nerves which are distributed to the organs of secretion. Dr. Wilson Philip has endeavoured to establish the truth of this opinion in the case of the

* Wilkinson's *Elements of Galvanism*, vol. i. p. 223. Lond. 1804.

* The peculiar smell evolved by working the ordinary electric machine in the atmosphere, — by electric sparks, and in some electro-chemical decompositions, is ascribed by Schönlein to a new elementary substance, which he terms ozone (from σκό, to smell), and which is evolved at the anode or positive surface. He supposes it to be a constituent of an electrolyte, small quantities of which exist in both air and water. (Athenaeum for 1846, p. 712).

secretion of the gastric juice. He divided the nervi vagi in a rabbit, and found, as he supposed, that the digestive process was stopped. In another experiment he restored, as he tells us, the functions of these nerves by the voltaic influence. But subsequent experiments have shown that the division of the nervi vagi does not wholly stop the digestive process, and that electricity cannot restore it to its original state*.

Uses.—The therapeutic uses of voltaic electricity, like those of common electricity, are partly rational, partly empirical.

1. To stimulate the sensitive nerves.—In cases of nervous deafness, voltaic electricity has been used to stimulate the auditory nerve. For this purpose, one wire (pole or electrode) is introduced into one ear, and the other wire (pole or electrode) into the opposite ear. The circuit is then to be rapidly broken and completed a number of times. In amaurosis, the same remedy has been used empirically, to stimulate the retina, when other remedies have failed. It must, however, be employed with great caution, as its mechanical effect is calculated in many cases to aggravate the malady.

2. To excite the motor nerves.—In paralysis, voltaic electricity is occasionally resorted to, but, for the most part, empirically. It can, of course, be of no avail if the disease arise from organic changes in the nervous centres. But when the malady appears to be functional only, or when there is reason to suppose that the blood effused in the brain has been absorbed, and that the paralysis remains from desuetude only, stimulating the motor nerves by electricity may perhaps prove serviceable. In asphyxia from drowning, hanging, the inhalation of noxious gases, &c. voltaic electricity is occasionally employed to excite the muscles of respiration. It appears to be a very plausible remedy, but in the cases in which it has hitherto been tried on the human subject, it has mostly failed to effect resuscitation†. In sanguineous apoplexy, Dr. W. Philip suggests that it might be used to enable the lungs "to perform their functions for a longer time than without this aid," and that by it the life of the patient may be prolonged. In the asphyxia produced by concussion, galvanism has been suggested by M. Goudret.

3. In Asthma and Dyspepsia.—Dr. Wilson Philip, having observed that withdrawing a considerable part of the nervous influence from the stomach and lungs deranges the digestive powers, and produces great difficulty of breathing, was led to expect relief from galvanism in indigestion and habitual asthma. He describes the benefit obtained as greatly exceeding his expectations. The positive pole (anelectrode) is applied to the nape of the neck,—the negative pole (cathelectrode) to the pit of the stomach. A weak power should be commenced with, and the strength gradually increased until some

* Müller, op. ante cit. p. 349.
† The Professor of the Irish College of Surgeons, in 1823, failed to restore by it the respiratory movements in a person who had been hung (Dr. Apjohn, in Cyclopaedia of Practical Medicine, art. Galvanism).—Electricity, in conjunction with other means, was tried, but without success, in the case of Scott, the American diver, who had been accidentally hung for five or six minutes (see Times, Jan. 15, 1841).
uneasiness is experienced. In some instances perfect cures were obtained; in others relief was gained.

4. To electrolyze urinary calculi.—Prévost and Dumas have proposed voltaic electricity as a means of destroying some kinds of urinary calculi. They state that a fusible calculus, in one case contained in a basin of water, in another introduced into the bladder of a dog previously distended with water, was completely disintegrated by voltaic electricity, from a battery of 120 pairs. The wires were introduced through a canula into the bladder. The operation, it is said, did not occasion the least apparent uneasiness to the animal. During the action of the battery on the calculus, the bases and phosphoric acid first arrived at their respective poles, then re-entered into combination, forming a pulverulent salt. Bonnet proposed to inject the bladder with a solution of nitrate of potash, and to galvanize the calculus in this liquor. The nitrate will be decomposed; the phosphates dissolve in the liberated nitric acid,—and uric acid, or urate of ammonia, in the disengaged potash. These propositions are ingenious, but at present no practical use has been made of them.

5. To coagulate the blood within an aneurismal tumour.—If the electrodes of a voltaic apparatus be immersed in an albuminous liquor, the albumen is coagulated. It has, therefore, been suggested that galvanism might be applied to the important purpose of coagulating the blood within an aneurismal tumour, and thus removing the disease without resorting to the ligature. For this purpose two needles are to be introduced into the tumour, and their projecting extremities connected with the opposite electrodes of the battery.

6. To cauterize.—Pravaz has proposed to cauterize the bites inflicted by rabid animals, by introducing the electrodes of a battery into the wound. Fabré-Palaprat has proposed to produce the cauterizing effects of the moxa by voltaic electricity: this kind of therapeutical agent he calls a galvanic moxa.

7. To promote the absorption of medicinal substances.—In 1832, Dr. Coster, and in 1833, M. Fabré-Palaprat, employed voltaic electricity to assist the introduction of certain medicinal substances into the blood. They adopted Sir H. Davy’s opinion (subsequently shown by Mr. Faraday to be erroneous), that the poles (electrodes) of a voltaic battery have attractive and repulsive powers for certain substances: the positive pole (an electrode) for oxygen, chlorine, and iodine,—the negative pole (cathe electrode) for hydrogen and the metals. M. Fabré-Palaprat asserts, that by the aid of galvanism he has caused certain chemical agents to traverse the body, and
appear at some distant part. He bound on one arm a compress, moistened with a solution of iodide of potassium, and covered by a platinum disk, connected with the negative pole (cathelectrode) of a voltaic battery of thirty pairs of plates. On the other arm was placed a compress, moistened with a solution of starch, and covered by a platinum disk, connected with the positive pole (anoelectrode) of the battery. In a few minutes the starch acquired a blue tinge, shewing that the iodine had been transported from one arm to the other. But Davy’s idea that the poles (electrodes) possess attractive and repulsive properties is not correct, as I have before remarked. That electricity may promote absorption, either by increasing endosmosis or by acting as a stimulus to the blood-vessels and lymphatics, is not improbable; but that the poles (electrodes) can draw medicinal substances either into or out of the body is not true. I have twice repeated Fabré-Palaprât’s experiment; but, though I employed fifty pairs of plates for fifteen minutes, I was unable to obtain the slightest evidence of the passage of iodine through the body.

Electro-Puncture.

(Galvano-Puncture.)

The operation of electro-puncture was proposed by Sarlandière¹, in 1825. It consists in introducing two acupuncture needles in the usual way, and connecting them with the poles of a weak voltaic battery; the contact being occasionally suspended and renewed, in order to produce a succession of shocks. This practice has been successfully adopted for the relief of rheumatism, neuralgia, local paralysis, sciatica, spasmodic affections, and other maladies in which the operation of simple acupuncture has been used, than which it has been thought, by some, to be more efficacious. In neuralgia and in rheumatism it should be employed only in the interval of the paroxysms². M. Bourgeois³ proposed to employ the operation of electro-puncture of the heart, to promote resuscitation, in cases of asphyxia.

7. Magnetic Electricity.

The apparatus required for the medical application of magnetic electricity consists of—

1. A magneto-electric machine.
2. A pair of directors.

The most convenient, simple, and powerful magneto-electric machine is that devised by Mr. E. M. Clarke, of the Strand. It consists of a battery of six curved permanent magnets, and an intensity armature, around whose cylinders 1500 yards of fine insulated copper wire are coiled. The ends of this wire communicate respectively with a pair of directors, each holding a piece of sponge (dipped in vinegar or a solution of common salt). When the arma

³ Quoted by Merat and De Lass, in the Dict. Univ. de Mat. Méd. art. Electro-Puncture.
MAGNETISM.

ture is rotated, and a portion of the living body interposed between the directors, a succession of shocks is received.

A magneto-electric machine is not affected by the moist state of the atmosphere: this gives it an advantage over the common electric machine; and as acids are not required to excite it, one inconvenience of the voltaic battery is obviated.

It is employed in medicine as a convenient substitute for the ordinary voltaic battery.

4. MAGNETISMUS.—MAGNETISM.

(Mineral Magnetism.)

Ælius, who lived about A.D. 550, is the oldest author who mentions the application of magnetism to the cure of diseases; for, although Hippocrates speaks of the magnet as a remedial agent, he refers to its internal use only. About the end of the 17th century, magnetic tooth-picks and ear-picks were made as secret preventives against pains in the teeth, eyes, and ears.

The power of a magnet to affect the vital functions is not generally admitted in this country; but it must be remembered that the experience which British practitioners have had of its use is exceedingly limited. Becker says that the sensations which his patients experienced from the use of the magnet were, cold (probably from the coldness of the steel); heat (this is the most frequent effect, especially in the ears, and it often amounts to unpleasant burning); traction (from the slightest degree, when it is an agreeable feeling, to the strongest, when it is almost painful, like that of a cupping-glass); an indefinite sensation (in the ear, called a working or roaring); throbbing; pain; and numbness or loss of feeling in the magnetised part.

Some years ago, Mr. Faraday allowed Dr. Keil to try his magnets, in every way he thought proper, on himself (Mr. F.), but without any effect resulting. In some instances it has appeared to exercise a most remarkable influence over neuralgic pains and spasmodic affections; at one time apparently curing, at another palliating, and occasionally augmenting all the patient's sufferings. But, in a large proportion of cases, it fails to produce any obvious effect. The employment of magnetic plates is sometimes attended with itching and an eruption of pimples. Toothache, neuralgia, painful affections of the stomach, rheumatic pains, spasmodic asthma, angina pectoris, and palpitation of the heart, are the maladies which have occasionally appeared to be relieved by the magnet.

It is said that, in some cases, neuralgic pain is alleviated by the application of the north pole of the magnet, but is augmented by the south pole. Laennec speaks highly of the efficacy of magnetised plates in neuralgia of the lungs and in angina pectoris. He applied two strongly magnetised oval steel plates, one to the

1 Sermo ii. p. 24.
2 Opera; De intern. affect. p. 543; and De his que uterum non gerunt, p. 686, ed. Fussi.
3 Beckmann, History of Inventions and Discoveries, Vol. i. p. 74.
left precordial region, the other exactly opposite on the back, so
that their poles were opposed. He says the relief is increased if
a blister be applied under the anterior plate. The late Dr. Thom
Davies 2 tried this plan, and with good effect.

There are several modes of using magnets. For toothache, a
simple straight or bar magnet, sometimes called a magnetic stag,
is used. It is first made warm, and its north pole applied to the
6tooth: if the pain be not relieved, the south pole should then be
substituted. Or the poles are applied to, or passed over, the gums
and cheeks. In neuralgic pains, a compound magnet, called a magnet
battery, is commonly employed. This consists of several curv
(horse-shoe, lyre-shaped, or U-shaped) magnets, placed one over the
other, with all their poles similarly disposed, and fastened firmly to
gether. Dr. Schmidt 3 employed a battery of five magnets of un
equal length, the centre one being the longest and thickest. This
kind of battery is usually called by workmen a magnetic magazine.
Magnetic collars, girdles, bracelets, &c. are made of several artificial
magnets, with their opposite poles in contact, inclosed in linen or
silk. Magnetised steel plates (magnetic plates), of various forms, are
fitted to any part of the body. They are applied to the naked skin
and worn by the aid of a bandage. 4

To attempt to explain the methodus medendi of an agent whose therapeutic
influence is not generally admitted, appears to me somewhat premature. I must
remark, however, that should the existence of electro-vital or neuro-electric currents in the animal body, as announced by Prof. Zantedeschi and Dr. Favini,
be hereafter fully established, we shall have a ready explanation of the med
power of magnetism in the well-known influence of a magnet over a volt

II. AGENTIA HYGIENICA.—HYGIENIC AGENTS.

(Non-Naturals.)

Under the absurd name of the Non-Naturals (Non-Naturalia), the ancients included six things necessary to health, but which, by accident or abuse, often became the cause of disease;—viz. Air, Alime
Exercise, Excretions, Sleep, and Affections of the Mind 5. These are now denominated Hygienic Agents 6.

1 Lectures on the Diseases of the Lungs and Heart, p. 497. Lond. 1835.
3 Figures of the different forms of magnetic instruments here referred to, are given by N
Andry and Thouret, in their very elaborate and able article on Medical Magnetism, in
Memoires de la Societe Royale de Medicine, Année 1779, p. 541.
5 For further information respecting Magnetism as a therapeutical agent, I must refer to An
Andry and Thouret’s Memoir before quoted; as also to Dr. Becker’s Der mineralische Magnetismus,
seine Anwendung in der Heilkunst, Mühhausen, 1832; Dr. Bulmerino’s Beiträge zur Wissenschaftlichen
Bekanldung mitfrede des mineralischen Magnetismus, Berlin, 1835; and Dr. Schütter’s Uber den magnetischen
Einfluss des mineralischen Magnetismus, Berlin, 1837. Also, Moers’ Beiträge zu den gemannten
medizinischen und chirurgischen Praxis; art Magnetismus mineralicus. 2nd Band. S. Leipzig, 1837.
6 For an account of the Non-Naturals, consult Sutherland’s Attempts to revive Ancient Medical
Doctrines, vol. ii. p. 113. Lond. 1763. Also, Willich’s Lectures on Diet and Regimen, 3rd Ed.
Lond. 1805.
7 Bezon (Dict. de Medicine, art. Hygiene) terms them Matière de l’Hygiene.—On Hygiene, M
Dungliese, On the Influence of Atmosphere and Localty; Change of Air and Climate; Sea
Food; Clothing; Bathing; Exercise; Sleep; Corporate and Intellectual Pursuits, &c. &c. on Human
suppose very briefly to consider, as therapeutic agents, Food, Citrus, and Exercise. Affections of the Mind have been already noticed.

1. CIBUS.—FOOD.

Substances employed as Food (Cibus) may be conveniently ed in three groups, respectively denominated Aliments (Aliments), Drinks (Potulentia), and Condiments (Condimenta).

a. ALIMENTA.—ALIMENTS.

It will be convenient to consider aliments under the two heads of Dietary Principles and Compound Aliments.

I. Alimentary Principles.

Prout has divided the alimentary principles into three great groups—the saccharine, the oleaginous, and the albuminous. He led to this division by observing that milk, the only article furnished and intended by nature as food, always contains a principle, a butyric or oily principle, and a caseous, or correctly speaking, an albuminous principle. This arrangement of alimentary principles appears to me to be superior to any other devised; and I shall, therefore, adopt it.

Class I.—Saccharine Principles.

The principles contained in this class are Sugar, Gum, Vegetable Starch, and Lignin. These agree in being of vegetable origin, consisting of carbon, hydrogen, and oxygen. With the exception of pectin or vegetable jelly, they contain oxygen and hydrogen in a ratio to form water; and might, therefore, be termed hydrates of carbon. The following table is principally drawn up from Dr. Liddell's paper in the Philosophical Transactions before referred to:—

<table>
<thead>
<tr>
<th>Carbons</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar Candy</td>
<td>42:85</td>
</tr>
<tr>
<td>Ditto</td>
<td>41:5 to 42:5</td>
</tr>
<tr>
<td>Ditto, refined</td>
<td>42:9</td>
</tr>
<tr>
<td>Ditto, refined</td>
<td>42:5 to 43:5</td>
</tr>
<tr>
<td>Dia refined</td>
<td>42:2</td>
</tr>
<tr>
<td>Dia refined</td>
<td>42:1</td>
</tr>
<tr>
<td>Dia moist</td>
<td>40:88</td>
</tr>
<tr>
<td>Bitter Honey</td>
<td>40:36</td>
</tr>
<tr>
<td>Bitter</td>
<td>40:2</td>
</tr>
<tr>
<td>Bitter, refined</td>
<td>40:0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pectin or Vegetable Jelly</th>
</tr>
</thead>
<tbody>
<tr>
<td>From sweet apples (Mulder)</td>
</tr>
<tr>
<td>Ditto, sour ditto (ditto)</td>
</tr>
<tr>
<td>In pectinate of lead (ditto)</td>
</tr>
<tr>
<td>In pectinate of lead (Fremy)</td>
</tr>
</tbody>
</table>

2. Fremy, 1837, p. 335. Also, On the Nature and Treatment of Stomach and Urinary Dis. ed. Lond. 1844. In the latter work he admits a fourth alimentary principle, which he calls

4. de Pharm. xxvi. 373.
Those varieties of each principle which contain the smallest quantity of water, Dr. Prout terms strong or high; while those containing the largest proportion of water, he denominates weak or low. Thus sugar-candy is a high or strong sugar,—sugar of starch, a weak or low one.

Sugar is the only one of the above five principles capable of crystallizing; and is, therefore, the farthest removed from organization and life. Gum, though incapable of crystallizing, is not organized: it may be denominated an organizable substance. Starch and lignin are organized substances.

In Diabetes, abstinence from all the alimentary principles of this class is attended with a considerable diminution of the saccharine secretion. Farinaceous matter, though less objectionable than common sugar, is readily convertible into sugar.

1. Saccharina. Saccharine Substances.—Under this head are placed several sweet organic principles, capable, for the most part, of undergoing vinous fermentation when mixed with yeast and a due proportion of water.

a. Sugars susceptible of Vinous Fermentation.

1. Crystallizable. This division includes common sugars (viz. cane, maple, and beet-root sugars), granular sugars (viz. grape, honey, starch, and diabetic sugars), and sugar of milk.

2. Uncrystallizable. Called liquid or mucous sugars, as treacle.

b. Sugars unsusceptible of Vinous Fermentation.¹

Sugar is a highly nutritious substance, and by the healthy stomach is readily digested. It does not agree, however, with some dyspeptics. Flatulence and preternatural acidity of stomach are frequently ascribed to it; but, in many cases, these conditions are referrible rather to the substances taken with the sugar, than to the saccharine matter itself. In diabetes the power of assimilating sugar is in a great measure lost, and the dietetical use of saccharine matter must be rigorously prohibited.

Sugar appears to contribute directly to the nutrition of plants: for the saccharine juices of the sugar-cane, of the maple, of the beet-root, &c. must be regarded as nutritive. Yet, it is somewhat remarkable, and apparently inconsistent with this statement, that saccharine matter is found in the excretions of plants; as those formed by the nectariferous glands. Sugar appears to be especially adapted for the food of young plants; hence we find it generated in many seeds (as peas, barley, &c.) during germination.

It is nutritive to animals. Thus it is an important constituent of milk,—a liquid intended for the nourishment of mammals during the first period of their existence. Many insects (especially the Lepidoptera, Hymenoptera, and Diptera) feed on sugar or saccharine liquids. Its asserted poisonous action on some Annelida, birds, and frogs, is improbable, and wants confirmation.² That a diet of sugar only is incapable of supporting the life of mammals and birds, has been fully proved by the experiments of Magendie¹ and of Tiedemann

¹ Liebig (Turner’s Elements of Chemistry, 7th ed. p. 914; Lond. 1840) regards those substances only as saccharine which are susceptible of the vinous fermentation.

¹ Ann. de Chim. iii. 06. 1816.
ad Gmelin. Dogs and geese die, when confined and fed solely on sugar and water, with all the symptoms of starvation. Change or alteration of diet, with the use of a certain portion of nitrogenous food, seems, therefore, to be essential to the vitality of these animals.

Sugar is employed by man on account of its agreeable taste, rather than as a test source of nourishment; yet, of its nutritive qualities, few entertain any abt. During the sugar season of the West India Islands, "every negro on the plantations, and every animal, even the dogs, grow fat." The injurious effects, which have been ascribed to sugar, are more imaginary than real. Some individuals have consumed large quantities of it, for a long series of years, without suffering any ill consequences. Stark’s experiments hardly admit of any legitimate conclusions being drawn therefrom, as to the action of sugar. The fondness for sugar may be regarded as a natural instinct; since nature, by cing it in milk, evidently intended it to form a part of their nourishment during the first period of their life. The popular notion of its having a tendency to injure the teeth seems most absurd, as Dr. Slare has shewn. “It has been said, that the eating of sugar spoils the colour of and corrupts the teeth; this, never, proves to be a mistake, for no people on the earth have finer teeth than negroes in Jamaica.”

The principal use of sugar, considered dietetically, is for sweetening various articles of food, whose nutritive qualities also it promotes. In diabetes, and the state of lime diathesis, sugar and sweet foods should be rigorously excluded. Dyspepsia, its effects are to be carefully examined; and, if found to be injurious, its use ought to be prohibited. The copious use of unrefined sugar is likely to prove injurious in some nervous disorders, as the phosphatic diathesis, account of the lime contained in it.

2. Mucilaginosa. Gum mata.—The gummy principles, called Aman, Tragacanthin or Adraganthin, Cerasin or Prunin, Cydonin, and Bassorin, belong to this group. They possess nutritive properties; but are somewhat difficult of digestion, and apt to disagree with dyspepsia.

Magendie has shewn that dogs, fed on gum alone, languish and die in two or three weeks; and Tiedemann and Gmelin found, that a goose, fed with gum, died on the sixteenth day. These, as well as other experiments, merely shew, however, that animals require more than one kind of aliment.

The nutritive property of gum is shown by several facts. In the first place it constitutes a portion of several well-known articles of food; secondly, it sometimes forms the principal or only food of man. Hasselquist tells us, that a caravan, of more than a thousand persons, travelling from Abyssinia to Cairo, ad whose provisions were exhausted, supported themselves for two months on the gum they were carrying as merchandise. The Moors and the Negroes near the Niger, employ it as a common kind of food. The Hottentots also are well aware of its nutritive properties. Six or eight ounces daily for an adult are said to be sufficient to sustain life.

3. Vegeto-Gelatinosa. Vegetable Jelly.—To this head are referred Pectin or Grossulin, and Carrageenin. These are nutritive and digestible. Whether the tendency of some fruits to disorder the prime vie is fairly ascribable to the vegetable jelly, or to some other principle associated with it, has not been clearly made out.

1 Miller’s Elem. of Phys. by Daly, p. 482.
2 Wright, Med. Plants of Jamaica.
3 Slare, Vindications of Sugars, Lond. 1715.
7 Wright, op. cit.
8 “Miller’s Physiology,” by Daly, vol. 1, p. 482.
9 Travels and Travels in the Levant, p. 229. Lond. 1760.
Pectin, under the influence of an alkali, is readily converted into pectic acid. The latter has been recommended for the formation of jellies, gelatinous conserves; &c.

4. Farinosa. Amylaceous, farinaceous, or starchy substances.—Under this division are included Wheat-starch, Sago, Tapioca, Arrow-root (West Indian, East Indian, South Sea, and Portland), Potato-starch, Tous le Mois, Salop, &c. Amylaceous matter is found in various parts of plants. The abundance of the seeds of grasses abound in it, and from this organ wheaten- and rice-starch are obtained. The fleshy cotyledons of the leguminous seeds—as peas and beans—likewise contain it. In the roots, subterranean stems, and tubers of many plants, it is also found; and from these sources are procured Tapioca, Arrow-root (West Indian, East Indian, and Portland), Salop, Potato Starch, and Tous le Mois. The interior of some monocotyledinous stems abound in farinaceous matter; and from this source Sago is obtained. Furthermore, a fuscoid substance, called lichenin, is found in some Lichens—as in Cetraria Islandica.

The amylaceous substances are organized. Examined by a microscope they are seen to consist of small grains, which are usually rounded, or elliptical, or mullar-shaped, or polyhedral. The polyhedral form probably arises from the mutual compression of numerous grains in the same or neighbouring cells. On some part of the surface of each grain is a round spot, called the hilum: very rarely, two or even three of these spots are observed on the same grain. The grains of most, if not of all, fuscals, have a laminated texture. To the concentric layers is owing the appearance of concentric rings on the surface of most fuscals. The organic principle (amidon), of which these layers consist, seems to be uniform in its composition and properties, except in some slight differences of cohesion.

When cooked, amylaceous matter is a nutritious and easily digestible substance. Directly or indirectly, observes Dr. Prout, "it forms a constituent of the food of most of the higher animals, as well as of man. It differs, therefore, from sugar, in being a necessary article of food, without which animals could not exist; while sugar is not. Hence a much larger quantity of amylaceous matter than of sugar, can be taken; and what is a still more decisive fact, the use of this larger quantity of amylaceous matter may be persisted in for an unlimited period, which, it appears, is not the case with a large proportion of sugar."

Farinaceous food is, perhaps, the least irritating of all kinds of aliments. It is, therefore, well adapted for the use of persons affected with morbidly sensible conditions of the prime vae. It will sometimes remain on the stomach when every other kind of nutriment is immediately rejected. Being totally devoid of

2 Figures of the different starchy bodies, drawn to the same scale, will be given in subse parts of this work (see Index).
3 For an elaborate account of the structure and chemical properties of starchy substance; Payen's Mémoire sur l'Amande, in the Annales des Sciences Naturelles. 2éd Série, t. x; Bota Paris, 1836.
4 On the Nature and Treatment of Stomach and Urinary Diseases, p. x. Lond. 1849.
OLEAGINOUS ALIMENTARY PRINCIPLES.

all stimulating properties, it is a useful and valuable article of food in febrile and inflammatory diseases. In diabetes it is the only kind of vegetable aliment admissible.

To render amylocaeous matter digestible, it requires to be cooked in order to break or split the grains; for, of the different laminae of which each grain consists, the outer ones are the most cohesive, and present the greatest resistance to the digestive power of the stomach, while the internal ones are the least so. Hence farinaceous substances are boiled in milk or water,—or they are panified with gluten, by which the grains are completely broken up,—or they are made into puddings and tarts.

5. LIGNIN. Woody Fibre.—The substance, called lignin, constitutes the basis of woody fibre, vessels, ducts, and cellular tissues of plants. Its composition is probably similar in all plants. It "forms the appropriate food of numerous insects and of some of the lower animals, but of few of the higher classes of animals. The reason of this is probably to be sought for, in their not being furnished with organs proper for comminuting and reducing it; for when lignin is comminuted and reduced by artificial processes, it said to form a substance analogous to the amylocaeous principle, and to be highly nutritious."

The Laplanders, according to Linnaeus, eat bark-bread (barkbrüd) during a great part of the winter, and sometimes even during the whole year. It is prepared from the inner bark of the Pinus sylvestris.

Professor Autenrieth, of Tubingen, states, that when wood is deprived of every thing soluble, reduced to powder, repeatedly subjected to the heat of an oven, and then ground in the manner of corn, it yields, boiled with water, a flour, which forms a jelly, like that of wheat-starch, and, when fermented with leaven, makes a perfectly uniform and spongy bread.

CLASS 2.— Oleaginous Alimentary Principles.

This class comprehends the substances denominated Fats, Fixed Oils, and Butters.

Dr. Prout includes also the volatile oils. But, though volatile oil is a constituent of several substances employed as aliments or condiments, yet I am unacquainted with any evidence of its being alimentary. When received into the stomach, it is absorbed, and taken into the system; but is subsequently thrown out again, without having undergone much, if any, change. Alcohol, which Dr. Prout ranks with the volatile oils, is neither oleaginous nor alimentary.

The ultimate constituents or the elementary principles of the oleaginous substances are Carbon, Hydrogen, and Oxygen. The proportions are as follow:—

1 Good bread gives not the slightest trace of entire grains of starch.

2 According to the Rev. J. B. Beadle (Lond. & Edin. Phil. Mag. vol. xi. p. 49), a very remarkable difference exists between the chemical composition of cellular membrane and of spiral vessels in the same plant. But his results are in many respects so remarkably at variance with all that we are as yet acquainted with respecting similar subjects, that we must at the outset doubt their correctness." (Benn's Report on the Progress of Vegetable Physiology, during the year 1837. Translated by Wm. Francis. Lond. 1839.)

4 Phil. Trans. 1827, p. 335. —Also, The Scots Mag. vol. lxxx. p. 313.

The fats and fixed oils, as presented to us by nature, are separable into two or three or more fatty principles; of which stearine, margarine, elaine, and butyрин, are the most important. By subjecting solid or congealed fats to pressure, Braconnot separated several of them into two parts,—the one liquid (elaine), the other solid (stearine and margarine).

<table>
<thead>
<tr>
<th></th>
<th>Carbon</th>
<th>Hydrogen</th>
<th>Oxygen</th>
<th>Lax.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almond Oil (Saussure)</td>
<td>77·403</td>
<td>11·481</td>
<td>10·828</td>
<td>0·288</td>
</tr>
<tr>
<td>Olive Oil (Elaine (Saussure))</td>
<td>76·034</td>
<td>11·545</td>
<td>12·066</td>
<td>0·333</td>
</tr>
<tr>
<td>Butter (Bérard)</td>
<td>82·170</td>
<td>11·232</td>
<td>6·302</td>
<td>0·296</td>
</tr>
<tr>
<td>Hog’s Lard (Chevreul)</td>
<td>65·6</td>
<td>17·6</td>
<td>16·8</td>
<td>—</td>
</tr>
<tr>
<td>Mutton Suet (Chevreul)</td>
<td>79·026</td>
<td>11·146</td>
<td>9·756</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>78·996</td>
<td>11·700</td>
<td>9·304</td>
<td>—</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Butter</td>
<td>40</td>
<td>60</td>
<td>28</td>
<td>72</td>
</tr>
<tr>
<td>Hog’s Lard</td>
<td>38</td>
<td>62</td>
<td>24</td>
<td>76</td>
</tr>
<tr>
<td>Beef Marrow</td>
<td>75</td>
<td>24</td>
<td>Oil of Colza</td>
<td>46</td>
</tr>
<tr>
<td>Mutton Marrow</td>
<td>26</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goose Fat</td>
<td>32</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duck Fat</td>
<td>28</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey Fat</td>
<td>26</td>
<td>74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stearine, Margarine, Elaine, and Butyрин, yield, by saponification, fatty acids, a sweet basic principle called glycerine (or the oxide of glycerule), and water. They are probably, therefore, hydrated salts of glycerine. The acids (stearic, margaric, and oleic) obtained respectively from stearine, margarine, and elaine, are fixed; while those (butyric, capric, and caproic acids) procured from butyrин, are volatile and odorous.

Oleaginous alimenta are highly nutritious, but exceedingly difficult and slow of digestion. The last-mentioned circumstance is familiar to every dyspeptic, and has been confirmed by the experiments of Dr. Beaumont, made on a Canadian, who had, two inches below the left nipple, a permanent artificial opening into his stomach, produced by a gun-shot wound. Dr. Beaumont remarks, that the bile is not ordinarily found in the stomach; but that, after the use of oily food, it is often observed there: and, he concludes, that it assists the digestion of the fatty substances. The operation of heat on the fatty bodies is injurious to their digestibility, especially in the case of butter. This appears to be owing to the development of acrid fatty acids, and empyreumatic oily matters. Hence buttered toast, melted butter, substances cooked by frying in oil or butter, and pastry, are highly injurious to dyspeptics.
Nitrogenous Alimentary Principles.

Oleaginous foods often agree so remarkably well with diabetic patients, "that some have gone so far as to propose them as remedies. When freely taken, they usually cause a flow of saliva, and thus diminish the urgent thirst. When they agree, also, they give a sensation of satisfaction and support to the stomach, which other alimentary substances do not. Perhaps butter is the most agreeable form in which they can be taken, and this, under proper circumstances, may be taken freely. When oleaginous matters disagree, as is sometimes the case, they should be carefully shunned."

Sir John Ross* considers, and his opinion is probably correct, that the natives of cold countries seem to require a more fatty diet than the inhabitants of tropical regions, in order to promote the production of animal heat.

Class 3.—Nitrogenous or Azotized Alimentary Principles.

(Albuminous Aliments, Prout.)

The most important alimentary principles, containing nitrogen or azote, are Fibrine, Albumen, Cæsærum, Gelatine, and Gluten. The animal extract, called Osmazome, is also a nitrogenous principle. With one exception (Gluten), these principles are obtained from the animal kingdom, and they have, in consequence, been frequently denominated animal aliments. They are composed of carbon, hydrogen, nitrogen, and oxygen, in the following proportions:

<table>
<thead>
<tr>
<th></th>
<th>Carbon</th>
<th>Hydrog.</th>
<th>Nitrogen</th>
<th>Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrine of a Cow's Arterial Blood (Mulder)</td>
<td>53-019</td>
<td>6-828</td>
<td>15-462</td>
<td>24-691</td>
</tr>
<tr>
<td>of ditto Venous Blood (Mulder)</td>
<td>53-476</td>
<td>6-952</td>
<td>15-291</td>
<td>24-281</td>
</tr>
<tr>
<td>of Muscle of the Ox (Sass & Pfaff)</td>
<td>48-30</td>
<td>10-64</td>
<td>15-92</td>
<td>17-64 & fixed salts 7-50</td>
</tr>
<tr>
<td>Albumen of Eggs (Mulder)</td>
<td>53-960</td>
<td>7-052</td>
<td>15-696</td>
<td>23-292</td>
</tr>
<tr>
<td>of Arterial Blood (Michaëlis)</td>
<td>53-009</td>
<td>6-983</td>
<td>15-562</td>
<td>24-436</td>
</tr>
<tr>
<td>of Venous Blood (Michaëlis)</td>
<td>52-650</td>
<td>7-359</td>
<td>15-505</td>
<td>24-484</td>
</tr>
<tr>
<td>Cæsærum (Jul. Vogel)</td>
<td>52-53</td>
<td>7-82</td>
<td>16-20</td>
<td>23-45</td>
</tr>
<tr>
<td>of Hartshorn (Mulder)</td>
<td>50-048</td>
<td>6-477</td>
<td>18-350</td>
<td>25-125</td>
</tr>
<tr>
<td>of Isinglass (Mulder)</td>
<td>50-757</td>
<td>6-644</td>
<td>18-313</td>
<td>24-286</td>
</tr>
<tr>
<td>Glutin (Boussingault)</td>
<td>54-0</td>
<td>7-50</td>
<td>14-60</td>
<td>23-90</td>
</tr>
</tbody>
</table>

* In Diabetes, the diet should be principally of nitrogenous principles. Dr. Rollo advocated the exclusive use of animal substances in this malady, and, of its power to check the secretion of sugar, no doubt seems to be entertained. But the craving for vegetable food which some patients experience so great, that insalubrity of diet is experienced in inducing them to submit to a diet exclusively animal. Moreover, violent fever has been ascribed to it. Hence the recommendation of Dr. Prout, to allow a certain quantity of farinaceous food,
has been very generally assented to and followed. More recently, however, Dr. Christison has published some cases, showing that a mixed diet of animal and vegetable food is sometimes inadmissible; and "that if a sensible amelioration is to be looked for with any confidence, the injunctions of Rollio and his imitators, to enforce a rigorous animal diet, must often be faithfully followed."

In the *Oxalic Acid Diathesis*, the plan of diet is the same as for Diabetes.

1. **Fibrine.**—In the liquid form, or in the state of suspension, it exists in the blood. In the solid state it is the principal constituent of the muscles or fleshy parts of animals. It is eminently nutritious, and easy of digestion.

2. **Albumen.**—This principle constitutes the most important part of animal foods. In the liquid state it exists in eggs (*ovulumen*) and the serum of the blood (*seralbumen*). In the solid or coagulated state it is a constituent of the flesh, glands, and viscera of animals. The chemical properties of coagulated albumen are almost identical with those of fibrine. Albumen is highly nutritious, and when either raw or lightly boiled is easy of digestion; but when boiled hard, or especially when fried, its capability of being digested is considerably impaired. (See *Eggs*, p. 59.)

3. **Caseum.** *Lactalbumen,* or *Curd.*—This is the coagulable matter of milk, and is closely allied to albumen, of which it may be regarded as a modification. Coagulated, dried, somewhat changed in its nature, and more or less mixed with butter, it constitutes *cheese.* It is nutritious, and moderately easy of digestion.

4. **Gelatine.** *Animal Jelly.*—Gelatine is obtained by boiling certain animal tissues in water: the concentrated decoction forms, on cooling, a tremulous mass, called *jelly.* The bones, antlers, skin, tendons, and aponeuroses of mammals, and the swimming bladder of fishes, are the especial sources of it. It is an exceedingly nutritious principle, though probably somewhat less so than fibrine and albumen. As far as my own observations extend it is readily digestible; but it is said not to be suited to the digestive powers of many dyspeptics.

"Gelatine may be considered as the least perfect kind of albuminous matter existing in animal bodies; intermediate, as it were, between the saccharine principles of plants, and thoroughly developed albumen. Indeed, gelatine in animals may be said to be the counterpart of the saccharine principles of plants; it being distinguished from all other animal substances, by its ready convertibility into a sort of sugar, by a process similar to that by which starch may be so converted."

Gelatine from Bones is employed in Paris for the preparation of a nutritious soup for hospitals and other pauper habitations.

Hartshorn Jelly is principally used by invalids.

Patent Gelatine is procured from the skins of animals.

Confectioner’s Jelly is made from isinglass, calves’ feet, and patent gelatine.

Soups and *Broths* owe their nutritive properties principally to gelatine.

Young meats yield more gelatine than old ones.

The *Sounds of fish* and *Isinglass* are gelatinous substances.

5. **Osmazome. Alcoholic Extract of Meat.**—This is an alcoholic extract obtained from the flesh, brain, and other parts of animals. It has a reddish brown colour, and the smell and taste of salt. It is generally mixed with lactic acid, the lactates, and common salt. To this principle broths and soups owe their flavour, mell and part of their nutritive qualities.

6. **Gluten.**—This substance is found in corn; especially in heat. By washing wheaten dough with a stream of water, the am and the sugar are dissolved, the starch is washed away, while the gluten is left in the form of a ductile, tenacious, elastic, grey ass, which, by the action of alcohol, is resolved into albumen, casein, and gluten.

2. Albumen is insoluble in alcohol, but soluble in water.
3. Casein is soluble in boiling alcohol, but deposits as the liquid cools.
4. Gluten is soluble in alcohol, but is almost insoluble in water.

Gluten is believed to be highly nutritious, and to confer on wheaten its well-known superior alimentary qualities.

It is the presence of gluten in wheaten flour that renders it pre-eminentively nutritious, and its viscosity or tenacity confers upon that species of flour its peculiar excellence for the manufacture of macaroni, vermicelli, and similar pastes, which are made by a kind of wire-drawing, and for which the wheat of the north of Europe, (more abundant in gluten than our own) is particularly famed. The superiority of wheaten over other bread depends upon the greater stability of its dough, which, in panary fermentation, is puffed up by the evolved carbonic acid, and retained in its vesicular texture, so as to form a very light loaf.

2. **Compound Aliments.**

These we subdivide into animal and vegetable.

a. Animal Aliments.

We may conveniently arrange these in six classes;—viz.

1. Mammals. | 3. Reptiles. | 5. Crustaceous animals.

Class I. Mammalia.—Mammals.

In this country, the mammals employed by man, as food, are the Ox, the Sheep, the Hog, the Deer, the Rabbit, and the Hare.

Herbivorous are generally preferred to carnivorous animals for food; as the flesh of the latter has a somewhat disagreeable flavour.

Mammals furnish their flesh, their viscera, their blood, and their milk, as articles of food.

1. **Flesh.**—This consists principally and essentially of muscle, intermixed, however, with tendons, aponeuroses, nerves, vessels, col-

lular tissue, blood, serum, and fat. Its chemical constituents are fibrine (principally), albumen, gelatine, haematosin or the colouring matter of the blood, osmazome, fatty matter (stearine and Elaine), creatine, a peculiar nervous matter, and salts. The following are the proportions of the three first principles in the muscles of some kinds of flesh:

<table>
<thead>
<tr>
<th>100 Parts of Muscle of</th>
<th>Water.</th>
<th>Albumen or Fibrine.</th>
<th>Gelatine.</th>
<th>Total of Nutritive Matter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>74</td>
<td>20</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>Veal</td>
<td>75</td>
<td>19</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>Mutton</td>
<td>71</td>
<td>22</td>
<td>7</td>
<td>29</td>
</tr>
<tr>
<td>Pork</td>
<td>76</td>
<td>19</td>
<td>5</td>
<td>24</td>
</tr>
</tbody>
</table>

The flesh of young animals is more tender than that of old ones. That of castrated males is not only more delicate and finer grained, but has a more agreeable odour and flavour than that of the uncastrated animal. Spaying is said to improve the flavour of the flesh of the female. With regard to digestibility, Dr. Beaumont found that digestion is facilitated by minuteness of division and tenderness of fibre; and retarded by opposite qualities. Venison he ascertained to be one of the most digestible substances; a circumstance which he refers to its being easily divisible into shreds or small particles. Beef and mutton are also easy of digestion.

The following table shows the mean time of digestion of several kinds of flesh, according to Dr. Beaumont’s experiments:

<table>
<thead>
<tr>
<th>Hour.</th>
<th>Minutes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venison steak, broiled</td>
<td>1 35</td>
</tr>
<tr>
<td>Sucking pig, roasted</td>
<td>2 30</td>
</tr>
<tr>
<td>Lamb, fresh, broiled</td>
<td>2 30</td>
</tr>
<tr>
<td>Beef steak, broiled</td>
<td>3 0</td>
</tr>
<tr>
<td>Mutton, fresh, broiled</td>
<td>3 0</td>
</tr>
<tr>
<td>Pork steak, broiled</td>
<td>3 15</td>
</tr>
<tr>
<td>Veal, fresh, broiled</td>
<td>4 0</td>
</tr>
<tr>
<td>Beef, old, hard, salted, boiled</td>
<td>4 15</td>
</tr>
</tbody>
</table>

By boiling flesh in water, the fibrine is corrugated, the albumen coagulated (though, by a prolonged action of heat and water, it yields a soluble nitrogenous matter); the haematosine is also coagulated; the cellular tissue, the tendons, and the aponeuroses, yield gelatine; the fatty matters melt; while the osmazome and the creatine are dissolved.

2. Viscera.—The brain, the liver, the spleen, the kidneys, the thymus, the lungs, and the alimentary canal of mammals, are employed as food. They abound principally in albumen.

1. Creatine (from Kreat, flesh) is a nitrogenous, crystallizable substance, insoluble in alcohol. It was discovered by Chevreul (Journ. de Chim. Méd. t. viii. p. 548).
2. Brande, op. supra cit.
3. See some interesting observations on the effects of heat and water on meat, in Soubeiran’s Nouv. Traité de Pharm. t. i. p. 130. 2nd ed. Paris, 1840.
4. The thymus of the calf is commonly termed sweetbread.
5. The stomachs of ruminants, when prepared as food, constitute tripe.
Milk.

Composition of the Liver of the Ox.²

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Cow</th>
<th>Ass.</th>
<th>Woman</th>
<th>Goat</th>
<th>Ecc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein</td>
<td>4:48</td>
<td>1:82</td>
<td>1:52</td>
<td>4:02</td>
<td>4:50</td>
</tr>
<tr>
<td>Sugar of Milk</td>
<td>4:77</td>
<td>6:08</td>
<td>6:50</td>
<td>5:28</td>
<td>5:00</td>
</tr>
<tr>
<td>Various Salts</td>
<td>0:60</td>
<td>0:34</td>
<td>0:45</td>
<td>0:58</td>
<td>0:68</td>
</tr>
<tr>
<td>Water</td>
<td>87:02</td>
<td>91:65</td>
<td>87:98</td>
<td>86:80</td>
<td>85:62</td>
</tr>
<tr>
<td>Total</td>
<td>100:00</td>
<td>100:00</td>
<td>100:00</td>
<td>100:00</td>
<td>100:00</td>
</tr>
<tr>
<td>Solid substances</td>
<td>12:98</td>
<td>8:35</td>
<td>13:00</td>
<td>13:20</td>
<td>14:38</td>
</tr>
</tbody>
</table>

Composition of the Thymus of the Calf.³

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Cow</th>
<th>Ass.</th>
<th>Woman</th>
<th>Goat</th>
<th>Ecc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumen</td>
<td>14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmazome</td>
<td>1:65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelatine</td>
<td>6:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peculiar animal matter</td>
<td>0:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Margaric acid</td>
<td>0:05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrine</td>
<td>8:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>70:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymus</td>
<td>100:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following are the mean times of digestion of several viscera, according to Dr. Beaumont:

<table>
<thead>
<tr>
<th>Item</th>
<th>Hour</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tripe, souced, boiled</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Brains, animal, boiled</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>Liver of the ox, fresh, broiled</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Sausages made of the flesh, viscera, or blood of animals, and cured by smoking, have sometimes acquired, by keeping, highly deleterious qualities, which Bucher ascribes to the presence of a peculiar fatty acid, which has been termed butyric acid (Würst-fett-säure).³

Bacon also sometimes becomes poisonous.

3. Blood.—Among civilized nations, the pig is the only animal whose blood furnishes a distinct article of food. Mixed with fat and aromatics, and enclosed in the prepared intestines, the blood of this animal constitutes the substance sold in the shops under the name of blood pudding (apexabo).

The deleterious qualities, which blood puddings sometimes acquire, have been more referred to.

4. Milk.—Properly speaking, milk should be considered among drinks; but, as it contains a large quantity of alimentary matter, and, furthermore, as it yields some solid foods (butter and cheese), it will be most convenient to consider it here. The composition of several kinds of milk is thus stated by MM. O. Henry and Chevallier⁴:

⁵ Morin, Journ. de Chim. Méd. t. iii. p. 450.
⁷ Ibid. p. 592.
⁸ Journ. de Pharm. i. xxv. p. 469.
The nutritive principles of milk are (excluding water)—caseum, butter, and sugar of milk. Perhaps the phosphate of lime, found in milk, ought to be considered as an aliment for young animals; inasmuch as it is necessary to the development of their osseous system. For the most part, milk is readily digestible; but, with adults, this is by no means universally the case. With some dyspeptics, it proves heavy and difficult of digestion. I find that those, with whom it disagrees, are obnoxious to the use of butter; whence I infer, that the injurious qualities of milk are ascribable to the oily constituent; and, with such patients, ass’s milk (which contains but little butter) usually agrees.

The quantity of nutritive matter, contained in milk, varies not only with the species, but with the individual,—nay, with the same individual under different circumstances. The quality of the milk is affected by constitution, age, food, period after parturition, mental emotion, disease, the use of medicines, &c.

Dr. Young found, that a bitch, fed on vegetable aliment, yielded an accecent and spontaneously coagulable milk; but, when animal food was substituted, the milk became alkaline, and did not spontaneously coagulate.

Dr. Cullen says, "I allege it to be a matter of experience, that, supposing the quantity of liquid to be the same, nurses living entirely, or for the greater part, upon vegetable aliment, afford a greater quantity of milk, and of a more proper quality, than nurses living upon much animal food. This I venture to assert—from the observations of fifty years."

The influence which many medicines, taken by the mother, have over the suckling infant, is a circumstance known to every nurse, though Cullen denies it. We can modify the colour of the milk by mixing saffron or madder with the food; the odour may be affected by various cruciferous and alliaceous plants; the taste may be altered by the use of bitters, as wormwood; and lastly, the medicinal effect may be also influenced. Children may be salivated by sucking nurses under the influence of mercury, or purged by the exhibition of drastics, or narcotised by the administration of opiates to the nurse. These facts are so familiar to every one, that further evidence of them is scarcely requisite. It is curious, however, that Simon failed to recognise in the milk various salts, which were taken by the mouth, and were found in abundance in the urine. Mental emotions also affect the quality of the milk. I have frequently seen the bowels of the child disordered in consequence of some sudden emotion on the part of the mother. It is also not improbable that diseased conditions of the parent may render the milk unhealthy. Labillardière states that the milk of a cow, afflicted with a kind of tuberculous phthisis (pommeleirè), contained seven times more phosphate of lime than usual. Dupuy also speaks of the large quantity of calcareous matter in the milk of cows, in whose lungs abundant deposits of the same substance were found. Other morbid changes in the milk have been observed by Donné, Robiquet, and Lassaigne. The facts now mentioned, are of the greatest moment, not only in reference to the frequency of disease in cows, and, therefore, to the possible morbific character of their milk, but they are of considerable importance in reference to the milk of the human subject. I think, with this statement before us, it is highly improper to allow a female, with any trace or suspicion of tuberculous disease, to suckle. Not that a few grains, more or less, of phosphate of lime in the milk, can probably do any injury to the child; but the fact once established, that the milk may be thus altered by disease, leads to the suspicion that some other substances not yet recognised by their physical or chemical characters, may be the milk of diseased nurses, and which may have an injurious influence on
and the suspicion does not confine itself to those affected with tuberculous diseases: other hereditary or constitutional affections may also be attended ond conditions of the milk. This suspicion is strengthened by the observation, that the milk of nurses will not equally suit different children. In a child, quite healthy, and in good condition, will sometimes, without any disease, fall off, and get into what is commonly called a bad condition, entirely from a change of the nurse. I am aware that we cannot always attribute this to any positively hurtful matter in the milk. The quantity of nutritive matter in the same quantity of milk of two nurses, may be very different: Payen, milk with too much nutritive matter in it may disagree with the child. Another point worthy of attention is the quantity of milk drunk in a given time. Payen says it varies in different women as much as one to ten and a half in the same time.

Butter.—Butter is employed rather as a condiment than as a alimentary matter. Its properties have been already noticed. A rendered rancid by keeping,—or empyreumatic by heat, it is exceedingly injurious to the dyspeptic.

Consists principally of butter, but mixed with a certain portion of cream or whey.

Cheese.—The basis of this is caseum or curd coagulated, what altered in its nature, and mixed with more or less butter. Cheese is in proportion to the quantity of butter present. Stilton is prepared from milk to which cream is added. Cheshire, and best Gloucester cheeses, are made from unskimmed milk. Suffolk, Parmesan cheeses, are prepared from skim-milk. Cheese is nutritious, but difficult of digestion. When old and strong, it is taken as a condiment, to promote the secretion of saliva and gastric juice, whereby to assist digestion. Toasted cheese is bad for dyspeptics.

Cheese, like sausages and bacon, sometimes acquires poisonous properties by

Class 2. Aves.—Birds.

The eggs and flesh of these animals are used for food.

Eggs.—Both the white or glaire and the yolk are employed. The former owes its nutritive property to albumen,—the latter to both albumen and oil.

<table>
<thead>
<tr>
<th>White of Egg</th>
<th>100-0°</th>
<th>Yolk of Egg</th>
<th>100-0°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumen</td>
<td>12-0</td>
<td>17-47</td>
<td></td>
</tr>
<tr>
<td>Mucus</td>
<td>2-7</td>
<td>28-75</td>
<td></td>
</tr>
<tr>
<td>Salts</td>
<td>0-3</td>
<td>53-78</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>85-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eggs are highly nutritive, and, under some circumstances, are easily digested. When beaten up, in tea, or slightly boiled, they are easily of digestion, though with some persons they are very to disagree. When boiled hard, and especially when fried in flour or oil, they are exceedingly difficult of digestion, and prove

* See p. 32.
* Christison, op. supra cit.
* Bostock, quoted by Gmelin.
* Proof, Phil. Trans. 1822, p. 588.
highly injurious to the dyspeptic. The following are the mean times of digestion of eggs, as observed by Dr. Beaumont:

Eggs whipped, raw	1:30
Eggs fresh, raw	2:0
Eggs fresh, roasted	2:15
Eggs fresh, soft boiled	3:0
Eggs fresh, hard boiled	3:30
Eggs fresh, fried	3:30

The oil of the yolk renders this part of the egg scarcely so easily digested as the white or glaire.

2. Flesh.—The flesh of the common dunghill fowl is white, contains but little osmazome, and, when young, is exceedingly tender. The quantity of nutritive matter, in chicken flesh, is thus stated by Mr. Brande:

<table>
<thead>
<tr>
<th>100 Parts of Muscle of</th>
<th>Water.</th>
<th>Albumen or Fibrine.</th>
<th>Gelatine.</th>
<th>Total of Nutritive Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken</td>
<td>73</td>
<td>20</td>
<td>7</td>
<td>27</td>
</tr>
</tbody>
</table>

Chicken flesh is easily digested and nutritious. It is the least irritating or stimulating, perhaps, of all animal foods; and is retained on the stomachs of invalids when other meats would be immediately rejected. Chicken broth is well adapted for irritable stomachs.

The flesh of wild gallinaceous birds, as the pheasant and partridge, is darker coloured, firmer, richer in osmazome, somewhat less digestible, and more stimulating than that of chicken.

The flesh of water-fowl, as the goose and duck, is mostly penetrating with fat, and often difficult of digestion. It is said to be adapted for the invalid. ¹

The employment of the enlarged liver of the goose, in the preparation of _pâtés de foie gras_, has been already referred to. ² These livers were highly esteemed in the time of Pliny. ³ They contain a quantity of phosphoric acid which renders them difficult of digestion. Dr. Prout ⁴ suggests, that invalids and dyspeptic individuals, who partake of these diseased productions, run considerable risk in inoculating and converting their own livers, or other organs, into a similar mass of disease. ⁵

Class 3. Reptilia.—Reptiles.

The Green or Edible Turtle (Chelonia esculenta, or C. midas) is the only reptile used in this country as food. It is highly nutritious, and, probably, when plainly cooked, is easy of digestion; but is taken in the form of the highly-esteemed "turtle soup," is very apt to disagree with dyspeptics.

Class 4. Pisces.—Fishes.

The quantity of fibrine, albumen, and gelatine, found in

¹ For further details respecting the properties of the flesh of birds, I must refer the reader to Cullen's _Treatise of the Materia Medica_, vol. i. p. 376; Edin. 1789; and Plenck's _Bromatologie_ of Vienna, 1783.
² See p. 59.
³ Nat. Hist. lib. x. cap. 27, ed. Valp.
FISHES.

Various kinds of fish have been ascertained by Mr. Brande, who states them to be as follows:—

<table>
<thead>
<tr>
<th>100 Parts of</th>
<th>Water.</th>
<th>Albumen or</th>
<th>Gelatine.</th>
<th>Total of Nutritive Matter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cod</td>
<td>79</td>
<td>14</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>Haddock</td>
<td>82</td>
<td>13</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>Sole</td>
<td>79</td>
<td>15</td>
<td>6</td>
<td>21</td>
</tr>
</tbody>
</table>

Morin analyzed the flesh of the Smelt, and found it to consist ofellow, phosphoric oily matter, osmazome, gelatine, mucus, albumen, fibrine, sal ammoniac, phosphates of potash, lime, iron, and agnesia, chloride of potassium, and carbonate of lime.

Fish are less satisfying to the appetite than either mammals or birds. They are also less nourishing. Those fish (as salmon and is), which abound in oily matter, are more nutritive than other kinds, but are proportionably less digestible. The thirst and uneasy clinging at the stomach, frequently experienced after the use of other kinds of fish, have led to the use of spirit as a condiment for this kind of food. Hence the vulgar proverb, that "brandy is Latin fish." Skin diseases are said to be more prevalent among those who live much on fish. By the continued use of fish, the seminal erection is said to be promoted, and the sexual feelings raised. This effect is ascribed to the phosphoric oil which these animals contain.

The following are the mean times of digestion of several fish, according to Dr. Beaumont's experiments:

<table>
<thead>
<tr>
<th>Fish</th>
<th>Hour.</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trout (Salmon), fresh, boiled</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Cod-fish, cured, dry, boiled</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Flounder, fresh, fried</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Salmon, salted, boiled</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

The white fish, as whiting, haddock, sole, flounder, the cod, and turbot, are the most easily digestible of the fishes in common use, in consequence of containing less oil. They are also less stimulating to the system, and, therefore, are the best adapted for the use of invalids. The whiting and the haddock are the most delicate and tender; the turbot and the cod the least so. It must be remembered, however, that the sauces (melted butter, &c.) usually taken with these fish, are exceedingly obnoxious to the stomach, and, therefore, must be excluded from the table of the invalid. Salmon, eels, herrings, and sprats, abound in oil; and, in consequence, are difficult of digestion, very apt to disturb the stomach, and are exceedingly injurious to the dyspeptic. By drying, salting, and smoking, the digestibility of fish is diminished.

Some species of fish, especially in tropical climates, possess poison-

4. *Foster (Observations made during a Voyage Round the World*, p. 315, Lond. 1778) has endeavored to prove *that feeding on fish by no means contributes to the increase of numbers in a sick.*
ous properties, either at all times, or at certain seasons. Certain individuals are more susceptible of fish-poison than others.

Some of the viscera of fish are prepared and used separately as articles of food. Thus, the swimming-bladder constitutes the well-known sound and isinglass,—substances of a gelatinous nature, already noticed. The roe or ovary (commonly called the hard roe to distinguish it from the milt or testicle, called the soft roe) of most fishes is eaten. It contains a phosphoric oil. The substance called caviare, is the prepared roe of the sturgeon.

The following is the composition of isinglass and caviare:

<table>
<thead>
<tr>
<th>Component</th>
<th>Gelatine</th>
<th>Yellow odorous fatty oil</th>
<th>Osmazome</th>
<th>Soluble albumen</th>
<th>Membrane, insoluble in</th>
<th>Insoluble albumen</th>
<th>Boiling water</th>
<th>Chloride of sodium and</th>
<th>Gelatine, with some salts</th>
<th>Fresh unpressed Caviare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70·0</td>
<td>4·3</td>
<td>16·0</td>
<td>6·2</td>
<td>2·5</td>
<td>24·8</td>
<td>6·7</td>
<td>0·5</td>
<td>57·5</td>
<td>100·0</td>
</tr>
</tbody>
</table>

"The flesh of any fish is always in the highest perfection, or in season, as it is called, during the period of the ripening of the milt and the roe. After the fish has deposited the spawn, the flesh becomes soft, and loses a great deal of its peculiar flavour. This is owing to the disappearance of the oil or fat from the flesh it having been expended in the function of reproduction."

Class 5. Crustacea.—Crustaceous Animals.

To this class belong Lobsters, Crabs, Cray-fish, Prawns, and Shrimps.—"They have a white, firm flesh, which contains much gelatine. In the membrane, which encloses the calcareous shell, is found a resinous substance, which, in the living animals, is of a brownish-green colour, but becomes red by boiling. From this matter proceeds the peculiar odour and taste of the broth of these animals. The flesh is difficult of digestion; the broth is stimulant. In febrile and inflammatory complaints their use is injurious." A cutaneous eruption and even colic, sometimes follow their ingestion. Several of the crustacea are poisonous.

Class 6. Mollusca.—Mollusks.

The Oyster, the Muscle, the Periwinkle, the Cockle, the Whelk and the Limpet, belong to this class. The flesh of the Oyster was analyzed by Pasquier, who found it consists of water, 87·4; and of osmazome, mucus, albumen, fibrine, and gelatine, together, 12·6. It furnishes a delicious article of food; and is more digestible in the raw state than when cooked (by roasting, scolloping, or stewing); for

1 On the subject of Fish-poison, the reader is referred to Dr. Christison's Treatise on Poisons.
2 See p. 54.
5 Tiedemann, op. supra cit. p. 136.
6 The mollusks just mentioned, and the crustaceous animals used as food, constitute the Shell Fish of the shops. Of course, strictly speaking, they are not fish at all.
7 Gmelin, Handb. d. Chem. ii. 1472.
The seeds employed coagulates and hardens the albumen, and corrugates the fibrine, which are then less easily soluble in the gastric juice, and the heated butter, generally used as an accompaniment, is still more to the indigestibility of the oyster. The following are mean times of digestion of oysters, according to the experience of Dr. Beaumont:

<table>
<thead>
<tr>
<th></th>
<th>Hours</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oysters, fresh, raw</td>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td>Oysters, fresh, roasted</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Oysters, fresh, stewed</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Oyster soup, boiled</td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

As far as my own personal observation extends, the finest raw oysters of the London market, usually called natives, rarely disagree with dyspepsies; and Dr. Cullen declares oysters to be easy of digestion. Very opposite, however, is the experience of some others. Poisonous effects even have been ascribed to oysters. Considering the enormous consumption of these animals, their suppurative effects must be of extremely rare occurrence. The accuracy of the statement of Dr. Clarke, that oysters, taken immediately after delivery, are apt to occasion apoplexy or convulsions, seems to me to be improbable. An aphrodisiac property is also ascribed to oysters. These mollusks have been recommended in phthisis, and in some abdominal affections. The Muscle is a popular remedy for emaciation, with fever and phthisis, on account of its supposed nourishing qualities.

β. Vegetable Aliments.

These may be arranged in eight classes:

1. Seeds,
2. Fleshy Fruits,
3. Roots, Subterranean Stems, and Tubers,
4. Buds and Young Shoots,
5. Leaves and Leafstalks,
6. Receptacles and Bracts,
7. Stems,
8. Cryptogamia, or Flowerless Plants.

Class I. Semina.—Seeds.

The seeds used as food are of two kinds, farinaceous and oleaginous.

Mealy or Farinaceous Seeds.—The most important of these are the Cereal Grains and the Leguminous Seeds. The Chestnut belongs to this kind of seeds.

The nutritive principles of the Cereal grains are Starch, Gluten,
Gum, and Sugar. Of these grains none equal Wheat in nutritive qualities, which it owes to the large quantity of gluten which it contains. It yields the finest, whitest, and most digestible kind of bread. Oats are nutritive, but less so than wheat. Oatmeal is especially the food of the people of Scotland, and was formerly that of the northern parts of England; counties which have always produced as healthy and as vigorous a race of men as any other in Europe. Unfermented oat-bread, in those unaccustomed to it, is apt to occasion dyspepsia, with heartburn, and was formerly thought to have a tendency to cause skin diseases, but without just grounds. Gruel is a mild, nutritious, and easily-digested article of food, in fevers and inflammatory affections. It is well adapted for irritable conditions of the stomach. Barley, when deprived of the husk (which is slightly acid and laxative), is highly nutritious. Count Rumford regards barley-meal, when used for soup, as three or four times as nutritious as wheat-flour. Barley-bread is said to be more difficult of digestion than wheaten bread. Barley-water is a mild, easily digestible liquid. Rye is nutritive, but less so than wheat. In those unaccustomed to it, rye-bread is apt to occasion diarrhoea, which Cullen ascribes to its newly becoming accezent. Rice is the ordinary sustenance of many oriental nations. Being less laxative than the other cereal grains, it is frequently prescribed, by medical men, as a light, digestible, uninjurious article of food, in diarrhoea and dysentery; and, in consequence, it is, with the public, a reputed drying and astringent agent. Various ill effects, such as disordered vision, &c. have been ascribed to its use; but without any just grounds. Neither does there appear to be any real foundation for the assertion of Dr. Tytler, that malignant cholera (which he calls morbus oryzeus!) is induced by it. Maize, or Indian Corn, is nutritive; but, being deficient in gluten, is not adapted for manufacture into bread. It is apt to occasion diarrhoea in those unaccustomed to it. In America, Asia, and some parts of Europe, it is used largely for human sustenance. Millet, both common and Italian, is cultivated in Italy as an article of food. Sorghum, Durra, or Guinea Corn, is another of the cereals employed, in some parts of Africa, as an article of food.

Various foods are prepared from the meal or flour of the cerealia. The most important of these is Bread.

1. Bread.—There are two principal kinds of bread,—the one fermented or leavened, the other unleavened or unleavened.

a. Fermented or leavened bread.—The best is that made from wheat, as I have before stated. Fine bread, prepared from flour only, is the most nutritive and digestible. That which contains the bran is laxative, and is used by persons

* Cullen's Materia Medica, vol. i. p. 278.
* Essay on Feeding the Poor.
tumbled with habitual constipation. Rolls, and other kinds of fancy bread, are less digestible than the common loaf bread. All kinds, when eaten new, are injurious to dyspeptics.

b. Unfermented or unleavened bread.—Biscuit is the best kind of unleavened bread, and sometimes suits the stomach of the dyspeptic when leavened bread disagrees. That which is free from butter is to be preferred.

2. Pastry. (Baked paste).—The action of heat on the butter or lard used in the manufacture of pastry, renders this compound highly injurious to the dyspeptic. "All pastry is an abomination:" justly observes Dr. Paris. "I verily believe," he adds, "that one half, at least, of the cases of indigestion which occur after dinner-parties, may be traced to this cause."

3. Puddings, Pancakes, &c. — "The most digestible pudding is that made with bread, or biscuit and boiled flour: butter pudding is not so easily digested; and suet pudding is to be considered as the most mischievous to invalids in the whole catalogue. Pancakes is objectionable, on account of the process of frying imparting a greasiness, to which the dyspeptic stomach is not often reconciled." ¹

Of the Leguminous Seeds, peas and beans are the best known. Their composition, as determined by Einhof, is as follows:

<table>
<thead>
<tr>
<th></th>
<th>Pea (Pisum sativum)</th>
<th>Garden Bean (Vicia faba)</th>
<th>Kidney Bean (Phaseolus vulgaris)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch</td>
<td>32.45</td>
<td>34.17</td>
<td>35.94</td>
</tr>
<tr>
<td>Amylaceous fibre</td>
<td>21.88</td>
<td>15.89</td>
<td>11.07</td>
</tr>
<tr>
<td>Legumin</td>
<td>14.56</td>
<td>10.86</td>
<td>20.81</td>
</tr>
<tr>
<td>Gum</td>
<td>6.37</td>
<td>4.61</td>
<td>19.37</td>
</tr>
<tr>
<td>Albumen</td>
<td>1.72</td>
<td>0.81</td>
<td>1.35</td>
</tr>
<tr>
<td>Extractive matter</td>
<td>2.11</td>
<td>3.54</td>
<td>3.41</td>
</tr>
<tr>
<td>Membrane</td>
<td>—</td>
<td>10.05</td>
<td>7.50</td>
</tr>
<tr>
<td>Water</td>
<td>14.06</td>
<td>15.63</td>
<td>(dried)</td>
</tr>
<tr>
<td>Salts</td>
<td>6.56</td>
<td>3.46</td>
<td>0.55</td>
</tr>
<tr>
<td>Loss</td>
<td>0.29</td>
<td>0.98</td>
<td>—</td>
</tr>
</tbody>
</table>

| | 100:00 | 100:00 | 100:00 |

Peas and beans are nutritious; but they are apt to disturb the digestive organs, and to occasion flatulence and colic. Their difficult digestibility increases with their age. When young, they are less nourishing, but more digestible. They are usually regarded as being somewhat stimulating or heating, and, therefore, not adapted for febrile and inflammatory affections. Their stimulant influence on horses is well known to veterinarians.

The Chestnut possesses considerable nutritive power, and in Lombardy is used as food by the lower classes. Its sweetness, especially when roasted, indicates the presence of sugar. No oil can be obtained from it by pressure. In the raw state, it is very difficult of digestion: it requires to be cooked (roasted) to split the starch grains which it contains, and thereby to render them readily digestible. Dyspeptics should carefully avoid chestnuts, even in the cooked state.

2. Oily Seeds.—To this division belong the Almond, the Walnut, the Hazel-nut, the Cashew-nut, the Pistachio-nut, the Stone-Pine-nut (Pignoli-Pine), and the Cocoa-nut. These contain a quantity of

¹ Paris's Treatise on Diet, p. 233, 5th ed. 1837.
² The properties of this seed, which may be taken as the type of the oily seeds, will be fully described in a subsequent part of this work.
fixed oil, which, while it confers on them great nutritive qualities, renders them very difficult of digestion. Their use should be carefully avoided by all dyspeptics.

Class 2. Fleshy Fruits.

A considerable number of the esculent fleshy fruits will be described in a subsequent part of this work; hence a brief notice of them will be sufficient here.

1. Stone Fruits. Drupes.—The Peach, the Apricot, the Nectarine, the Plum, and the Cherry, are the principal stone-fruits used in this country. They are usually regarded as difficult of digestion, and the popular opinion is probably the correct one, for Dr. Beaumont found that from six to ten hours were required for the artificial digestion of peaches. They are apt to disorder the digestive organs, and to occasion griping and relaxation.

2. Pomaceous Fruits. Apples.—The Apple, the Pear, and the Quince, are difficult of digestion; the Pear being the least so.

3. Baccate Fruits. Berries.—The Grape, the Gooseberry, and the Currant, are berries. Their skins (epicarps) and seeds are indigestible. The pulp is apt to relax the bowels. The Grape, if taken without the skin and seeds, is the safest of these fruits.

4. Aurantiaceous Fruits. Hesperidium or Aurantium.—The Orange, the Lemon, the Citron, the Lime, and the Shaddock, belong to this group. The Orange, when unripe, is apt to cause griping; but when quite ripe, is rarely inadmissible: the seeds and white tissue of the rind should, however, be rejected.

5. Cucurbitaceous Fruits. Pepones.—To this head belong the Melon, the Pumpkin, the Vegetable Marrow, and the Cucumber. They yield but little nutritive matter, and readily disagree with the dyspeptic.

6. Leguminous Fruits. Legumes.—The Tamarind contains but little nutriment. The legume of the Phaseolus vulgaris, or kidney bean, is brought to the table when boiled.

7. Syconus.—Figs are nutritive, but are apt to occasion flatulency, griping, and relaxation of bowels, especially in children.

8. Sorosis.—The Mulberry yields but little nutritive matter, and readily disorders the bowels. The Pine-apple belongs to this division of fruits.

9. Endoecio.—The fleshy receptacle of the Strawberry is not, in the most part, injurious; especially when the achenia (commonly termed seeds) are removed.

The most important of these is the Potato; which, when in good condition and boiled, furnishes a highly nutritious and easily digestible article of food. Potatoes are more palatable and nutritive when boiled so as to make them moderately soft, though not to injure the shape; but they are more digestible when boiled so as to be easily mashed. Waxy and new potatoes are less digestible than old ones. Potatoes, which have germinated, have sometimes prov
as to cattle, and which is said to arise from the large quantity
of starch contained in the buds. The process of cooking potatoes
is probably useful in two ways: it splits the starch grains, and
renders them readily digestible; and secondly, it destroys or
renders some noxious matter. The latter circumstance seems proved;
in fact, that the water in which potatoes have been boiled, has
at times been found to possess poisonous properties.
The Cruciferous or Siliquose roots used as food, the Turnip
grows the most nourishment, and is readily digested, though occa-
sionally it creates flatulence.
Umbelliferous roots, in common use, are the Carrot and the
Shallot. These are saccharine, and slightly nutritive; but the
oil, which they contain, renders their flavour unpleasant to
persons, and causes them to be apt to disagree with dyspeptics.

Class 4. Buds and Young Shoots.

Onions, Leeks, Garlic, and the Shallot, are usually ranked among
the herbaceous part of the Water-Cress, the leaves of Lettuce and
endive, and the seed-leaves of White Mustard and Common Cress.
They are, however, subterranean buds, with thick and fleshy
stems. When deprived, by boiling, of their acid volatile oil, they
become nourishing. When eaten, they communicate a peculiar odour to the urine. The melted butter
with them is injurious to the dyspeptic.

Class 5. Leaves and Leaf Stalks.

Cabbage, the Cauliflower, Broccoli, the Savoy, Spinach, &c.
are employed only when boiled. They are apt to disagree with dys-
pepsia. Spinach usually relaxes the bowels.
The stalks of Rhubarb leaves are used for tarts and puddings.
They are objectionable when there is a tendency to oxalate of lime.
“I have seen,” observes Dr. Prout, “well-marked in-
stances in which an oxalate of lime nephritic attack has followed
the use of rhubarb (in the shape of tarts, &c.), particularly when
the patient has been in the habit, at the same time, of drinking hard
water.”

Class 6. Receptacles and Bracts.

The fleshy receptacle and bracts of the Artichoke are used as food.

Class 7. Stems.

From the stems of several Cycadaceae, as well as of some Palms,
obtained a farinaceous substance, which is employed, in the
unities where it is procured, as an article of food. Sago is pro-
duced from this source.

Class 8. Cryptogamia.—Flowerless Plants.

No important articles of food are obtained from this class.
1. Ferns.—From the rhizomes of ferns is obtained, in some of the Polynesian Islands, as well as in some other parts of the world, a nutritious or ligneous matter, which is employed by the natives as a nutritive substance.
2. Lichens.—Several species of Gyrophora (as G. proboscidea cylindrica) are employed by the hunters of the Arctic region in America as articles of food, under the name of tripe de roche. Tiedemann, in 1824, supported Capt. John Franklin and his companions, in 1821, in many days. The bitter principle of these plants, however, proves very poisonous to several of the party. Iceland moss also yields nutritious matter; but, to be available as food, the bitter matter of the lichen must be separated.
3. Algae. Sea Weeds.—Several species of the inarticulated Algae are occasionally employed, in some parts of the British islands, as articles of food, or as condimentary substances. Laver is sometimes met with in the London shops.
4. Fungi. Mushrooms.—Though a considerable number of species of fungi are edible—in fact, several form delicious articles of food—a small number only is in common use in this country. It has arisen, in great measure, from the difficulty experienced by the public in discriminating wholesome from poisonous species. No one would appear that the same species is under some circumstances edible, under others deleterious. This, if true, is a very good ground for distrust. So strongly did the late Professor Asa Gray feel the prudence of this, that although no one was by any means acquainted with the distinctions of fungi, he would never eat anything which he did not eat fresh, either stewed or broiled: the young or button mushroom is pickled. 2dly. Morchella esculenta (common morel), employed in flavour gravies, ragouts, &c. 3dly. Tuber Cibarium (common truffle), a subterranean fungus, used for seasoning. No less than thirty-three species of fungi are eaten in Russia.

b. Potulenta.—Drinks.
The liquids, taken by the mouth to quench thirst, are denominated drinks. Of these, a very brief notice is all that can be given here. Several of them will be more fully noticed in subsequent parts of the work.
1. Aqua. Water.—This is probably the natural drink of all animals. It is a vital stimulus, and is more essential to our existence than
ment. It serves at least three important purposes in the animal economy: firstly, it repairs the loss of the aqueous part of the blood, caused by the action of the secreting and exhalting organs; secondly, it is a solvent of various alimentary substances, and, therefore, assists the stomach in the act of digestion, though, if taken in very large quantities, it may have an opposite effect, by diluting the gastric juice; thirdly, it is probably a nutritive agent,—that is, it assists in the formation of the solid parts of the body. From the latter opinion, which I hold with Count Rumford, many, however, will be disposed to dissent.

Soft water is to be preferred as a drink to hard water, because it is a better solvent of vegetable and animal matters; and furthermore, because the continued ingestion of the saline constituents of hard waters may slowly prove injurious in some diseases. The presence of decomposing organic matter renders water highly noxious. Dr. Lambe considered it to be the cause of various constitutional diseases, and hence he advocated the use of distilled water; but of the accuracy of his opinion we have not sufficient evidence. The obvious effect which results from the use of water containing putrescent matter, is dysentery. It is a curious, but well established fact, that pure water more readily acquires a metallic impregnation from leaden cisterns or pipes, than hard water. Distilled water, aided by atmospheric air, readily corrodes lead: but if a neutral salt, as chloride of sodium or sulphate of soda, be added to the water, the corrosive action is impaired. Hence rain-water is more apt than well-water to become impregnated with lead.

2. Toast-Water.—Water is rendered much more palatable and agreeable when impregnated with toasted bread or biscuit. The toast communicates to it a little gum, and an empyreumatic matter. From the latter the water acquires colour and flavour.

3. Tea.—Notwithstanding the extensive employment of tea in this country, it is no easy matter to ascertain its precise effects on the system. Its astringency is fully proved by its chemical properties. Its peculiar influence over the nervous system, and which is especially manifested after the use of green tea, is another well-established effect. This influence is, in some respects, somewhat allied to that exercised by fox-glove: for both tea and foxglove diminish the tendency to sleep, and act as sedatives to the vascular system. Hence tea is employed as a drink by those who are accustomed to nocturnal study. Strong green tea, taken in large quantities, is capable, in some constitutions, of producing most distressing feelings; and of operating as a narcotic. Part of the effects sometimes ascribed to it are referrible to the water, the temperature at which it is swallowed,

1 Lambe, vol. i. p. 194, 3rd ed. 1803.
2 A Medical and Experimental Inquiry into the Origin, Symptoms, and Cure of Constitutional Diseases. Lond. 1805.
3 Dr. Cheyne, in the Dublin Hospital Reports, vol. iii. p. 11.—Dr. Copland's Dict. of Pract. Med. at. Drapery, p. 698-99.—At the Nottingham Assizes, in 1836, it was proved at a trial, on which 19th witness, that dysentery, in an aggravated form, was caused in cattle by the use of water contaminated with putrescent vegetable matter, produced by the refuse of a starch manufactory (See brief report of the trial in the Veterinarian for 1836, p. 457).
4 Dr. E. Percival, Dublin Hosp. Reports, vol. i. p. 219.
or to the substances (milk and sugar) added to it. Weak tea rarely disagrees with the invalid, and is admissible and refreshing in a variety of maladies. It is well adapted for febrile and inflammatory complaints; and is particularly valuable when we are desirous of diminishing a tendency to sleep.

4. Coffee is a tonic and stimulating drink. It occasions thirst, and not unfrequently disorders the bowels. It is usually described as having constipating effects; but I know two individuals on whom it has a relaxing effect. It possesses anti-soporific powers, and is used, therefore, by those who desire nocturnal study.

5. Chicory, or Succory, yields a wholesome beverage, but which wants the fine aromatic flavour for which coffee is so celebrated. I am informed, however, that the flavour of coffee mixed with chicory is preferred by some persons to that of unmixed coffee.

6. Chocolate is a very nourishing beverage, devoid of some of the ill qualities ascribed to tea and coffee; but, on account of the oil which enters into its composition, it is difficult of digestion, and is apt to disagree with dyspepsies.

7. Cocoa is less oily, and being somewhat astringent, is adapted for persons with relaxed bowels.

8. Beer. Malt Liquor.—Under this head are included Ale, Stout, Porter, and the weaker kinds of beer, commonly known as Table or Small Beer. All these are fermented decoctions of malt and hops. Their specific gravity is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ale, Burton, 1st sort 1·11 to 1·120</td>
<td>Porter, common sort 1·050</td>
</tr>
<tr>
<td>" " 2d sort 1·097 to 1·111</td>
<td>" double 1·055</td>
</tr>
<tr>
<td>" " 3d sort 1·077 to 1·092</td>
<td>" Brown Stout 1·064</td>
</tr>
<tr>
<td>" Common 1·070 to 1·073</td>
<td>" ditto best 1·072</td>
</tr>
<tr>
<td>" Ditto 1·058</td>
<td>" Beer, common small 1·014</td>
</tr>
<tr>
<td></td>
<td>" " good table 1·033 to 1·039</td>
</tr>
</tbody>
</table>

Beer consists of water, alcohol, lupulite (the bitter principle of hops), volatile oil of hops, gum, sugar, gluten, brown extractive, a small portion of tannic acid, carbonic acid, and the phosphates of lime and magnesia held in solution by phosphoric and acetic acids. The quantity of alcohol in beer is as follows:

<table>
<thead>
<tr>
<th>Proportion of spirit (sp. gr. 0·925)</th>
<th>Ditto, per cent. by Weight.</th>
</tr>
</thead>
<tbody>
<tr>
<td>per cent. by Measure.</td>
<td>per cent. by Weight.</td>
</tr>
<tr>
<td>Ale, Burton</td>
<td>8·88</td>
</tr>
<tr>
<td>" average</td>
<td>6·87</td>
</tr>
<tr>
<td>Brown Stout</td>
<td>6·80</td>
</tr>
<tr>
<td>London Porter (average)</td>
<td>4·20</td>
</tr>
<tr>
<td>" Small Beer</td>
<td>1·23</td>
</tr>
</tbody>
</table>

By distillation the alcohol may be readily separated. On evaporation, beer furnishes a brown extractiform residue.

Beer differs from wine in several important particulars. Thus contains a much larger quantity of nutritive matter, and a considerably less proportion of alcohol; but it has, in addition, a peculiar bitter and narcotic substance. That its inebriating quality does not wholly depend on the alcohol which it contains, is shewn by comparing the
ity of spirit obtained by Mr. Brande from brandy, wine, and
From his experiments, it appears that the same quantity of
is contained in the following quantities of wine, brandy, and

<table>
<thead>
<tr>
<th>Beverage</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Wine</td>
<td>1:00</td>
</tr>
<tr>
<td>Claret</td>
<td>1:52</td>
</tr>
<tr>
<td>Champagne</td>
<td>1:82</td>
</tr>
<tr>
<td>Brandy</td>
<td>0:43</td>
</tr>
<tr>
<td>Burton Ale</td>
<td>2:58</td>
</tr>
<tr>
<td>London Porter</td>
<td>5:46</td>
</tr>
<tr>
<td>Small Beer</td>
<td>18:16</td>
</tr>
</tbody>
</table>

now if the intoxicating quality of beer depended on the spirit
y, the effect of five and a half pints of London porter, or two
half pints of Burton ale, should be equal only to that of a pint
wine; whereas its actual inebriating power greatly exceeds

But beer is nutritive, and, when used in moderation, salubrious,
scarcely be doubted. It proves a refreshing drink, and an agreed
valuable stimulus and support, to those who have to undergo
bodily fatigue. The poor labourer who has repeatedly expen
d its invigorating property, will by no means admit the truth of
franklin's assertion*, that a penny loaf and a pint of water yield
nourishment than a pint of beer. The hop operates as a tonic,
assists digestion. With dyspeptics, beer, as well as other fer
eliquors, are very apt to disagree. By them, therefore, its
could be carefully avoided. Furthermore, it is objectionable
ose liable to lithic acid deposits, and for plethoric persons
ave a tendency to apoplexy.

e difference between ale and porter deserves a slight notice.
ast is pale-coloured and sweetish; being prepared from pale
he-coloured malt, which contains a large quantity of sacchar
matter. Porter, on the other hand, is deep-coloured and devoid
y sweet taste. It is prepared from high dried or rather charred
which has had its saccharine matter destroyed by heat.
ale is more objectionable for diabetic and dyspeptic patients
porter. From this statement we ought perhaps to except the
prepared for the India market, which are free from saccharine
, and contain double the usual proportion of hops.

Wines.—It cannot be denied, that the most perfect health is
tible with total abstinence from wine; and that from the use of
quid various diseases have been produced, kept up, or aggrava
I am by no means, however, disposed to deny the accuracy
statement of Dr. Paris?, that "there exists no evidence to
that a temperate use of good wine, when taken at seasonable
has ever proved injurious to healthy adults;" since he has so
ed this sentence, that in any cases where ill effects appear to
from the use of wine by adults, they may safely be ascribed to

* See Proot, op. supra cit. p. 44.
* Treatise on Diet, p. 256, 3rd ed.
the nonfulfilment of some of the conditions here mentioned,—(viz. the temperate use of wine,—the goodness of the liquor,—the seasonable time of taking it,—or the health of the individual).

It must be admitted, that the most perfect health is compatible with the moderate enjoyment of wine, and that many individuals who attain a good old age, have, during a considerable period of their life, been in the habit of using wine daily. Moreover, persons who have been accustomed to the temperate use of wine, are likely to suffer if deprived of their accustomed stimulus. In a subsequent part of this work, some remarks will be offered on the different qualities of different wines, and their medicinal uses. I shall merely remark here, that in forming an opinion as to the kind of wine best adapted for the dietetical use of our patients, we should consider its colour, its alcoholic strength and intoxicating property, its sweetness, the nature and quantity of acid which it contains, and its age. The red wines contain more extractive and colouring matters (derived from the husk of the grape), which are apt to disagree with some dyspeptics. With regard to its alcoholic strength and intoxicating quality, it deserves to be especially remembered that the inebriating property of wine is not proportional to the quantity of contained alcohol,—since champagne is more intoxicating, though less alcoholic, than port wine. Its sweetness requires especial consideration in dyspeptic and urinary diseases; in some of which (as in diabetes), the employment of saccharine matter is highly objectionable. Without adopting the prejudices of Sir A. Carlisle, against the use of acids, it cannot be doubted that the employment of acid wines (as claret and hock) is calculated to prove, on many occasions, injurious; and in such cases sherry is used in preference to other wines. In phosphatic urinary deposits, however, they prove serviceable. By keeping, wine deposits bitartrate of potash, and colouring and extractive matters, which are very apt to disagree with some patients. Hence old wines are to be preferred to new ones.

10. Ardent Spirits.—Brandy, Rum, Gin, and Whiskey, are the ardent spirits most frequently used in this country. Various compounded spirits (those imported are termed Liqueurs) are also employed as cordials. The injurious effects of spirit will be pointed out in a subsequent part of this work. I shall here confine my attention to its dietetical use. Brandy is frequently used at the table, as a gastric stimulant, to promote the digestion of substances difficult of solution in the juices of the stomach, as the oily fish. That various uneasy sensations, referred to the scrobiculus cordis, are often relieved by it, cannot be denied; but of the existence of any other benefit we may fairly doubt; while the ill consequences of frequently resorting to spirit are undoubted. Dr. Paris states that in some cases of dyspepsia, wine and beer equally disagree with the stomach, producing acidity and other distressing symptoms; and in

* See p. 71.
such, he observes, “very weak spirit may, perhaps, be taken with advantage.” In confirmation of the accuracy of the observation I can bear testimony; having repeatedly found the substitution of a very weak spirit preferable to fermented liquors.

11. CARBONIC ACID WATERS.—To this head belong Soda Water, Ginger Beer, and Effervescent Lemonade. These are refreshing, grateful beverages; though by distending the stomach with gaseous air, they must prove injurious to the process of digestion.

12. ACIDULATED WATERS.—Lemonade and Imperial are pleasant, refreshing drinks, which, however, are apt to disagree with dyspeptics.

13. SACCHARINE AND MUCILAGINOUS DRINKS.—Sugar-water and Gum-water are also liable to disturb the stomach of the dyspeptic.

14. INFUSIONS OR DECOCTIONS OF ANIMAL SUBSTANCES.—Under this head are included Beef Tea, Mutton, Veal, and Chicken Broths, and Soups. Beef Tea is a light, pleasant, and slightly nutritive article of diet, adapted for invalids. Spices are sometimes advantageously added to it. Mutton Broth is apt to disagree with persons having delicate stomachs, especially if the fat be not skimmed from it. It is frequently given to promote the operation of purgative medicine. Chicken Broth is the least disposed to disturb the stomach of all the animal decoctions. It is especially adapted for invalids with great irritability of stomach. Veal Broth is less frequently used. Soups are not adapted for invalids. Their basis is gelatine, whose nutritive qualities have been already described*.

15. GRUEL AND BARLEY WATER.—Gruel is prepared from groats or oatmeal. It is a bland, nutritious, easily digestible, emollient liquid, well adapted for the use of invalids, and rarely disturbing the stomach. Sugar, lemon juice, aromatics, or butter, are frequently added, but they (especially butter) are by no means generally admissible. Barley water is a thinner, less viscid liquid. It is used as a mild, demulcent, slightly nutritive drink, for invalids, in febrile and inflammatory disorders.

16. MILK.—Milk is the natural drink of man during the first period of his infancy. Its nutritive qualities have been already noticed 1. On account of the butter which it contains, it is apt to disagree with some adults: in common language, it sometimes lies heavy at the stomach. Cream is still more injurious. Whey is an agreeable beverage.

c. CONDIMENTA.—CONDIMENTS.

These are substances which are taken with the food to improve its flavour, to promote its digestion, or to correct any injurious quality which it may possess. Some of them are also nutritive.

1. SALINE CONDIMENTA.—Common salt, or the chloride of sodium, is the only saline condiment essential to health. It is taken by man, as well as by many animals, on account of its agreeable flavour; but the existence of a greater or less appetite for it, in all individuals, appears to me to shew that this substance must serve some

* See p. 55.
1 See p. 57.
more important uses in the animal economy than that of mere gratifying the palate. In considering these, we observe, in the first place, that it is an essential constituent of the blood, which fluid probably owes some of its essential properties to its saline matter. Now as the blood is constantly losing part of its saline particles by the secretion of the tears, bile, &c., the daily loss is repaired by the employment of chloride of sodium as a condiment. In the second place, the free hydrochloric acid found in the stomach, and which forms an essential constituent of the gastric juice, is obviously derived from the salt taken with our food. Thirdly, the soda of the blood, and of some of the secretions, is doubtless obtained from the decomposition, in the system, of common salt. These are some (probably only a portion) of the uses which chloride of sodium serves in the animal economy. It deserves especial notice, that while salt is thus essential to health, the continued use of salted provisions is injurious. But their noxious quality is probably to be referred rather to the meat, whose physical and chemical qualities are altered, than to the presence of the salt; though we can readily conceive that an excessive use of salt, or of any other article of food, will be followed by injurious consequences. However, relish to salted fish (as anchovies, herrings, cod, &c.) may be, they are difficult of digestion.

2. Acidulous Condiments.—Vinegar is a grateful condiment and is used either alone, or with pickles. When taken in small quantities, it is quite wholesome. It allays thirst, and operates as a refrigerant. It probably promotes digestion, not merely by the stimulus which it communicates to the stomach, but by its power of dissolving several alimentary principles,—as fibrine, albumen, and gelatine. The frequent use of it is supposed to diminish obesity. It checks the secretion of milk, and at the same time injures the quality of this liquid. Lemon-juice, or a solution of citric acid, is an acidulous condiment.

3. Aromatic and Pungent Condiments.—This division includes the spices (as Pepper, Nutmegs, &c.), the savoury herbs of the family Labiateae (as Thyme, Sage, &c.), some Umbelliferous fruits (as Caraway), several products of the family Cruciferae (as Mustard, Horseradish, &c.), and the alliaceous substances (as Onions, Garlic, &c.). They are employed as condiments, partly for their flavour, and partly to promote the digestion of some kinds of food which experience has shown, are not by themselves easily or readily digested. Moreover, the cruciferous and alliaceous condiments are esteemed as scorbatics.

By the inhabitants of the torrid zone they are extensively used to counteract the debilitating influence of heat, as already mentioned. In temperate climates their employment is not so important; on the contrary, their copious use is injurious.

4. Oily Condiments.—Butter and oil are used at the table as condiments. Their general effects, as nutritive substances, have
already noticed. They become more difficult of digestion and more noxious to the dyspeptic, in proportion to the heat to which they are subjected in the process of cooking.

5. Saccharine Condiments.—Sugar, honey, and treacle, are employed as condiments. The nutritive properties of saccharine substances have been before noticed*. When taken in small quantities, and largely diluted, as in tea, coffee, &c. sugar is said to be very apt to disagree, and give rise to flatulence and gastric uneasiness. Used in the form of preserves, it is also apt to disorder the stomach of dyspeptics.

Under the name of Sauces, are used at the table mixtures of various condiments. Ketchup (made from either Mushrooms or Walnuts), Soy, and Essence of Anchovies, are those which are most frequently employed. Salt and spices are essential ingredients of them. Vinegar is also a constituent of some.

Dietetical Regimen.

In the treatment of many diseases, attention to diet is a point of considerable importance. In none is it more necessary than in non-febrile disorders of the digestive and urinary organs. In acute maladies, in which abstinence or low diet is requisite, there is usually no disposition to take food: on the contrary, solids of all kinds are generally loathed. In such cases, therefore, there is less chance of any error of diet being committed. Dietetical regimen is more important in chronic diseases of the assimilating organs, in which the appetite is unimpaired, or even increased,—since in such the patient is more apt to overstep the bounds of prudence, by the employment of a diet, improper either from the quantity or quality of the food used. In chronic local diseases, when the constitution is unimpaired and the appetite for food remains natural, I would by no means advocate the adoption of a spare or low diet; since I believe that in such cases the indulgence of a moderate appetite for plain food, is attended with beneficial results. From this statement, however, maladies affecting the organs of assimilation must be excepted.

Several diets or kinds of dietetical regimen are employed in the treatment of diseases. The most important of these are the following:—

1. Animal Diet.—This term is applied to a diet composed of animal food, either exclusively or principally. The only disease, in which a diet exclusively of animal food is recommended, is diabetes. In this malady, strict abstinence from vegetable substances is attended with the diminution or cessation of the saccharine condition of the urine, and a reduction in the quantity of this fluid passed. It deserves especial notice that the quantity, as well as the quality, of the food taken in this disease, requires to be carefully attended to, as the craving for food is apt to induce the patient to indulge to an

*See p. 51. **See p. 48.
injurious extent. As an example of a dietary of animal food for a diabetic patient, I select the following, adopted by Dr. Christison, for a patient in the Edinburgh Infirmary:

<table>
<thead>
<tr>
<th>Item</th>
<th>Ounces</th>
<th>Ounces of dry nutritive principles contained therein.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Meat</td>
<td>40</td>
<td>10.8</td>
</tr>
<tr>
<td>Cheese</td>
<td>2</td>
<td>2.0</td>
</tr>
<tr>
<td>Two Eggs</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>New Milk</td>
<td>48</td>
<td>8.0</td>
</tr>
<tr>
<td>Beef Tea</td>
<td>16</td>
<td>0.25</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>22.05</td>
</tr>
</tbody>
</table>

In a second case only 20 oz. of meat were allowed.

In private practice, it will be convenient to allow other kinds of animal food in addition to the foregoing: as butter, chicken, sausages, fish, shell-fish, brawn, and poultry. For common drink, water, or beef-tea, or mutton-broth, may be sparingly allowed.

The beneficial effects of a diet of animal substances exclusively in diabetes is, in most cases, temporary only; while its rigorous adoption is apt to be attended with febrile or inflammatory affections. Moreover, a difficulty in its employment is often found in the inordinate craving for vegetable substances, and the loathing of animal food, experienced by the patient. Hence most practitioners have permitted the use of a limited quantity of farinaceous food, in the form of biscuit or bread. Rice may be occasionally admitted. Arrow-root, potatoes, and other low kinds of farinaceous substances, are less proper. Dr. Prout recommends sound porter in preference to wine or spirits.

In several other maladies the use of animal substances chiefly has been advised; as in the oxalate of lime diathesis, and in scrofula. Furthermore, it is admissible in other cases, where we are desirous of employing a highly nutritious and stimulating diet.

2. **Vegetable Diet.** — The exclusive employment of vegetable foods has been very rarely adopted. It has been eloquently advocated by Dr. Lambe, who recommends it, in conjunction with the use of distilled water, as a remedy for cancer, scrofula, consumption, asthma, and other chronic diseases; but he has, I suspect, gained few, if any, proselytes to his opinions and practice.

The term *spare* or *abstemious diet* is sometimes used to indicate the employment of vegetable substances principally (not exclusively). It generally includes the use of the white fish, sometimes alternating with a limited quantity of poultry or butchers' meat. In plethoric habits, where the appetite is unimpaired, this diet is ordered in cases.

2. The quantities stated in this column appear to me too high. They are taken from Dr. Christison's statement at p. 240, *op. supra cit.*
3. For some further remarks on the use of animal diet in diabetes, see p. 48 and 53.
4. Dr. Marsh, in the *Dublin Hospital Reports*, vol. iii. p. 485, 1822.
of threatened apoplexy, gout, &c. By its adoption we diminish the quantity of nutritive matter supplied to the system, while we keep the digestive organs actively employed.

3. Milk Diet.—Besides cow’s milk, which constitutes the principal article of food, this diet includes the use of farinaceous substances (such as arrow-root, sago, and tapioca), bread, and light puddings (of rice, bread, or batter). Milk diet is ordered when we are desirous of affording support to the system with the least possible stimulus or excitement. It is well adapted for inflammatory diseases of the chest (phthisis especially), of the alimentary canal, and of the bladder, when it is considered expedient to employ a nutritious but not stimulating diet. After hemorrhages, when the powers of the system have been greatly exhausted, a milk diet is frequently beneficial. It has also been considered one of the best means of preventing and of curing the gout. It is a good diet also for many of the diseases of children, especially those of a strumous or scrofulous nature. In some of the above-mentioned maladies, where the stomach is weak and irritable, cow’s milk is apt to occasion vomiting and other unpleasant effects, in consequence of the butter which it contains. In such cases, skim-milk or ass’s milk may be advantageously substituted.

4. Low Diet.—In acute inflammation, in fever, and after serious accidents, surgical operations, and parturition, patients are directed to adopt a low diet, consisting principally of the use of slops (as tea, toast-water, barley-water, and weak broth). Small quantities of milk and farinaceous matters (in the form of bread, arrow-root, or tapioca, gruel, and light pudding) are sometimes permitted. The terms thin diet, spoon diet, fever diet, simple diet, and broth diet, are applied to particular modifications of low diet.

5. Full or Common Diet.—On many occasions where it is desirable to restore or support the powers of the system, patients are permitted to satisfy their appetite for plain vegetable and animal food. In many indolent diseases, in scrofula, in some affections of the nervous system (as chorea and epilepsy), and in the stage of convalescence after acute diseases, &c. this kind of diet is frequently directed. In these cases beer is usually permitted. Wine, and even ardent spirit, are sometimes required. In some diseases of, and in accidents occurring in, confirmed drunkards, it is frequently found injurious to withhold the stimulus to which the patient’s system has been long accustomed; and thus wine, brandy, rum, or gin, is ordered, according to circumstances.

In concluding these remarks on the subject of dietetical regimen, I have thought it advisable to give a tabular view of the Diets employed at the different hospitals of this metropolis.\footnote{To Diet-Tables of the County, Scotch, and Irish hospitals, will be found in Dunglison’s New System of Medical Science, art. Diet, vol. I. p. 290. Boston, U. S. 1833.}
Diet-Tables of the London Hospitals.

In addition to the substances specified in the following Tables, all articles (as chops, steaks, fish, wine, spirit, porter, &c.) are permitted when specially ordered by the medical officers. These are denominated extras.

London Hospital.

<table>
<thead>
<tr>
<th>Per Day</th>
<th>Common Diet</th>
<th>Middle Diet</th>
<th>Low Diet</th>
<th>Milk Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 pint, Women.</td>
<td>The same, except that 4 oz. of Meat shall be given, instead of 8 oz.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gruel.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 oz. Beef, with Potatoes, thrice a week.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 oz. Mutton, with Potatoes, twice a week.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 oz. Potatoes, & Soup, with Vegetables, twice a week.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 pint of Broth.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Supper | | | | |
|---------| | Gruel or Broth. | 1 pint Milk. | |

St. Bartholomew's Hospital.

<table>
<thead>
<tr>
<th>Meat Diet</th>
<th>Broth Diet</th>
<th>Thin or Fever Diet</th>
<th>Milk Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 pt. Broth (with Peas or Potatoes, 4 times a week).</td>
<td>2 pts. Broth, Men.</td>
<td>2 pts. Milk, with Tapioca, Arrow-root, Sago, or Rice may be prescribed.</td>
<td>2 pts. Milk, with Tapioca, Arrow-root, Sago, or Rice may be prescribed.</td>
</tr>
<tr>
<td>1 oz. Butter, twice a week.</td>
<td></td>
<td>1 oz. Butter,</td>
<td>1 oz. Butter,</td>
</tr>
</tbody>
</table>

Guy's Hospital.

<table>
<thead>
<tr>
<th>Full Diet</th>
<th>Middle Diet</th>
<th>Low Diet</th>
<th>Milk Diet</th>
<th>Fever Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 quart Table Beer.</td>
<td>1 pt. Table Beer.</td>
<td>2 pints Milk.</td>
<td>2 pints Milk.</td>
<td></td>
</tr>
<tr>
<td>4 oz. Meat, when dressed.</td>
<td>1 pint Broth.</td>
<td>Half a pound of Beef (for Beef-tea), or Arrow-root or Sago, when ordered.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each diet, Gruel or Barley-water, as required.

North London Hospital.

<table>
<thead>
<tr>
<th>Full Diet</th>
<th>Middle Diet</th>
<th>Low Diet</th>
<th>Milk Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 pint Milk.</td>
<td>4 pint Milk.</td>
<td>4 pint Milk.</td>
<td>4 pint Milk.</td>
</tr>
<tr>
<td>8 lb. Meat and 4 lb. Potatoes, four days.</td>
<td>1 pint Soup or Rice.</td>
<td>Oatmeal for Gruel.</td>
<td></td>
</tr>
<tr>
<td>1 pint Soup or Rice, three days.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ST. THOMAS'S HOSPITAL

<table>
<thead>
<tr>
<th></th>
<th>FULL DIET.</th>
<th>MILK DIET.</th>
<th>DRY DIET.</th>
<th>FEVER DIET.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>2 pints of Beer, 14 oz. of Bread.</td>
<td>12 oz. of Bread.</td>
<td>14 oz. of Bread, 2 pints of Beer.</td>
<td>12 oz. of Bread, 2 pints of Beer.</td>
</tr>
<tr>
<td>Dinner</td>
<td>½ lb. of Beef, when dressed, twice a week; 4 oz. of Butter, or 6 oz. of Cheese, thrice a week; ½ lb. of Mutton, when boiled, thrice a week.</td>
<td>1 pint of Milk four times a week, Rice Pudding thrice a week.</td>
<td>4 oz. of Butter four times a week; Rice Pudding and 4 oz. of Butter, three times a week.</td>
<td>½ of a lb. of Beef for tea.</td>
</tr>
<tr>
<td>Supper</td>
<td>1 pint Broth, four times a week.</td>
<td>1 pint of Milk.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ST. GEORGE'S HOSPITAL

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men.</td>
<td></td>
<td>Barley Water ad libitum.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 pints Beer.</td>
<td>1 pint Tea. 1 pinto Brothers.</td>
<td>1 pint Tea. 1 pinto Milk.</td>
</tr>
<tr>
<td></td>
<td>Women.</td>
<td>1/2 pint Milk.</td>
<td>1 pint Milk.</td>
<td>1 pint Milk.</td>
<td>1 pint Milk.</td>
<td>1 pint Milk.</td>
</tr>
<tr>
<td>Breakfast</td>
<td>1/2 pint Tea.</td>
<td>One half the meat allowed to extra diet, boil in three days. 1 lb. Potatoes.</td>
<td>1 pint Milk.</td>
<td>1 pint Milk.</td>
<td>1 pinto Brothers.</td>
<td>1 pint Milk.</td>
</tr>
<tr>
<td>Dinner</td>
<td>1 pinto Brothers. 1 pint Tea. 1 pint Milk.</td>
<td>1 pint Gruel. 1 pint Milk.</td>
<td>1 pint Gruel. 1 pint Milk.</td>
<td>1 pint Tea. 1 pint Milk.</td>
<td>1 pinto Brothers. 1 pint Milk.</td>
<td>1 pinto Brothers. 1 pint Milk.</td>
</tr>
<tr>
<td>Supper</td>
<td>1 pint Gruel. 1 pint Milk.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WESTMINSTER HOSPITAL

<table>
<thead>
<tr>
<th></th>
<th>FULL DIET.</th>
<th>MIDDLE DIET.</th>
<th>LOW DIET.</th>
<th>SPOON, OR FEVER DIET.</th>
<th>INCURABLES' DIET.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 pint Milk.</td>
<td>1 pint Milk.</td>
<td>1 pint Tea.</td>
<td>1 pint Tea. with Sugar and Milk.</td>
<td>1 lb. Bread.</td>
</tr>
<tr>
<td></td>
<td>Porridge, or Rice Gruel.</td>
<td>Porridge, or Rice Gruel.</td>
<td>with Sugar and Milk.</td>
<td>1 pint Milk.</td>
<td>1 lb. Meat.</td>
</tr>
<tr>
<td></td>
<td>1/2 lb. Meat, roasted, boiled, or chops.</td>
<td>1/2 lb. Meat, roasted, boiled, or chops.</td>
<td>No fixed Diet for Dinner.</td>
<td>1 pint Beef Tea, or a Chop, or Fish.</td>
<td>1 pinto Brothers. Rice Pudding. Rice Pudding.</td>
</tr>
<tr>
<td>Supper</td>
<td>1 pint Milk. 1 pint Tea. 1 pint Milk.</td>
<td>1 pint Milk. 1 pint Tea. 1 pint Milk.</td>
<td></td>
<td>1 pint Tea. 1 pint Tea.</td>
<td>1 pint Milk. 1 pint Milk.</td>
</tr>
</tbody>
</table>
MIDDLESEX HOSPITAL.

<table>
<thead>
<tr>
<th>Diet</th>
<th>Carnis or Meat Diet</th>
<th>Jusculi or Soup Diet</th>
<th>Lactis or Milk Diet</th>
<th>Simplex or Simple Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakfast</td>
<td>1 pint Milk.</td>
<td>1 pint Milk.</td>
<td>1 pint Milk.</td>
<td>1 pint Barley Water.</td>
</tr>
<tr>
<td>Physicians' Patients</td>
<td>1/2 lb. Potatoes, 4 oz. dressed meat (beef or mutton), roast and boiled alternately, 4 days.</td>
<td>1 pint Soup, made with 4 oz. Beef, alternately with 1 pint of Broth with Barley.</td>
<td>1 pint Milk with Rice Pudding, 4 days, and with Batter Pudding 3 days.</td>
<td>1 pint Gruel.</td>
</tr>
<tr>
<td>Dinner</td>
<td>4 oz. Meat in Soup, 3 days.</td>
<td>1 pint Gruel.</td>
<td>1 pint Milk, or 1 pint of gruel.</td>
<td>1 pint of Gruel or Barley Water.</td>
</tr>
<tr>
<td>Surgeons' Patients</td>
<td>1/2 lb. Potatoes, 4 oz. dressed Meat (beef or Mutton), roast and boiled alternately.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supper</td>
<td>1 pint Gruel alternately, with 1 pint of Barley Water.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KING'S COLLEGE HOSPITAL.

<table>
<thead>
<tr>
<th>Diet</th>
<th>Full Diet</th>
<th>Middle Diet</th>
<th>Milk Diet</th>
<th>Low Diet</th>
<th>Fever Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>1 pint Beer, or 4 pint Porter.</td>
<td>14 oz. Bread.</td>
<td>1 lb. Bread.</td>
<td>8 oz. Bread.</td>
<td>—</td>
</tr>
<tr>
<td>Breakfast</td>
<td>1 pint Milk Porridge.</td>
<td>1 pint Milk Porridge.</td>
<td>1 pint Milk.</td>
<td>1 pint Gruel.</td>
<td>1 pint Gruel.</td>
</tr>
<tr>
<td>Dinner</td>
<td>1 lb. Meat.</td>
<td>1 lb. Meat.</td>
<td>1 pint Milk.</td>
<td>1 pint Broth.</td>
<td>2 pints Barley Water.</td>
</tr>
<tr>
<td>Supper</td>
<td>1 pint Milk Porridge.</td>
<td>1 pint Milk Porridge.</td>
<td>1 pint Gruel.</td>
<td>1 pint Milk Porridge.</td>
<td>1 pint Milk Porridge.</td>
</tr>
</tbody>
</table>

2. EXERCITATIO.—Exercise.

(Gymnastics.)

Exercise is an important hygienic agent. Its proper consideration, however, requires far more space than can be devoted to it in this work. I must, therefore, content myself with a few remarks on general effects, and refer the reader to some treatises in which it is more fully considered.

Though the word exercise, in its most extensive signification, refers to the action of all the organs of the animal economy, it is usually limited to those of locomotion; and in this sense I employ it.

The exercise of the muscular system is followed by several mark
EXERCISE

effects:—of these, the first to be noticed are mechanical. Whenever the muscles are called into activity, they exert a local influence, of a mechanical kind, on the blood-vessels in their immediate vicinity, and accelerate the circulation of the blood. This is followed by an augmentation of the animal heat; and, if the exercise be of a kind to call into activity a considerable number of muscles, the general circulation soon participates in the effects; the pulse is quickened, and the respiration and secretion are augmented. Another effect, which, in its origin, is probably of a mechanical nature, is the absorption of the fat between the muscles and their fasciculi. It seems to arise from the pressure exerted by the contracted muscle on the soft tissues immediately around it.

A second class of effects caused by muscular action may be denominated organic or vital. I refer now to the augmentation of volume, firmness, and elasticity, and increase of strength or power, which a muscle acquires from frequent but moderate use. Blacksmiths, fencers, and prize-fighters, furnish excellent illustrative examples of these effects.

But the action of the muscles can only be effected through the medium of the nervous centres and nerves. So that the latter are called into activity, and through them the whole system becomes influenced, when a number of muscles is exercised. These effects may be denominated nervous.

The fourth and last class of effects to be referred to, may be called psychical or mental. To this belong the different mental effects produced by agreeable and disagreeable,—by voluntary and compulsory,—exercises. Employed moderately, agreeable exercise acts as a salutary excitant to the intellectual faculties and sensations. I agree with Dr. James Johnson 4, "that travelling exercise, while it so much improves all the bodily functions, unhinges and unfit the mind, pro tempore, for the vigorous exercise of its higher faculties." But the first excitement being over, "the memory of scenes and circumstances, together with the reflections and recollections attendant thereon, furnish an ardent mind with rich materials and trains of thought, that may, by gifted individuals, be converted into language; and thus conveyed to thousands."

Thus, then, it appears that exercise, employed moderately, has a tonic and stimulating influence on the system, and is calculated to be beneficial in a great variety of complaints. Used immoderately, it exhausts both the mental and bodily powers, and produces great debility. In fever, in vascular excitement or inflammation of the brain, in inflammatory affections of the lungs, in maladies of the circulating organs (especially dilatation of the cavities of the heart, diseased valves, and aneurism), in violent hemorrhages, gastro-enteric inflammation, acute rheumatism, &c., muscular exertion is manifestly injurious; repose and inaction being indicated. In sprains and lacerations of the muscles, in fractures and dislocations, &c., it is

* See p. 4.
* Change of Air, or the Pursuit of Health and Recreation, 4th ed. 1836.
obviously improper. In hernia, or a tendency thereto, great muscular exertion must be carefully avoided.

Exercises may be divided into the active, the passive, and the mixed. To the first belong walking, running, leaping, dancing, fencing, wrestling, &c.; to the second are referred, carriage exercise and sailing; while horse-exercise belongs to the third or last division.

3. Climate.

Under the word Climate are included those topographical, atmospheric, and other conditions of a region or country, which have a beneficial or injurious influence on the health and lives of the inhabitants.

It is probable that we are yet ignorant of many circumstances which contribute to give the climatic character to a place; and, of those that are known, it is often not easy to define the separate influence of each.

The most obvious circumstances which affect the climate of a region or country, are temperature, humidity, purity of the atmosphere, wind, atmospheric pressure, intensity of light, and atmospheric equability or vicissitudes.

1. Temperature.—In considering the temperature of a place, we must regard not merely its annual mean, but its extremes. Inland tracts of country experience greater extremes than the coasts. This arises from land being more rapidly heated and cooled than water. Hence it attains a higher temperature in summer,—and a lower one in the winter. It also deserves notice that the western coasts of the extra-tropical continents have a much higher mean temperature than the eastern coasts. This is explained by the heat evolved in the condensation of vapour, swept from the surface of the ocean by the eastern winds. The effects of heat and cold on the human body have been already considered. Warm climates are adapted for pulmonary invalids (especially consumptive patients), the rheumatic, the serous, and the paralytic. Cold or rather moderately cool, climates are bracing, and are fitted for relaxed constitutions.

2. Humidity. Hygrometric State of the Atmosphere.—Evaporation from the cutaneous and pulmonary surfaces is augmented by a dry state of the atmosphere, and checked by a damp or moist state. But the transudation which depends on vital action is augmented by a warm moist atmosphere. "Of all the physical qualities of the air," observes Sir James Clark, "humidity is the most injurious to human life." A moist, or rather a soft, climate promotes vital transudation, and, therefore, is adapted for chronic bronchitis of a dry irritable kind, frequently denominated dry catarrh, and for some other maladies attended with a harsh, dry, parched skin. A dry climate, on the other hand, checks vital transudation, and, therefore, is better fitted for relaxed languid constitutions, with profuse secretion and exhalation; as humid asthma and those forms of chronic catarrh accompanied with copious expectoration.

* For further information on the subject of Exercise, the reader is referred to Celsius, lib. i. cap. 1 and lib. ii. cap. 15; Sir J. Sinclair’s Code of Health and Activity, Edinb. 1807; Dunglison’s Ele- of Hygiene, Philadelphia, 1835; Diet. de Médecine, art. Gymnastique; Diet. de Médecine et de l'agriculture; art. Gymnastique; Manuel d’Education physique, gymnastique et morale, 1.

Colonel Amoros. Paris, 1830.

See pp. 6 and 21.

* The Sensible Influence of Climate, 3d ed. Lond. 1831.
3. Purity of the Atmosphere.—A pure condition of the atmosphere is an essential element of all healthy climates. The greater mortality of cities than of the country is principally referrible to the respiration of air vitiated by the congregation of a large number of persons in a comparatively limited space. Emanations from the soil, and from decomposing organic matter, also contribute to the contamination of atmosphere. The injurious effect of fogs on pulmonary invalids is well known to every one. Curiously enough, however, some patients affected with spasmodic asthma breathe better in a smoky atmosphere (as that of London) than in pure air.

4. Wind.—Wind greatly modifies the effect of temperature on the body. Thus two successive days, whose temperature, as indicated by the thermometer, may be the same, shall produce in us—the one a sensation of warmth, in consequence of the calm, still, condition of the air,—while the other creates a feeling of cold, from the presence of a violent wind. So that, as Sir James Clark1 has justly observed, "the influence of temperature on the living body is indicated much more accurately by our sensation than by the thermometer." Moreover, the humidity and the purity of the atmosphere are greatly modified by the motion or calmness of the air. The precise effects produced on climates by wind, must of course depend on its direction, violence, &c.

5. Atmospheric Pressure.—Diminished atmospheric pressure promotes various diseases. Elevated regions, therefore, are colder, drier, more bracing, and, \textit{satis paribus}, better adapted for relaxed individuals, with profuse secretion and exhalation, than the opposite localities: but, on the other hand, they are injurious in bronchial or tracheal irritation, with diminished secretion.

In extra-tropical climates, a fall in the barometer, without a change or rise of wind, is usually followed by rain. Now, a humid condition of the atmosphere checks evaporation, while the reduced barometrical pressure augments it. Hence, we have two opposing influences in operation. This condition of the air induces a feeling of languor and fatigue, and gives rise to sweating on the slightest exertion.

6. Intensity of Light.—The influence of light has been already considered.1

7. Atmospheric Equalities or Vicissitudes.—Rapid atmospheric changes are always injurious to health. Invalids, and those with delicate constitutions, always appreciate the slightest alterations in the condition of the atmosphere, all which are not observable by the healthy and the robust.

These are some only of the circumstances which affect the quality or character of a climate. Others doubtless exist; but their precise nature and influence have scarcely been ascertained. For example, we have yet to learn the influence of Electricity and Magnetism on the climate of a place.

I propose, now, to glance at the characters of those climates most commonly resorted to by invalids for therapeutical purposes. In doing so, I beg to acknowledge the great assistance I have received from the valuable work of Sir James Clark, to which I must refer the reader for further details.

1The production of Auge, by the exhalations from stagnant water and marshy soils, is well known to every one. My friend, Professor Daniell (\textit{Land. Edinb. and Dalh. Phil. Mag.} July 1841), has shown that the waters upon the Western coast of Africa, to an extent of 40,000 square miles, are impregnated with sulphuretted hydrogen, to an amount, in some places, exceeding that of some of the most celebrated sulphur springs of the world; and he suggests that the existence of this deleterious gas in the atmosphere, which must necessarily accompany its solution in the waters, may be connected with the awful misanthropy, which has hitherto proved fatal to the explorers and settlers of the sandy shores of Africa; as well as of other places.

The origin of sulphuretted hydrogen in sea, and some other waters, has been ascribed, by Dr. Marets (\textit{Phil. Trans.} 1819, p. 195), Mr. Malcomson (\textit{Trans. of the Geological Society}, 2d Ser. vol. V, p. 24, Landal 1840, Dr. A. Pontier, \textit{Ann. de Chem. et de Phys.} July 1840), and Professor Daniell (op. supra cit.), to the decomposition of sulphates of the waters, by purifying vegetable matter.

1Up. supra cit. p. 126.
1See p. 2.
Climates may be conveniently arranged as follows:—

2. Climates of France.
3. Climates of Spain and Portugal.
5. Climates of the Atlantic.

1. CLIMATES OF ENGLAND.

"The British Islands are situated in such a manner as to be subject to all the circumstances which can possibly be supposed to render a climate irregular and variable. Placed nearly in the centre of the temperate zone, where the range of temperature is very great, their atmosphere is subject, on one side, to the impressions of the largest continent of the world; and, on the other, to those of the vast Atlantic Ocean. Upon their coasts the great stream of aqueous vapour, perpetually rising from the western waters, first receives the influence of the land, whence emanate those condensations and expansions which deflect and reverse the grand system of equipoised currents. They are also within the reach of the frigorific effects of the immense barriers and fields of ice, which, when the shifting position of the sun advances the tropical climate towards the northern pole, counteract its energy, and present a condensing surface of immense extent to the increasing elasticity of the aqueous atmosphere."

Sir James Clark thus arranges the climates of England:—

2. The South Coast. 5. West of England.
3. South-west Coast.

1. LONDON.—The mean annual temperature of London somewhat exceeds that of the suburban parts. "The excess of the temperature of the city varies through the year, being least in spring, and greatest in winter; and it belongs, in strictness, to the nights, which average 3° warmer than in the country; while the heat of the day, owing, without doubt, to the interception of a portion of the solar rays by a constant veil of smoke, falls, on a mean of years, about a third of a degree short of that in the open plain." Hence in the winter, delicate invalids sometimes experience benefit in coming to London from the country. But the impure state of the atmosphere generally counterbalances these good qualities. In some cases of spasmodic asthma, however, respiration is easier in London than in the country.

2. SOUTH COAST.—This comprehends the tract of coast between Hastings and Portland Island. Its mean annual temperature is ab

* Daniell’s Meteorological Essay, p. 114. 2nd ed. 1827.
* For further details respecting the Climate of London, consult Professor Daniell’s Essay on this subject. Also, Dr. Bateson’s Reports of the Diseases of London. Lond. 1819.
that of London; but the summers are somewhat cooler, and the winters somewhat warmer, than the corresponding seasons of the metropolis?

The principal places of resort for invalids, on this line of coast, are the following:

a. Hastings.—A mild winter residence; placed low and well protected from the northerly winds. Sir James Clark\(^4\) regards its climate as somewhat intermediate between that of Devonshire and Clifton; less warm, but also less relaxing than the former. It is about the same temperature; but less dry and bracing than the latter, and it is inferior to it as a spring climate.\(^5\) It is well adapted for pulmonary invalids during the months of December, January, and February. The distinguished author above quoted declares, that it "is unfavourable in nervous complaints, more especially in nervous headaches connected with, or entirely dependent upon, an irritated condition of the digestive organs, and also in cases where a disposition to apoplexy or epilepsy has been manifested."

St. Leonards is about a mile from Hastings, and possesses a similar climate.

b. Brighton.—The air is dry and bracing. The climate is most beneficial during autumn and the early part of winter, when it is milder and more steady than that of Hastings. It is adapted for relaxed individuals, with copious secretion and exhalation. It usually agrees well with children (especially those of a scrofulous habit) and convalescents.

c. Isle of Wight.—Undercliff presents an agreeable, mild, sheltered, dry, bracing climate, well adapted for the residence of many pulmonary and other delicate invalids throughout the year. It differs from the climate of Torquay (which is soft, humid, and relaxing) by its dry and bracing qualities. Hence it is suited for relaxed constitutions, with copious secretion. Cowes and Ryde are delightful summer residences.

d. Southampton.—This part of the coast is objectionable, on account of its temperature being equally variable with that of the environs of London.

3. South-West Coast.—This comprehends the tract of coast extending from Portland Island to Cornwall. Its general qualities are those of a mild, soft, humid climate, soothing but somewhat relaxing. It is adapted to pulmonary affections, especially those which are dry and unaccompanied with much expectoration. In dyspepsia, with symptoms of irritation or inflammation, constituting the gastritic dyspepsia of Sir James Clark, it is also beneficial. But in all forms of chronic diseases, with copious secretion and exhalation, and a languid and relaxed state of the constitution, it is injurious.

The following are the principal places of resort for invalids along the South-West Coast:

a. Salcombe.—The Montpelier of Huxham. The warmest spot of this coast.

b. Torquay.—This is drier than the other parts of this coast, though its general character is soft and humid.

c. Dawlish.—Next in dryness to Torquay.

d. Exmouth.—The higher parts of the town exposed to winds; the lower parts liable to occasional damp. Sir J. Clark declares that it is not adapted for persons with delicate chests.

e. Sidmouth.—Preferable to Exmouth. It is well protected from winds, especially the northerly ones.

f. Sidmouth.—Damp.

\(^4\) For the character of this part of England consult Dr. Harwood’s Curative Influence of the Southern Coast of England, especially that of Hastings; with Observations on Diseases, to which a Residence on the Coast is most beneficial. Lond. 1836.

4. SOUTH COAST OF CORNWALL. *Land's End.*—In its general
characters this climate resembles that of the south coast of Devon.
From the latter, however, it differs, in its greater humidity, and in
being more exposed to winds. It is, consequently, more relaxing.
The class of cases in which it is calculated to be beneficial or injuri-
sous, are much the same as those for the south coast of Devon.

The following are the chief places of residence for invalids along this coast:—

a. *Penzance.*—Exposed to the north-east winds during the spring months.
b. *Falmouth.*—The winter temperature is a trifle lower than that of Pen-
zance.

5. WEST OF ENGLAND.—Under this head are grouped the places
along the borders of the British Channel and the estuary of the
Severn. The mean temperature of this group is, during the winter,
rather lower, but in March and April rather higher, than that of the
south coast.

Clifton.—This is the mildest and driest climate in the West of England. It
is bracing, and well adapted for scrofulous and relaxed constitutions, with op-
cious secretion and exhalation.

2. CLIMATES OF FRANCE.

The southern climates of France resorted to by invalids, may be
divided into those of the South-West, and those of the South-East
of that country.

1. SOUTH-WEST OF FRANCE.—According to Sir James Clark
the climate of this part of France is soft, relaxing, and rather humid;
resembling in its general qualities that of the south-west of Eng-
land. It is favourable to phthisical invalids, for those labouring
under bronchial affections, with little expectoration, and for other
chronic cases attended with a dry skin.

a. *Pau.*—Dr. Playfair* thus sums up the qualities of this climate. "Calmsness,
moderate cold, bright sunshine of considerable power, a dry state of atmosphere
and of the soil, and rains of short duration. Against these must be placed,—
changeableness, the fine weather being as short-lived as the bad; rapid vari-
ations of the atmosphere within moderate limits. In autumn and spring there
are heavy rains."

b. *Bagneres de Bigorre,* in the department of the High Pyrenees, has a
mean temperature, during the months of June, July, August, and September,
of 66°F. Dr. Wm. Farr* declares the climate to be anti-irritating and moist,
and to be favourable to the consumptive. Its season is from June to September.

2. SOUTH-EAST OF FRANCE.—Sir J. Clark says the general charac-
ter of the climate is dry, hot, and irritating. It is adapted for torpid,
relaxed habits, but is decidedly improper for the consumptive and
those labouring under irritation and inflammation of the air-tubes.

* On the climate of this part of England, consult Dr. Forbes's *Observations on the Climate of
Penzance and the District of the Land's End.* Penzance, 1830.—Also his *Medical Topography of
the Land's End, in the Provincial Medical Transactions,* vol. ii.
* Sir J. Clark's *Sanitary Influence of Climate,* p. 192.
CLIMATE.

87

a. Montpellier.—Long but undeservedly celebrated as a residence for phthisical invalids.

b. Marseilles.—Exposed to cold winds. Soil dry and arid.

c. Hyères.—Sir J. Clark declares it to be the least exceptionable residence in Provence for the pulmonary invalid.

3. CLIMATES OF PORTUGAL AND SPAIN.

Precise information respecting the climates of these countries, to which pulmonary invalids occasionally resort, is much to be desired.

1. Portugal.—Dr. Bullar states that the mean annual temperature of Lisbon is 12° F. higher than that of London; and that the mean temperature of its winter is 16° F. higher than that of London. But notwithstanding its mildness, it is objectionable for persons affected with phthisis, on account of the inequality of its temperature.

2. Spain.—Biscay is subject to sudden and extraordinary changes in temperature; the mercury having been known to rise and fall from 3° to 4° F. within a few minutes. This must, of course, make it an unfit residence for pulmonary invalids. Madrid is elevated more than 300 fathoms above the level of the sea. Its annual mean temperature is 59°F. Cadiz, being nearly surrounded by the sea, has a comparatively temperate climate.

4. CLIMATES OF ITALY AND THE MEDITERRANEAN.

The climates included under this head are exceedingly diversified, so that it is difficult to lay down any general character of them.

d. Nice.—The climate of this place is somewhat similar to that of the South East of France. It is mild, equable, and dry; being adapted for torpid, relaxed individuals, with abundant secretion from the mucous membranes. Dr. William Farr says, the great objection to it is its dryness, and the exciting and irritating nature of its atmosphere. It is beneficial in chronic bronchitis, with copious expectoration,—in chronic rheumatism,—scrofula,—gout, and atonic dyspepsia.

e. Genoa.—Climate dry and healthy, with a sharp exciting air. It is adapted for relaxed constitutions, but is unfit for phthisical invalids.

f. Florence.—Not favourable for invalids.

c. Pisa.—According to Sir James Clark, the climate is genial, but rather oppressive and damp. It is softer than that of Nice, but not so warm; less soft, but less oppressive, than that of Rome.” Pisa is frequented by consumptive invalids.

d. Rome.—The climate of this city is one of the best in Italy. Sir James Clark characterises it as being mild, soft but not damp, rather relaxing and oppressive, and remarkable for the stillness of its atmosphere. It is well adapted for phthisis, bronchial affections of a dry irritating kind, and chronic rheumatism.

g. Naples.—The climate of Naples is warm, variable, and dry. Sir James Clark compares it to that of Nice, but states that it is more changeable, and, if ever in the winter, is more humid. Dr. Cox, however, declares that the mean annual variation is far less than is generally supposed. It is an unsuitable resi-
dence for most pulmonary invalids, especially those affected with tubercular phthisis. In bronchial cases, with profuse secretion, benefit is sometimes obtained from it. In general debility and deranged health, it is also serviceable. Dr. Cox says it is beneficial in dyspepsia, rheumatic neuralgia, and scrofula.

4. MALTA.—The climate of Malta is mild, dry, bracing, and pretty equable. It is serviceable in chronic bronchitis [with profuse secretion], scrofula, dyspepsia, and hypochondriasis.

5. ATLANTIC CLIMATES.

The climates of the Atlantic islands, resorted to by invalids, may be arranged in two groups,—the one eastern, the other western.

1. EASTERN ATLANTIC.—This group includes Madeira, the Canaries, and the Azores.

 a. MADEIRA.—The climate of Madeira is mild, humid, equable, and steady. Sir James Clark regards it as the finest in the northern hemisphere. It is superior to all other climates for incipient phthisis. This superiority consists in the mildness of the winter, the coolness of the summer, and the remarkable equality of the temperature during the night and day, as well as throughout the year. Experience, moreover, seems to have fully demonstrated the advantage which patients, with incipient symptoms of consumption, derive from a residence in this island.

 b. THE CANARIES.—Tenerife is the only island of this group possessing accommodation for invalids. Though its mean annual temperature is higher than that of Madeira, its equability is less.

 c. THE AZORES OR WESTERN ISLANDS.—Dr. Buller declares these to be “rather colder than Madeira, and somewhat more equable, and perhaps more humid; but they have not at present those accommodations for strangers which the latter island possesses, nor have they communications by steam with England.” St. Michael's, the largest of the Azores, has a mild, humid, equable climate.

2. WESTERN ATLANTIC.—This group includes the Bermudas, the Bahamas, and the West Indies. It is more subject to rapid changes of temperature than the Eastern Atlantic group.

 a. THE BERMUDAS.—The climate is warm, variable, and dry. The mean annual temperature is considerably higher than that of Madeira; but the climate is variable and windy during the winter, and hot and oppressive in the summer (Sir J. Clark).

 b. THE BAHAMAS.—The climate is warm, but is subject to rapid changes of temperature. Dry cold winds prevail. Hence the Bahamas are unsuited to consumptive invalids.

 c. THE WEST INDIES.—The temperature of these islands is too high, and its variations too great, to admit of their being a desirable residence for patients affected with pulmonary consumption; but as a prophylactic for those predisposed to this disease, it is highly spoken of. In scrofula, the climate proves beneficial. Calculous complaints and ossific deposits are rare. The most healthy islands of the group are Jamaica, Barbadoes, St. Vincent's, Antigua, and St. Kitt's.

The diseases for which change of climate is most frequently resorted to are—

* For further information respecting the medical qualities of the island of Madeira, the reader may refer with great advantage to Sir James Clark's work, before cited; Dr. Goulay's Observations on the Natural History, Climate, and Diseases of Madeira, 1811; Dr. Bentinck, in the Edin. Medico and Surgical Journal, vol. xxi. 1817; and Dr. Heineken's paper in the Medical Repository, vol. xvi. 1821.

CLIMATE

1. Pulmonary Complaints, especially Phthisis, Chronic Bronchitis resembling Phthisis, Asthma, Hemoptysis, and Diseases of the Larynx and Trachea.
2. Dyspeptic and Hypochondriacal Complaints.
3. Chronic Rheumatism.
4. Scrofula.
5. Urinary Diseases.
7. In the Convalescence from Fever, and other acute maladies.

1. PULMONARY COMPLAINTS.—These maladies are benefited by removal from a colder to a warmer climate. Equability, purity, and calmness of the atmosphere, are other desirable qualities in a climate for pulmonary invalids. The nature of the malady and constitution of the patient, however, render all climates possessed of these qualities not equally suited for every case.

a. Phthisis.—"For such consumptive patients," observes Sir James Clark, "as are likely to derive benefit from climate, I consider that of Madeira altogether the best. Teneriffe and the Azores approach most nearly in the character of their climate to Madeira. Of the climates of the South of France and Italy the same experienced writer says, when "there exists much sensibility to harsh and keen winds, and, more especially, if immediate vicinity to the sea-coast is known to disagree, Rome or Pisa is the best situation for a winter residence. When, on the contrary, the patient labours under a languid feeble circulation, with a relaxed habit, and a disposition to congestion or to hemorrhage, rather than to inflammation; and, more especially, when the sea air is known by experience to agree, Nice deserves the preference." Late experience has shewn, that Montpelier, Marseilles, and other places in the south-east of France, once celebrated as affording a good winter climate for consumptive patients, are decidedly improper for phthisical invalids. Of English climates, those of Undercliff, Torquay, and Hayling, are best adapted for this disease. Torquay and Penzance disagree with persons of a relaxed habit. Clifton, during the spring months, often agrees well.

b. Chronic Bronchitis.—In relaxed constitutions, with copious expectoration, the climates of Undercliff, Clifton, Brighton, and Nice, are those which agree best. On the other hand, for dry, bronchial, and tracheal irritation, Torquay, Madeira, Rome, and Pisa, are to be preferred.

2. DYSPEPSIA AND HYPOCHONDRIASIS.—In selecting a climate for these complaints, we must attend to the character of the malady and the constitution of the invalid. Thus, in the atomic dyspepsia of relaxed and sluggish individuals, with copious secretions, we select a dry and bracing climate; and in such, Brighton, Clifton, Nice, or Naples, would probably prove beneficial. But when the dyspepsia assumes an inflammatory form, with dry tongue and a febrile condition of system, the soft and humid climates are to be preferred,—such as Torquay, Pal, Rome, and Pisa.

3. CHRONIC RHEUMATISM.—In this malady, mild climates generally have been found beneficial. According to Sir James Clark’s experience, Rome and Nice are the best climates on the continent. In relaxed and cachectic individuals, the latter place is to be preferred.

4. SCROFULA.—In this malady the West Indies prove highly serviceable. Nice and Rome, on the continent, have appeared to be favorable. In this country Clifton is perhaps the climate best adapted for scrofula.

5. URINARY DISEASES.—Warm climates relieve most affections of the urinary organs, especially calculous complaints, diabetes, and
vesical irritation. The benefit probably arises from the excitement of the skin and the abundant cutaneous secretion, and is to be explained on the principle of antagonism already alluded to*. In the West Indies calculous complaints are very rare.

6. Liver Complaints.—Various hepatic derangements are induced by a residence in tropical climates*; and in such cases benefit is obtained by a return to the more temperate climates of Europe.

7. In the Convalescence after fevers and inflammatory diseases, change of climate is often found highly beneficial.

III.—AGENTIA MECHANICA ET CHIRURGICA.—MECHANICAL AND SURGICAL AGENTS.

The consideration of these subjects does not fall within the province of this work.

IV. AGENTIA PHARMACOLOGICA SEU MEDICAMENTA.—PHARMACOLOGICAL AGENTS OR MEDICINES.

(Medicamina; φάρμακα.)

Pharmacological Agents or Medicines are substances, not essentially alimentary, used in the treatment of diseases, and which, when applied to the body, alter or modify its vital actions.

Aliments are vital stimuli (see p. 5, foot-note), which vivify, and can themselves be vivified*; since they are assimilated to our organs, and become inextricable parts of the living body.

Poisons are distinguished from medicines principally in the degree of their effects, and the use to which they are applied; for the most powerful poisons become, when administered under proper regulations, very valuable medicines.

Pharmacology (Pharmacologia, from φάρμακον, a medicine; and λόγος, a discourse), or Materia Medica, is that branch of Acology devoted to the consideration of medicines.

a. General Pharmacology (Pharmacologia generalis) treats of medicine generally.

b. Special Pharmacology (Pharmacologia specialis) treats of medicines individually.

Pharmacology is divided into three departments, termed respectively Pharmacognosy, Pharmacy, and Pharmacodynamics.

* See p. 9.
* See p. 10.
* See Müller’s Elements of Physiology, by Baly, vol. i. p. 21.
speaking, it is a department of what the Germans call Waarenkunde (Knowledge); and hence is sometimes called pharmaceutische Waaren-wechsel Handel (Pharmacy). As we have no word in the English corresponding to Waarenkunde, I would suggest that of Agora-room (merchandise; and λόγος, a discourse).

Prepared Medicines or Simples are either Foreign or Indigenous. They are imported by the merchant, and sold on his behalf, by the broker, to the wholesale druggist.

Valuable information connected with the commerce of Foreign drugs and in the following works and periodicals:

Entry B. published daily.

The List and Weekly Register of Customs and Parliamentary Accounts.—The London Medical Gazette gives a monthly list of Drugs on sale, with their several duties taken from the Trade List.

Public Ledger. A daily newspaper, containing the advertisements for sales.

Miscellaneous Papers. The following returns are especially useful to the logist:

1. A General Statement of the Imports and Exports of the principal Articles of Merchandise between the United Kingdom and the several Foreign Countries and British Possessions Abroad, in the year 1827.
3. A Statement of the Imports and Exports of the United Kingdom for the year 1831, ending 5th January, 1832.

Indigenous vegetable substances are usually collected by the

Most of the plants grown in this country, and for which the

Mediterranean and other

areas.
2. PHARMACO-CHEMIA SEU PHARMACIA.—PHARMACEUTICAL CHEMISTRY OR PHARMACY.

(Chemische Arzneimittelkunde, Pfaff; Pharmacoboterie, Cottereau.)

PHARMACY (from φάρμακον, a medicine) is that department of Pharmacology which treats of the preparation, compounding, preservation, and dispensing of medicines (medicamenta preparata et composita).

I must refer my readers to the following works for an account of the principles and operations of Pharmacy:

R. J. Kane's Elements of Practical Pharmacy. Dublin, 1831.
J. A. Buchner's Einleitung in die Pharmacie. 3ème Aufl. Nürnberg 1827.

3. PHARMACO-DYNAMICA.—PHARMACODYNAMICS.

(Dynamische Arzneimittelkunde, Pfaff; Pharmacoboterie, Cottereau.)

PHARMACODYNAMICS (from φάρμακον, a medicine; and ἐνέργεια, power) is that department of Pharmacology which treats of the effects and uses of medicines.

CHAPTER I.—ON THE MEANS OF ASCERTAINING THE EFFECTS OF MEDICINES.

Formerly the virtues of medicines were inferred from resemblances (fancied or real) in form, colour, &c. between these substances and parts of our organism. These marks or indications of medicinal power were called Signatures, and were supposed to arise from Astral influences.

Thus, Poppyheads were inferred to act on the head.—Elder-pith on the spinal marrow.—Euphrasia, or Eye-bright, on the eye.—Pulmonaria, or Lungwort, on the lungs.—Citrons on the heart.—Sow-bread on the stomach.—Cassia fistula on the bowels.—Aristolochia on the uterus.—and Orchis on the testicle, because these substances resembled, respectively, the parts on which they were supposed to operate. Again, Saffron was used in jaundice.—Lithospermum, or Gromwell, in calculous affections,—and Scrophularia in piles,—on account of the representation of the disease which each of these substances was fancied to bear.

There are four principal methods which, in modern times, have been resorted to for the purpose of determining the effects of medicines. These are founded, respectively, on—

1. The Sensible qualities of medicines.
2. The Natural-Historical properties.
3. The Chemical properties.
4. The Dynamical properties.

THE SENSIBLE QUALITIES OF MEDICINES.—Colour, Taste, and
have been used to indicate, in a very general way, the medi-
properties of plants. But to all the general positions which
hitherto been advanced concerning them, so many exceptions
that none possess much, if any, practical value.

pears to me to be a waste of time and space to dwell on this subject; I
therefore, refer the reader, for further information, to the writings of Lin-
Cullen; and Edwards and Vavasseur. In another part of this work, I
ave occasion to notice Mr. Grevess’s classification of the articles of the
Medica according to their sensible qualities. Some interesting infor-
ations on the colour, odour, and taste of plants, is contained in Landgrebe’s
Light.

THE NATURAL-HISTORICAL PROPERTIES.—Exterior Form and
are made use of, in natural history, to determine the affini-
natural bodies: hence they are denominated natural-historical
ies.

If Minerals.—No conclusions, respecting the medicinal proper-
minerals, can be deduced from crystalline form and structure.
do dissimilar substances assume the same crystalline form, they are said
eanorphous: and if the same substance be capable of crystallizing in two
forms, it is said to be dimorphous. Mr. Blake asserts, that the most striking
semblance exist generally between isomorphous compounds in their
the animal tissues when introduced into the blood. Be this as it may,
tion, when taken into the stomach, is often very dissimilar. Thus, the Tri-
Soda is isomorphous with the Triarseniate of the same base; but
will pretend to assert that their action on the system is alike. Arsenious
isomorphous with Sesquioxide of Antimony, yet their effects on the system
similar. Mr. Blake admits that the Salts of Lead and of Silver are
ons to his statement: their action on the pulmonary tissue being analogous,
they are not isomorphous.

If Vegetables.—The relations existing between natural-histori-
es and medicinal effects have been attentively examined with
vegetables. It has long been supposed, that those plants
semble each other in their external appearances, are endowed
alogous medicinal properties. Cæsalpinus was, according to
, the founder of this doctrine; though Decandolle regards
arius as the first who clearly announced it. Linnaeus says,
æ quæ genere conveniunt, etiam virtute conveniunt; quæ
naturali continentur, etiam virtute propius accedunt; quæque
naturali congruent, etiam viribus quoadammodo congruunt.” I
refer to Isenflam, Wilcke, Gmelin, Jussieu, and Barton,
er supporters of this opinion. But the most important writer in
of it is Decandolle, who, in 1804, published the first edition of
his work on this subject; and, in 1816, a second edition of it appeared. In the year 1831, we had another interesting treatise on the same subject, by Dierbach. There are other writers, however, who deny altogether the possibility of judging of the virtues of plants by their exterior forms and botanical characters. Of these, it will be sufficient to mention Gleditsch.

It must be admitted, that vegetable substances owe their peculiar qualities to the structure, and consequent action, of the organs producing them; and, therefore, that differences in the structure of an organ are attended with corresponding differences in the qualities of its products. It consequently follows, that the medicinal qualities of plants of the same natural order should be similar or analogous. That they are so to a certain extent is fully ascertained by numerous facts. If one vegetable species serve as nutriment for either animal or plant, we frequently observe that other species of the same genus, or even of a different genus, but of the same order, are also adapted for a like use; while, on the other hand, if any particular species be injurious, neighbouring species are likewise more or less so. Experience has fully proved, that in a very large number of instances there exists an analogy between the exterior forms and the medicinal properties of plants, so that we can sometimes predict the active principle and mode of operation of a vegetable, merely by knowing to what part of a natural arrangement it properly belongs. Cruciferæ (fig. 3), for example, present the greatest uniformity in their botanical, chemical, and medicinal characters. They contain a volatile, acrid principle, which renders them stimulant; and, having been employed successfully in scurvy, they are frequently termed antiscorbutics. The Labiatae (fig. 4), which constitute, perhaps, the most natural family of the whole vegetable kingdom, contain a bitter, resinous, or extractive matter, and an ethereal, aromatic, or volatile oil: which two principles, mixed in different proportions, are found in all the species, to which they communicate tonic and carminative properties. Neither Cruciferæ nor Labiatae contain a single unwholesome or even suspicious species. In Coniferæ (fig. 5), we find the different species pervaded with an oleo-resinous juice, in consequence of which
they possess stimulant properties. — Many other families might be quoted to the same effect; and, therefore, we admit, as a general rule, that plants, of similar structure, possess similar medicinal qualities.

The objections to this general rule are two-fold:—

1st. Plants of the same Natural Order are frequently endowed with dissimilar Medical Properties. The root and leaves of Daucus Carota are wholesome and nutritive, but the analogous parts of Conium maculatum are highly poisonous. Both of these plants, however, belong to the same natural order.—Umbelliferae (fig. 6). In some cases we find plants even

![Image of Funiculum vulgare](image)

Funiculum vulgare.
(Umbelliferae.)

of the same genus differing considerably in their medical properties; as Cucumis Melo and Cucumis Colocynthis, of the order Cucurbitaceae. If we are to believe the statements of credible writers, even Gramineae, which Decandolle declares to be "la famille la plus naturelle," contains more than one exception to the general statement in question. For the most part, the plants of this family are farinaceous and nutritive. "None," says Dr. Lindley, "are unwholesome in their natural state, with the single exception of Lolium temulentum (fig. 7), a common weed in many parts of England, the effects of which are undoubtedly deleterious, although perhaps much exaggerated." I may remark, however, that several other grasses have been asserted to be unwholesome. Loudon* tells us that the seeds of Bromus mollis bring on giddiness in the human species and quadrupeds, and are fatal to poultry. The

* Natural System, 2nd ed. 1836.
* Encyclopedist of Plants, p. 64.
root of *Bromus purgans* is said to be used in Canada as an emetic, in doses of forty grains. *Bromus catharticus*, a Chilian plant, has a thick root, which is stated to act as a purgative*. Humboldt* tells us that *Festuca quadridentata* (fig. 8) is very poisonous, and even fatal to animals. Perhaps this may be the

Festuca quadridentata (Kunth).

grass described by some under the name of *Carapoucha*, and which by others has been called *Carapullo*. Fresier* says, in speaking of Lima, "There is an

* Dictionn. de Matière Médic. par P. V. Merat et A. J. De Lens, tom. i. p. 672.
* Voyage, t. i.
* Voyage to the South Sea and along the Coasts of Chili and Peru, in the years 1712, 1713, and
called Carapa. p, which grows like a tuft of grass, and yields an ear, the deception of which makes such as drink it delirious for some days. The Indians make use of it to discover the natural disposition of their children. All the time when it has its operation, they place by them the tools of all such trades as they may follow,—as by a maiden, a spindle, woof, scissors, cloth, kitchen furniture, &c.; and by a youth, accoutrements for a horse, awls, hammers, &c.; and that as they take most fancy to in their delirium, is a certain indication of the trade they are fittest for,—as I was assured by a French surgeon, who was an eyewitness of this verity." On this statement, Dr. Lindley remarks, that it is uncertain whether the plant referred to be really of the order Gramineae. "I cannot trace the name," he observes, "and the only Lima plant that I find bearing a name at all like it, is Physalis pubescens, which, according to the Flora Persica, is there called Capuli."

In the family Solanaceae we meet with other exceptions, as in the fruit of Cephalium annuum and Atropa Belladonna. I might select many other instances (especially from the family Leguminosae) to the same effect, but shall content myself with the examples already adduced, as sufficiently warranting the assertion that, in the present state of science, botanical affinities cannot be confidently relied on by the medical practitioner for determining the effects of medicinal agents. I cannot, therefore, agree with Dr. Lindley, that "a knowledge of the plant is a guide to the practitioner, which enables him to substitute with confidence some other plant that is naturally allied to it." As a general rule we may admit, that plants of the same family agree in the nature of their medicinal operation, but to this statement there are many remarkable exceptions, which diminish, though they do not absolutely destroy, its utility in practice.

In some instances the exceptions are perhaps only apparent, and arise from an imperfect acquaintance with the affinities of structure or plants. We can easily imagine, that a slight and almost imperceptible difference in the structure of the nutritive organs of two plants, may be the cause of a trivial difference in the chemical composition of their products. Now organic analysis has shown us that a very inconsiderable difference in the combining proportions of the elements of organic substances is sometimes attended with important differences of medicinal activity.

2dly. Plants of dissimilar structure are sometimes endowed with similar or very analogous medical properties. An oleo-resinous juice, called turpentine, is obtained from Pistacia Terebinthus, a plant of the order Terebinthaceae, and a substance possessing almost identical properties, and bearing the same name, is secured from the genera Pinus, Larix, and Abies, of the order Coniferae. Balsam of Copaiba, which agrees with the turpentine in all its leading properties, and whose constituents are actually isomeric with those of the turpentine, is procured from Leguminosae. Yet the structure of Coniferae is totally dissimilar to that of Terebinthaceae or Leguminosae. Again, the effects of Lobelia inflata, a plant belonging to the order Lobeliaceae, are so analogous to those of Nicotiana Tabacum, which belongs to Solanaceae, that the first-mentioned plant has received the name of Indian Tobacco. The term Hellebore (Helleborus) has been applied to two very different plants, viz. Helleborus niger and Veratrum album, in consequence, I presume, of an observed similarity of operation (both being drastic purgatives and narcotic-acids); yet the first-mentioned plant is an exogen or dicotyledon, and belongs to the order Ranunculacae,—while the second is an endogen or monocotyledon, of the order Melanthiaceae.

c. Of Animals.—No attempts have been made to trace any relation between the toxicological, medical, or edible properties and the anatomical structure of animals. This has probably arisen from the comparatively small number of these beings which possess medicinal or poisonous properties; for we are enabled to employ, as
food, animals of every class, from the highest to the lowest. Among Quadrupeds and Birds no species is poisonous, unless, indeed, the Arctic bear be an exception, whose liver is stated by Capt. Scoresby to be deleterious. Among Fishes, Mollusks, and Insects, however, several species are hurtful; and it is frequently found that where one is deleterious, kindred species are likewise more or less so. Thus all the coleopterous insects belonging to the tribe Canthridae of Latreille possess blistering properties.

3. The Chemical Properties of medicines have been sometimes resorted to for the purpose of determining the influence which these bodies have over the organism. For we sometimes find the substances possessed of similar chemical qualities operate in an analogous manner on the system. Thus Sulphuric, Nitric, and Hydrochloric acids, act very much alike; as do also Potash and Saltpetre. But these analogies are not common, and we frequently meet with substances whose chemical properties are similar, but whose medicinal qualities are most incongruous, as in the case of Quina and Morphia: while, on the other hand, bodies whose chemical properties are exceedingly unlike, sometimes act in a very analogous manner. For example, Manna and Bitartrate of Potash.

The properties of bodies are so completely altered by chemical combination, that it is, in most cases, difficult to form a correct opinion as to the action of the compound medicine, merely by knowing the nature and proportion of its constituent parts. The compounds of some of the metals, however, offer exceptions to this statement.

Mr. Blake contends that a very close relation exists between the chemical properties and physiological effects.

4. The Dynamical Properties. Observation of the effects caused by the application of medicines to the animal body.—Some have examined the action of medicines on dead animal tissues, and drawn inferences therefrom as to the operation on the living organism. This mode of proceeding was adopted by Dr. Adair Crawford. It is admissible only for those remedies whose action is either mechanical or chemical; and, therefore, with respect to the great number of our remedial means, it is useless.

The examination of the effects of medicines on living animals is a much more valuable and important mode of investigation; it may be asserted, as a general rule, that a substance which is poisonous to one species is more or less so to all classes of animals; and, in a considerable number of instances, its action is of the same nature or quality, though usually very different in degree, and modified by the variations in the development of the several organs and functions. It has indeed been stated that many substances which are poisonous to man are innocuous to animals, and vice versa. That this statement is wholly untrue, I will not venture to affirm.
but I think that it is an exaggerated one; and I believe, with Dr. Christison*, that "if the subject be studied more deeply, the greater number of the alleged diversities will prove rather apparent than real."

The animals employed for the purpose of ascertaining the operation of medicines are, ordinarily, the dog and the rabbit, and, occasionally, the cat and the horse. The dog and cat are supposed to be "affected by almost all poisons exactly in the same way as ourselves." The principal peculiarities which are observed in the operation of medicines in our domestic animals, may be conveniently arranged under three heads, as follow:

a. Those relating to the nervous system.
b. Those connected with the structure of the digestive organs.
c. Those relating to the skin.

To the unequal development of the Nervous System of different animals, is to be referred the peculiarities observed in the operation of the substances termed Cerebro-spinants, or Narcotics, on different animals. Charvet, in noticing the effects of opium, observes that the brain of the dog being much less developed than that of man, "is not so liable to sanguineous congestion, and when this condition is observed, it is not very intense — stupor is the only symptom of it; never coma, loss of consciousness, nor profound sleep."

I have observed that the root of Monkshood does not act precisely alike on rabbits and dogs. In the latter, one of the most remarkable symptoms of its action is diminution of feeling; in the former, the function of feeling is much less obviously affected, but we observe more evident paralyzation of the hind extremities and muscular weakness. Moirond says that "the smallest quantity of Nux Vomica is sufficient to poison the dog, while the goat eats with impunity Hemlock, and the hog, Henbane."

b. From differences in the structure of the Digestive Organs arise some peculiarities in the operation of medicines. In carnivorous animals, vomiting can be readily excited; whereas in herbivorous ones it is either not effected at all, or only with extreme difficulty, as in the horse and the rabbit. In the horse, the soft palate is so placed as almost to preclude the possibility of vomiting. Whatever is returned from the stomach of the horse, passes through the nose. — As the rumen or paunch of ruminants possesses little sensibility and few blood-vessels, it is but slightly affected by medicinal agents. Hence in the administration of medicines to these animals, it is necessary to let them trickle slowly down so that they may flow along the oesophagean canal, and through the rumen or third stomach, into the abomasum, or fourth or true stomach. Mr. Youatt says that the occasional inertness of ergot of rye on the ruminant, to its being hastily poured from a large vessel, by which it falls into the paunch, and there remains inert. — Lastly, it is remarkable that colocynth, jalap, gamboge, and briony, which operate as violent purgatives on man and carnivorous animals, have comparatively little effect on the horse and other herbivorous animals.

c. The skin also presents some peculiarities in the operation of medicines. Thus dogs are but little under the influence of sudorifics: while the skin of horses is exceedingly susceptible of the action of oil of turpentine.

The action of medicines on the dead human body, or on parts separated from it (as the blood recently drawn from the veins), has

1 Christopher, op. supra cit. p. 64.
4 Moirond, op. supra cit. pp. 51, 269, and 274.
been examined, with the view of learning the operation of the agents on the living body. It may be of assistance to us in ascertaining either the mechanical or chemical action of substances; but as the greater number of medicines act only on the living body, and quite independently of any known mechanical or chemical influence, this mode of investigation is of very limited value.

In ascertaining the action of remedial agents on the living body, it is necessary that we examine their influence both in healthy and diseased conditions. For, by the first we learn the positive or actual power of a medicine over the body; while by the second, we see how that power is modified by the presence of disease. Moreover, in the latter condition we sometimes discover remedial influences which our knowledge of the effects of medicines on the healthy body could not have led us to anticipate. The beneficial operation of arsenic acid in agues, or in lepra, could never have been inferred from experiments made with this substance in health merely; nor could we have formed a correct estimate of the effects and proper dose of opium by employing it in tetanus, nor by using mercurials in fever.

The homœopathists assert, and with truth, that the study of the effect of medicines in the healthy state is the only way of ascertaining their pure or pathogenetic effects of medicines—since when we administer our remedies to invalids “the symptoms of the natural disease, the existing, mingling with those which the medicinal agents are capable of producing, the latter can rarely be distinguished with any clesness or precision.”

CHAPTER II.—OF THE ACTIVE FORCES OF MEDICINES.

The production of effects, by the application of medicines to the living body, depends on the existence of two classes of powers or forces; the one residing in the medicine (and called the active forces of medicines), the other in the organism.

Bodies act on each other in one or more of three ways; viz. mechanically, by their weight, cohesion, external form, and motion; chemically, by their mutual affinities; and dynamically, by agencies which are neither mechanical nor chemical merely. Hence we may examine the actions of medicines under the three heads of mechanical, chemical, and dynamical.

1. Mechanical.—The alterations of cohesion, of form, of relative position, &c. caused by medicines, are denominated their mechanical effects. They are frequently attended or followed by organic changes; consequently a medicine whose action is simply mechanical, may produce two classes of effects—the one mechanical, the other vital; and the whole of its operation may be denominated mechanico-vital.

Müller considers that mechanical agents may give rise to chemical changes in the tissues. “Mechanical influence in frictions,” he observes, “acts un

1 Hahnemann’s Organon, translated by C. H. Devrient, p. 190.
2 Elements of Physiology, translated by Bay, p. 59.
n circumstances, as a vivifying stimulus; it has this effect, probably, by
ing in the composition of the tissues, slight chemical changes, as a conse-
ence of which the affinity of the tissues for the general vital stimuli already
organism is increased."*merly most of the articles of the Materia Medica were supposed to act on
rganism mechanically merely. "I doubt not," says Locke**, "but if we
discover the figure, size, texture, and motion of the minute constituent
of any two bodies, we should know, without trial, several of their opera-
ions upon another, as we do now the properties of the square or a triangle.
know the mechanical affections of the particles of rhubarb, hemlock,
, and a man, as a watchmaker does those of a watch, whereby it perform-
enations, and of a file, which, by rubbing on them, will alter the figure of
the wheels, we should be able to tell before-hand that rhubarb will
hemlock kill, and opium make a man sleep." These mechanical notions
like harmonized well with those of the *iatromechanical or iatromathematical
the age in which he lived; a sect which ranked amongst its supporters
(i. t. founder), Bellini, and others, in Italy; Sauvages, in France; and
n, Keill, Mead, and Freind, in England. The functions of the body, the
iction of diseases, and the operation of medicines, were explained on mecha-
principles. The action of stimulants, for example, was supposed to
on the pointed and needle-like form of their particles, and the operation
ents on their globular form*. I need hardly say, the existence of par-
with the peculiar shapes assumed, is quite imaginary; and, indeed, if, for
ke of argument, we admit their existence, the action of medicines is,
standing, quite inexplicable. We can, indeed, easily believe that a ball
be swallowed with impunity, and that the same substance, reduced
form of a coarse powder, might cause irritation by the mechanical action
angular particles on the tender alimentary tube; but we could not, on
thesis, explain why one medicine acts on one part of the body, and a
on another part.
ere are very few medicinal agents now in use whose remedial
cy can be solely referred to their mechanical influence. Indeed,
of the processes to which medicines are subjected before they
dministered, have for their principal object the prevention or
ution of this influence. Among the medicines still employed,
count of their mechanical action, are the hairs of the pods of
na pruriens, quicksilver, and, perhaps, powdered tin; the first
est are used as anthelmintics—the second, to overcome
spection, or intestinal invagination.
EMICAL.—If substances, having powerful affinities for
matter, be applied to the living tissues, they overcome the
y of the part, and enter into combination with one or more of
stituents of the tissues; such substances are termed caustics
harotics. But the destruction of life in one part is attended
alterations in the vital actions, and the production of inflam-
in surrounding parts; so that the exertion of the affinities of
es is attended by both chemical and vital effects, and the whole
peration of these agents may be denominated a chemico-vital

the energy of the affinity of caustics for organic matter be
ished, as by diluting them, the vital powers are sometimes

* Essay concerning Human Understanding, book iv, chap. iii.
** Spengele, Hist. de Medec. by Jourdan, t. v. p. 131, et seq.
enabled to resist the production of any immediate chemical change and the life of the part is consequently preserved; but its original activity is disturbed and altered. This effect is termed irritant and the agent inducing it is called an irritant. In this case the active force is still supposed to be affinity; that is, the particles of the caustic are presumed to have a tendency to unite with the organised tissues; but the union being resisted by the powers, a new action is set up, which constitutes the change. The effects before referred to. The long-continued application, however, of weak chemical agents, will gradually effect slight changes in the composition of the tissues without producing the death of altered parts. These organic alterations of a living part are the course attended by the production of morbid actions.

Chemical changes are sometimes produced in the secretion of distant parts by the internal use of certain agents. Thus the properties of the urine are modified by the administration of acids or alkalis. These modifications or changes depend, at least in a considerable number of instances, on the chemical influence of the substances swallowed. For when either alkalis or acids are swallowed, they get out of the system, in part at least, by the kidneys; and in the latter they possess their usual chemical properties, modified by the presence of any substances with which they may have united. Moreover, the qualities which they impress on the urine, are similar to those which they produce when added to this secretion after its evacuation from the bladder. Thus, by the internal use of alkalis, it has been shown that the natural acidity of the urine may be destroyed, and an alkaline quality substituted for it: the same condition of urine is produced by the addition of alkalis to this fluid out of the body. Again, the internal use of soda or magnesia may give rise to the appearance of white sand (phosphates) in the urine; and the same kind of deposit is produced in healthy urine by the addition of a few drops of an alkaline solution to it. Furthermore, by the administration of acids (sulphuric or hydrochloric), phosphatic deposits are diminished or entirely prevented, while the employment of alkalis promotes them: and a few drops of hydrochloric acid added to urine, in which the earthy phosphates are suspended, drive them. In other words, as the modifications which acids and alkalis produce in the condition of the urine, are precisely what we might expect from the known chemical properties of these bodies, it is rational to infer that they depend on the affinity of these substances.

Do substances (such as acids, alkalis, and metallic salts), exercise affinities for the constituents of the blood of the tissues, exercise those affinities in their passage through the system? and are the constitutional effects of those substances referrible to chemical influences? It is impossible to give satisfactory answers to either of these questions. We cannot determine the chemical influence of these agents; but we are hardly authorized to ascribe the whole of their effects to it. The truth is, that the on which we are required to form our opinion are too few to e
raw any accurate or precise conclusions. By the internal
nadder, the bones and some other parts become coloured;
long-continued employment of the nitrate of silver gives rise
ally to a deposit of silver under the skin. But with two or
ceptions of this kind, no changes in the living tissues or
have been demonstrated. We know that when external
are taken into the system, they become subject to a superior
and are no longer at full liberty to obey the ordinary laws of
It must be some power superior to that recognized in che-
operations which prevents the action of the gastric juice on
ach during life.

* Elements of Physiology, by Baly, vol. i. p. 58, et seq.
and electrical properties to iron by mere contact with another body, without
the production of any change of form or of composition, either of the iron itself
or of the imparting body, is an example of this. Now, to influences of this kind
the term dynamical has been applied; and several pharmacologists have em-
ployed it to indicate those influences of medicines over the organism which are
ascribable to neither mechanical nor chemical causes. As the term is a con-
venient one, I have adopted it.

Some have attempted to account for the action of medicines on electrical prin-
ciples. All bodies, says Bischoff’s, by contact with each other, act as electri-
cities, without, however, necessarily undergoing any chemical changes. Therefore,
when a medicine is applied to the organism, its action is electrical. But though,
adds this writer, a medicine may produce electrical without chemical changes,
yet the reverse of this does not hold good, for no chemical changes can occur
without the production of alterations in the electrical condition of bodies; and,
consequently, the operation of cassities is an electro-chemical process.

In some few instances the effects of medicines are analogous to those of elec-
tricity. Thus the instantaneous death caused by hydrocyanic acid is something
like an electrical phenomenon. “A drop of acid, mixed with a few drops of
alcohol,” says Magendie’s, “when injected into the jugular vein, kills the an-
imal instantly, as if he had been struck with lightning.” The same physiologist
has compared the convulsive shock, caused by the Upani Theuté, “to that which
takes place when a current of galvanic fluid is directed along the spinal marrow
of an animal recently killed.” Again, “If an animal be touched whilst under
the action of this substance [extract of nux vomica], it experiences a commotion
similar to that of a strong electrical shock; and this takes place every time the
contact is renewed.” The recent assertions of Prof. Zantedeschi and Dr. Favia
(to which I have had already occasion to refer”), with respect to the existence
of electric currents in the animal body, are especially interesting in connection
with the above speculations. These experimentalists declare, that convulsive
movements strengthen or exalt the neuro-electric current,—a statement which
agrees with Magendie’s remark as to the effect of nux vomica. Bischoff’s, how-
ever, denies the existence of electric currents in the nerves.

CHAPTER III.—ON THE PHYSIOLOGICAL EFFECTS OF
MEDICINES.

The effects which medicines are capable of producing in healthy
individuals, are denominated Primary, Immediate, or Physiological.

Formerly no distinction was made between the effects which medicines pro-
duce in health, and those which they give rise to in disease; and the terms
Virtues, Properties, Faculties, and Powers, were applied to both classes of effects.
But Bichat, and subsequently Barbier and Schwilgué, pointed out the propriety
of considering them separately.

The Physiological Effects may, for convenience, be divided into
such as are local, or which occur in the part to which the agent is
applied; and those which are remote, or which take place in parts
more or less distant from that to which the medicine is applied.

* Burdach, System der Arzneimittelmacher. Leipzig, 1807.—C. H. E. Bischoff, Die Lehre von di-
mischen Heilmitteln. Bonn, 1825.—Vogt, Lehrbuch der Pharmakodynamik, 2nd Aufl. Giessen, 1
* Ordin, Toxicologie Générale.
* Formula. p. 5.
* See pp. 34 & 35.
* British and Foreign Medical Review for July, 1841, p. 245.
PHYSIOLOGICAL EFFECTS OF MEDICINES.

105

1. LOCAL EFFECTS.

(Topical Effects.)

The local or topical effects of medicines are of three kinds,—mechanical, chemical, and vital.

1. MECHANICAL EFFECTS.—The operation and primary effects of the hairs of Macuna pruriens, and of demulcients, are mechanical. But mechanical effects are usually attended, or followed, by changes in the vital actions of the part; so that the total effect is mechanico-vital.

2. CHEMICAL EFFECTS.—A very large number of medicinal agents effect chemical changes in the parts to which they are applied.

The constituents of the tissues on which these agents expend the energy of their affinities, are principally water, albumen, fibrin, and gelatine. Water constitutes four-fifths of the weight of the animal tissues, and without it they are wholly insusceptible of vitality, except in the case of some of the lower animals. Hence, therefore, agents like sulphuric acid, which powerfully attract water, act as caustics. Substances which either coagulate liquid albumen (as the mineral acids and alcohol), or which dissolve solid albumen, fibrin, and gelatine (as the alkalies), are also powerful caustics. Many salts (as bichloruret of mercury, sulphate of copper, acetate of lead, and chloruret of zinc), form new compounds when placed in contact with the organic principles just referred to: they are also called caustics. As a preliminary to the production of the chemical changes here mentioned, the caustic must destroy the life of the part. Lastly, around the cauterized parts inflammation is set up. So that the total effect of the chemical action of agents on the organism is chemico-vital.

Those medicines or agents, which produce a local chemical effect, admit of a three-fold division:

a. Some produce the complete destruction of the parts with which they are in contact. Oil of Vitriol, Nitre, and Hydrochloric Acids, and the Caustic Alkalies, belong to this series. Liebig refuses to call these substances poisons. They merely destroy, he says, the continuity of particular organs, and are comparable, in their operation, to a heated iron or a sharp knife.

b. Some enter into chemical combination with the tissues, or their organic components. To this series belong Sulphate of Copper, Bichloride of Mercury, Acetate of Lead, Chloride of Zinc, Nitrate of Silver, Arsenious Acid, Tannic Acid, &c. The components of the living part, when combined with any of these substances, are less susceptible of decay and decomposition than previously. Hence they are unfitted for the exercise of the "principal property which appertains to their vital condition, viz. that of suffering and effecting transformation," in other words, their vitality is destroyed. In some cases the quantity of inorganic matter sufficient to destroy the life of a part, is very small; as in the case of arsenious acid and bichloride of mercury. Liebig ascribes this to the high atomic weights of fibrine and albumen; and he states, that 3.4 grs. of arsenious acid, or 5 grs. of corrosive sublimate, are sufficient to form a neutral compound of equal equivalents with 100 grs. of fibrine, as it exists in muscle or blood; and that 14 grs. of arsenious acid are sufficient to unite with 100 grs. of albumen.

c. Some agents produce chemical effects distinct from those of the preceding two series. The Salts, with an alkaline or earthy base, and Alcohol, belong to this

3. Op. supra cit. Liebig says, that 6351 parts of anhydrous fibrine are united with 30000 parts of water in avascular fibrine or blood.
group. Liebig says, their action does not depend on their power of entering into combination with the component parts of the organism. Common salt and alcohol act by abstracting water from the moist tissues.

Liebig admits that some poisons act by catalysis. Thus, decomposing animal or vegetable matters are, he thinks, capable of inducing in the blood of a healthy individual a decomposition similar to that of which they themselves are the subjects. They exhibit, he says, a strong similarity to the action of yeast on liquids containing sugar and gluten. The poisons of small-pox, plague, and syphilis, act, he thinks, in this way. This view, which is a revival of an ancient opinion, is ingenious, but improbable.

3. Vital Effects.—The effects placed under this head are those which are unaccompanied by any obvious mechanical or chemical lesions.

Although it is probable, that no one component of a tissue can suffer much change in its vital activity without disturbing the actions of other components, yet we observe that the blood-vessels, the secretory apparatus, the organic fibres, and the nerves of a part, are affected, in unequal degrees, by different medicines.

a. In some cases the blood-vessels appear to be principally affected. Thus, Cantharides, Savine, Gamboge, Croton Oil, Mustard, &c. cause pain, heat, redness, and other symptoms of inflammation; these agents we denominate irritants or acrids.

b. In some instances the secretory apparatus is remarkably affected. Thus, Oxide of Zinc and Lime Water have a desiccating effect when applied to a secrating surface.

c. The effect of astringents and emollients is on the organic fibres chiefly.

d. The nerves, in some cases, are the parts principally affected. Thus, Aconite causes numbness, tingling, and a pricking sensation, with scarcely any visible alteration in the condition of the part.

2. Remote Effects.

(General Effects).

Nature of the Effects.—In general the effects produced in parts more or less remote from the seat of application, are physiological or vital; that is, they consist of alterations of the vital actions. In some few instances, however, chemical changes are obvious.

a. Vital Effects.—Some substances, when taken into the stomach, influence the functions of remote organs, without our being able to detect, after death, any change in the structure or appearance of the parts whose functions are thus affected. Thus, Hydrocyanic Acid disturbs the cerebral functions,—and Foxglove acts as a diuretic, without inducing any visible topical alteration in the brain and kidneys respectively.

On the other hand, some agents give rise to visible changes in the condition of the parts acted on. Thus, Cantharides, in large doses, excites inflammation of the bladder,—Drastic Purgatives, of the rectum.

b. Chemical Effects.—The deposition of silver under the skin and in some internal organs, by the administration of the nitrate of that metal, and the red colour communicated to bones by the internal employment of Madder, are proofs that the solids remote from the seat of application may undergo slight chemical change.—Vogt, however, denies that any remote chemical effects can be induced. I have already assigned reasons for believing that the alteration effected in the quality of the urine by the internal use of Acids and Alkalies, are the effects of a chemical influence.

* Vogt, Pharmakodynamik, Bd. i. S. 15.

† See p. 182.
MEDIUM BY WHICH REMOTE EFFECTS ARE PRODUCED.—It has been hitherto generally supposed that there were two modes by which a medicine or poison affected remote parts: these were,—

1st. **By absorption.**—that is, by the passage of the medicinal or poisonous molecules into the blood.

2nd. **By sympathy.**—that is, by an impression transmitted through the nerves.

Sir Benjamin Brodie inferred this double medium of operation from his experiments on several poisons. It has, however, always appeared somewhat improbable that an agent should be capable of affecting remote parts in two ways. "All fair analogy," observe Messrs. Morgan and Addison, forbids the conclusion that a poison or an ordinary cause of disease shall at one time produce constitutional disturbance through the medium of one system of organs, and at another time through the medium of another system of organs." Difficulties, however, have hitherto appeared in the way of an exclusive adoption of either mode of operation; and, therefore, while Magendie, on the one hand, advocated the operation of absorption only, and Messrs. Morgan and Addison, on the other hand, that by sympathy only, most writers, dissatisfied with these exclusive views, have adopted Sir Benjamin Brodie's opinion of a double mode of operation. Although late investigations strongly favour, if, indeed, they do not absolutely establish, the correctness of Magendie's opinion, I think it expedient, so long as any doubt remains, to examine both theories; and, therefore, the two following chapters will be devoted to these subjects.

CHAPTER IV.—ON THE ABSORPTION OF MEDICINES.

Proofs.—The particles of most medicinal substances, when applied to the living body, become absorbed and pass into the circulation. Two facts prove this, viz., the disappearance of certain substances from a shut cavity into which they had been introduced,—and the detection of medicinal particles in the blood, secretions, or solids of the body.

a. Disappearance from a shut cavity. —Drs. Christison and Coidet found that four ounces of a solution of oxalic acid injected into the peritoneal sac of a cat, killed the animal in fourteen minutes. On a post-mortem examination, although none of the fluid had escaped by the wound, they found scarcely a drachm remaining.

b. Detection in other parts of the body.—Tiedemann and Gmelin have detected, by physical or chemical characters, the following substances in the blood of animals to whom those agents had been administered: Camphor, Dippel's Oil, Musk, Indigo, Rhubarb, Lead, Cyanuret of Potassium, Sulphocyanuret of Potassium, Iron, Mercury, Barbita, and Alcohol. By other experimenters, Asafetida, Sal Ammoniac, Iodine, Hydrocyanic, and Sulphocyanic acids, &c. have been found.

* Phil. Trans. for 1811, p. 178; and for 1812, p. 203.
* For authorities consult Magendie's Elementary Compendium of Physiology, and Christison's Practice on Poisons.
In the *solids* of the body several substances have been recognized: for example, Madder in the bones, Silver in the skin, Copper in the liver, Lead in the liver, spinal cord, and muscles, Mercury in various parts, &c.

In the *secretions* various medicinal agents have been recognized.—Thus, *in the cutaneous secretions*, Mercury, Iodine, Sulphur, the odorous matter of Musk, of Garlic, and of Onions, and other substances, have been detected;—*in the breath*, several substances have been recognized by their odour; for example, Camphor, Alcohol, Ether, Phosphorus, Asafoetida, Sulphur, the odorous matter of Garlic, and of Onions, &c. The *milk* sometimes acquires medicinal properties, in consequence of the employment of certain substances by the nurse. Thus it is rendered purgative by Senna, and narcotic by Opium. “Alkalies given to the nurse will relieve acidity in the child’s stomach; and Mercury given through a similar medium will cure syphilitic symptoms in the infant at the breast.” Bitters, Indigo, Iodine, and Madder, have also been distinctly recognized in the milk. *In the urine* so many substances have been discovered, that it will be most convenient to exhibit them in a tabular form. The following is taken principally from the experiments of Drs. Wolff and Stehberger, as mentioned by the late Dr. Duncan.

SUBSTANCES WHICH PASS OFF BY THE URINE.

(A.) **UNCHANGED, OR NEARLY SO.**

<table>
<thead>
<tr>
<th>Salt</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate of potash.</td>
<td></td>
</tr>
<tr>
<td>Nitrate of potash.</td>
<td></td>
</tr>
<tr>
<td>Chlorate of potash.</td>
<td></td>
</tr>
<tr>
<td>Sulpho-cyanide of potassium.</td>
<td></td>
</tr>
</tbody>
</table>

Sulphate of potassium.

Ferro-cyanide of potassium (in 66 minutes).

Silicate of potash.

Tartrate of nickel and potash.

Borax.

Chloruret of baryum.

Fig. 9.

Cactus opuntia:
Small Indian or Prickly Fig.

Colouring Principles.

- Indigo { (in 15 minutes).
- Madder { (in 20 minutes).
- Rhubarb (in 25 minutes).
- Gamboge.
- Logwood (in 25 minutes).
- Turmeric (Lewis).
- Red radishes.
- Mulberry.
- Black cherry (in 45 minutes).
- Cassia Fistula (in 55 minutes).
- Elder robe (in 75 minutes).
- Cactus Opuntia (see fig. 9).

Other Matters.

- Astringency of Uva ursi (45 minutes.)
- Oil of almonds (*Bachetoni.*)

1 Dr. Lecock, in *The Cyclop. of Prakt. Medicine*, art. Lactation. The same authority states that a patient of Mr. Keate took Mercury by giving the Nitrate of this metal to an ass, and drinking the milk.

2 *Supplement to Edinburgh Dispensatory*, 1832.
(B.) In a state of combination.

Sulphur, as sulphuric acid and sulphuretted hydrogen.
Iodine, as hydriodic acid or ioduret.
Oxalic
Tartaric
Gallic (in 20 minutes) \{ Acids, appear in combination.
Sucinie
Benzoic

(C.) In a decomposed state.

\{ of potash, or soda, are changed into the carbonate of the same alkali.

Sulphuret of potassium, changed, in a great measure, into the sulphate of potash.

The accounts published respecting the Amanita muscaria (fig. 10) be correct, its effects are most extraordinary. A variety of this fungus has a powerful narcotic or rather inebriating effect; and that the active molecules get into the blood is proved by the fact of the urinary secretion being impregnated with them, and thus possessing an intoxicating property; and we are told that the inhabitants of the north-eastern parts of Asia use it for this property. A man, for example, may have intoxicated himself to-day by eating some of the fungus; by the next morning he will have slept himself sober; but by drinking a tea-cupful of his urine, he will become as powerfully intoxicated as on the preceding day. “Thus,” says Dr. Greville, on the authority of Dr. Langsdorf, “with a very few Amanites, a party of drunkards may keep up their debauch for a week;” and “by means of a second person taking the urine of the first, a third of the second, and so on, the intoxication may be propagated through five individuals.”

![Amanita muscaria](image)

Vessels effecting absorption.—The particles of medicinal and poisonous substances are absorbed by the vessels principally, but also by the lymphatics and lacteals.

Absorption by the veins.—The circumstances which seem to prove venous absorption are the following:

1. **Detection of substances in the venous blood.**—Tiedemann and Einl administered a variety of colouring, odorous, and saline substances to animals, mixed with their food, and afterwards examined the state of the chyle, and of the blood of the (splenic, enteric, and portal) veins. The colouring substances employed were—Indigo, Madder, Rhubarb, Cochineal, Litmus, Alkanet, Garg, and Sap-green; none of them could be detected in the

Also, on this subject, The History of Kamtschaka and the Kurilki Islands, translated by Dr. [citation needed]. Picton, 1704.

p. supra cit.
chyle, but some were found in the blood and urine. The odorous substances used were—Camphor, Musk, Spirits of Wine, Oil of Turpentine, Dippel’s Oil, Asafetida, and Garlic: they were, for the most part, detected in the blood and urine, but none were found in the chyle. The saline substances tried were—Acetate of Lead, Acetate and Cyanuret of Mercury, Chloruret and Sulphate of Iron, Chloruret of Barium, and Ferro-cyanide and Sulpho-cyanide of Potassium. A few of these were detected in the chyle, and most of them in the venous blood and urine. From these experiments we may conclude, that although saline substances occasionally pass into the chyle, odorous and colouring matters do not; all the three classes of substances, however, are found in the venous blood. These results, observe Tiedemann and Gmelin, are opposed to those of Lister, Musgrave, J. Hunter, Haller, Viridet, and Mattei, but agree with those of Hallé, Dumas, Magendie, and Flandrin.

b. Division of all Parts but Blood-vessels.—Magendie’s Experiment.—Magendie and Delille⁴ performed a striking experiment, with the view of settling, if possible, the question of venous or lymphatic absorption of medicines and poisons. They divided all the parts of one of the posterior extremities of a dog, except the artery and vein, the former being left entire, for the purpose of preserving the life of the limb. A portion of the Upas Tierlé was then applied to a wound in the foot: in the short space of four minutes the effects of the poison were evident, and in ten minutes death took place. To the inferences drawn from this experiment, however, several objections have been stated: first, the exhibition of opium, to diminish the pain of the operation, has been said to vitiate the whole of the experiment; secondly, the coats of the arteries and veins contain lymphatics, by which absorption might be carried on; and thirdly, as the poison was introduced into a wound, the poison might have combined with the blood, and have rendered it deleterious, without the process of absorption taking place. The first two of these objections have been obviated. In a second experiment, Magendie severed the artery and the vein, and reconnected them by quills, so as to preclude the possibility of absorption taking place by the lymphatics of these vessels: the effects were the same. Some years since I assisted my friend Mr. Lloyd, assistant-surgeon of St. Bartholomew’s Hospital, in performing an analogous experiment, using Strychnia instead of the Upas Tierlé, and without administering opium: death took place in twelve minutes.

The late Dr. Thomas Davies⁵ observes, on this experiment, that as the absorbers and veins communicate, it is possible that the poison flowed first into the absorbers, and from thence into the veins of the amputated portion of the limb.

c. Lacteals tied: effects of poisons still produced.—Magendie says that symptoms of poisoning were observed in six minutes, when nux

¹ Magendie’s Elementary Compend. of Physiology, translated by Dr. Milligan, p. 284. Edin. 1821.
² Lectures on the Diseases of the Lungs and Heart, p. 313. Lond. 1835.
vomica was applied to the intestine, though the lacteals had been tied.

d. Blood-vessels tied: poisons do not act.—Segalas tied the veins of a portion of intestine, and applied poison, but no effects were produced. Emmert observed, that when the abdominal aorta was tied, hydrocyanic acid was applied to the foot without producing any effect, but when the ligature was removed, symptoms of poisoning came on. Mr. Blake found, that if a ligature be put around the vena portae, and then poison be introduced into the stomach, it failed to act.

It deserves notice, that the Academy of Medicine of Philadelphia found that aux vomica, introduced into the intestines, produced tetanus, although the vena portae was tied.

e. Rapidity of absorption and circulation too great for the lymphatics or lacteals.—Mayer found that Ferro-cyanide of Potassium could be detected in the blood, in from two to five minutes after its injection into the lungs. From this it has been inferred that it enters the blood too speedily for it to be explained by the slow circulation of the lymph. From later experiments, it appears that the rapidity with which poisons enter the blood has been greatly underrated. Professor Hering, of Stuttgart, found that the time which a solution of Ferro-cyanide of Potassium, injected into the jugular vein, requires to reach that of the opposite side, was, in various experiments, from twenty to thirty seconds. And Mr. Blake states that the time required for a substance which does not act on the capillary tissue, to pass from any part of the vascular system back to the same part again, in dogs, varies from twelve to twenty seconds.

Rapid as is the circulation of poisonous molecules, it has been supposed not to be sufficiently so to explain the operation of certain poisons which have been said to act instantaneously; and hence an argument has been raised in favour of the nerves being the medium by which the deadly impression is conveyed. But Mr. Blake asserts that an interval, always more than nine seconds, elapses between the introduction of a poison into the capillaries or veins, and the first symptom of its action—a period sufficiently long for a poison to be brought into general contact with the tissues it affects.

2. Absorption by the lacteals and lymphatics.—The particles of medicinal and poisonous substances are probably absorbed by the lacteal and lymphatic vessels, as well as by the veins. But the process seems to be slow, and, moreover, is confined to certain agents. Tiedemann and Gmelin, whose experiments I have above referred to, were unable to recognize either colouring or odorous substances in the chyle, but occasionally detected certain salts. The absorption of saline, and non-absorption of colouring matters, have likewise been noticed by others.

* Müller, op. supra cit. vol. i. p. 240.
* Müller’s Physiology, by Baley, vol. i. p. 239.
* Quoted by Dr. Christian, in his Treatise on Poisons, p. 8, 3d ed. 1835.
* Ibid. p. 49.
* Müller’s Physiology.
Some of the experiments performed by the Academy of Medicine,
Philadelphia, appear to be in favour of absorption being effected chiefly by
tissues; but they are not conclusive.

Mechanism of Absorption.—The facts connected with absorption are best explained by assuming the existence of two
agencies by which this process is effected;—the one physical, the other vital.

1. *Absorption by physical agency* (Imbibition, Magendismose and Endosmose, Dutrochet.)—Two fluids separated by
opposed dead membrane, mutually, though not equally, penetrate membrane, so as to become intermixed with each other.

> Fig. II.

![Apparatus to illustrate Physical Absorption.](image)

If a current of water, coloured by litmus, be allowed to pass from (fig. 11), through a vein immersed in sulphuric acid, contained in a glass into a reservoir (e), the litmus liquid observed to become reddened by the vein, in consequence of its permeating the venous coats. If the position of the fluids be altered,—litmus put in the dish (b), and the vein from the bottle (a) through the vein will still become reddened, showing that the acid has passed in this case from right to left.

Gases and vapours, as well as liquids, also readily permeate through the membrane. But the same membrane is unequally permeated by different fluids.

But it may be said this effect is cadaveric only; that is, in the dead, but not in the living, tissues,—and in support of this view may be urged, the transudation of blood within the veins, and of bile within the gall-bladder, both of which vessels are observed after death. Magendie has endeavoured to meet this difficulty with respect to the imbibition of poisons. He ligated and isolated the jugular vein of a dog, placed it on a piece of filter paper, and dropped some aqueous solution of the extract of nux vomica, taking care that the poison touched nothing but the filter paper. In four minutes the effects of the substance became manifest, and the dog died. It must be admitted, however, that the result of this experiment does not absolutely prove, strongly supports, the opinion, of the imbibing power of vessels; for it might be objected, that the nerves of the vein propagated the impression of the poison, and that death took place without absorption; or, that the small veins of the venous plexus taken up the poison. The proof, therefore, should consist in the detection of the poison within the vessel. Now this has been ascertained by Magendie: a solution of nux vomica was placed in the carotid artery of a rabbit; but as the tissue of arteries is firm and less spongy, and their parietes thicker than those of veins, some time elapsed before the poison traversed the vessel. In 12 minutes, however, it had passed, and on dividing the v

Magendie, Lectures, in the Lancet, Oct. 4, 1834.
ood adherent to its inner wall was found to possess the bitter taste of the poison.

With these results before us, we cannot refuse to admit the abibition of living tissues, though in them this process cannot be effected so readily as in dead tissues.

2. Absorption by a vital agency.—The physical and chemical agencies, with which we are at present acquainted, are totally inadequate to explain all the phenomena of absorption; as the interstitial absorption of solid matter,—for example, in the bones. We are constrained, therefore, to admit another agency, which we may denominate vital or organic.

Absorption of a Medicine, or Poison, essential to the production of its remote effects.—Magendie and Müller consider the passage of poisons into the circulation essential to their operation on the system; while Messrs. Morgan and Addison deny that in any case absorption is absolutely necessary for the operation of a poison. "We are not opposed," observe the latter gentlemen, "to the theory of venous absorption, but to that theory which would associate with it the absolute necessity for the admission of a poison into a vein." The following facts appear to me to prove, that absorption is essential to the production of the remote effects:

1. Activity of Substances injected into the Blood-vessels.—Medicinal or poisonous agents, injected into the blood-vessels, exert the same kind of specific influence over the functions of certain organs, as when they are administered in the usual way; but that influence is more potent. Thus, Tartar Emetic causes vomiting, Castor Oil purging, Opium stupor, and Strychnia convulsions, when thrown into the veins.

2. Detection of Substances in the Blood.—All those medicinal and poisonous agents, whose sensible or chemical properties enable them to be readily recognised, have been detected in the blood, or in the secretions which are formed from the blood, after their ordinary modes of administration; as by the stomach.

3. Activity of Medicines promoted by the means which promote absorption, and vice versa.—The remote effects of many medicinal and poisonous agents are influenced by the same circumstances that influence absorption; and we are, therefore, naturally led to presume a mutual relation. Now, these circumstances are principally three in number, viz. the nature of the tissue to which the agent is applied—the properties (physical or chemical) of the medicine itself—and the condition of the system.

2. Nature of the tissue.—Nux vomica acts with the greatest energy when applied to the pulmonary surface,—with less when introduced into the stomach,—and with the least of all, when applied to the skin. The same order of gradation is observed with respect to opium. Now, the faculty of absorption, or of imbibition, as Magendie calls it, does not take place with equal intensity in all tissues. Certain physical conditions (viz. a fine and delicate structure and great vascularity) enable the pulmonary surface to absorb or imbibe with extreme rapidity; in this respect, indeed, it is not equalled by any tissue of the body. Hence, then,
if we assume that nux vomica and opium act by becoming absorbed, we easily comprehend why they are so efficacious when applied to this part. membrane lining the alimentary canal absorbs with less facility than the primary membrane, which may be accounted for by its less vascularity, and being covered, in some parts at least, by an epidermoid layer, and in all its by mucus, which, to a certain extent, checks absorption. The cutaneous swelling, lastly, being covered by an inorganic membrane (the epidermis) does not possess the same physical faculties for absorption met with in either of the former tissues; and hence the comparative inertness of medicines when applied. In fact, it is only by the long-continued application of these agents to the skin that we are enabled to affect the general system; and that the obstructing is the epidermis, is shewn by the facility with which the system may be influence when this layer is removed, as has been proposed and practised by Lemberg and Lesieur, constituting what has been denominated the endermic or emplastro-dermic method of treating diseases; of which method I shall have occasion to speak hereafter.

b. The physical and chemical properties of medicines.—Another circumstance tending to prove some connection between the activity of a medicine and its absorption is, that the effect of many medicines is in proportion to their solubility. Arsenious Acid and Morphia are both more active in solution than in the solid state. Now liquids (particularly those miscible with the blood) are more readily absorbed than solids. In the treatment of many cases of poisoning, we endeavour to take advantage of this fact, and by rendering the substance insoluble, diminish their activity, or render them quite inert. For instance, the antidote for the salts of Lead, and of Baryta, is a Sulphate, the acid of which forms an insoluble compound with the bases (Lead or Baryta) of these salts. Tabac acid (or astringent infusions which contain it) is for the same reason useful in cases of poisoning by vegetable substances whose active principle is an alkaloid; and we employ Carbonate of Lime as an antidote for Oxalate to render this substance incapable of being absorbed.

c. Condition of system.—Magendie asserts, as the result of experiments, that plethories uniformly retard, and depletions constantly promote, absorption. If, therefore, we wish to promote this function, we have a ready means of doing so in blood-letting. Now every surgeon knows that one powerful means of promoting the action of mercurials on the mucous membrane of the mouth, is to abstract blood; and we should be cautious in bleeding a patient, while a poisonous dose of some narcotic, as opium, is in the stomach. Nay, in theory, the means of preventing the operation of poisons which act by becoming absorbed would be to throw a quantity of warm water into the veins. Magendie confirmed this on animals, and found it successful.

4. Division of all parts but blood-vessels. Magendie's experiments. The experiment of Magendie, already related, of applying Upas Tincture to the leg of a dog, connected to the body only by quills, is another argument in favour of the operation of medicines by absorption: for in this case the action of the poison could be taken place only after it had passed into the blood.

5. Division of the spinal cord.—Some poisons, as Hydrocyanic acid, are equally active when applied to the legs of an animal whose spinal marrow has been divided. In this case, the effect of the poison could not be the result of its action on the nervous system, because it does not destroy the action of the excretory or sympathetic systems, the nervous branches of which are distributed to the lining membrane of the blood-vessels. I am aware that it is an experiment liable to objection; but, on the wh
ABSORPTION OF MEDICINES. 115

is certainly favourable to the opinion of the operation of poisons by absorption; more particularly when we bear in mind that the motion of the blood is necessary to the action of the poison; for if the circulation of a part be obstructed, the poison will no longer act.

6. Ligature on the veins.—If the veins leading from a poisoned part be tied, the symptoms of poisoning do not occur.

These reasons are, to my mind, conclusive, that in a large number of instances at least, if not in all, the operation of a medicine on remote parts of the system depends on its absorption. Nor can I admit that this opinion is at all invalidated by the arguments and experiments of Messrs. Morgan and Addison.

Other arguments in favour of the view here taken, may be derived from some experiments made by Mr. Blake, of which a short notice only has as yet appeared. Mr. Blake states that the rapidity of the action of a poison, is in proportion to the rapidity of the circulation. Thus, he says, a substance injected into the jugular vein of a horse, arrives at the capillary termination of the coronary arteries in ten seconds; of a dog, in twelve seconds; of a fowl, in six seconds; of a rabbit, in four seconds; and he adds, that the time required for the first symptoms of the poison to present themselves, bears a close relation to the rapidity of the circulation.

The principal objections, which have been raised to the theory of the operation of medicines by absorption, are the following:

1. Absorption not essential.—The experiments of Magendie and others, it has been observed, only show that a poison may get into the veins, and do not prove that absorption is essential to the effect. "We must strongly protest," say Messrs. Morgan and Addison, "against the assumption that, because a poison has been found to enter and pass through a vein, it is thence to be inferred that such a process is, under all circumstances, absolutely necessary to its operation." But it has been proved that absorption is facilitated the more energetic do poisons act, and vice versa.

2. The effects of injuries and poisons analogous.—Mr. Travers points out very forcibly the analogy to be observed between the effects of severe injuries and of poisons which operate rapidly on the system. Thus both strychnia and punctured wounds cause tetanus, and, therefore, concludes their modus operandi must be identical: consequently, as there is nothing to absorb in the one case, absorption cannot be essential in the other. But although the symptoms caused by the above poison are very analogous to those of traumatic tetanus, yet we are not to conclude that the effects of strychnia and of a puncture are precisely alike. We have abundant evidence to prove, that very dissimilar conditions of the nervous centres may be attended with similar symptoms. Phrenitis and delirium tremens resemble each other in symptoms, yet experience has shown that they are very dissimilar diseases, and require different methods of treatment. A morbid state of the cerebral faculties, strongly resembling that induced by congestion, may be produced by loss of blood. "The fact of two substances producing similar symptoms in one organ," observes Müller, "does not prove that these substances produce exactly the same effects, but merely that they act on the same organ, while the essential actions of the two may be very different." And I confess I see nothing unphilosophical in supposing that the same morbid condition of the part may be induced in more than one way: for as every part of the organism depends, for the performance of its proper functions, on the receipt of arterial blood and of nervous influence, so alterations in the pty of either of these essentials may modify or even suspend the functions of a part.

1 See p. 111.
2 Lond. Med. Cour. for June 18th, 1841.
3 Further Inquiry concerning Constitutional Irritation.
3. Blood of a poisoned animal declared not to be poisonous.—Messrs. Morgan and Addison tell us that the blood circulating in the carotid artery of a dog, poisoned by strychnia, is not poisonous to a second dog, and they therefore infer that this poison does not act on the brain by absorption, but by an impression upon the sentient extremities of the nerves.

By the aid of a double brass tube (fig. 12), consisting of two short brass cylindrical tubes, to each of which a long handle is attached (fig. 14), they established a complete circulation between the carotids of a poisoned and of a sound dog, connecting the lower and upper ends of the divided arteries in both animals that each supplied the brain of the other with the portion of blood which previously passed through the carotid artery to his own, and, consequently, poisoned dog in this case received from the unpoisoned animal a supply of blood equal to that with which he was parting (Fig. 13). One of the dogs was then inoculated with a concentrated preparation of strychnia, which had been upon other occasions to produce death in these animals in about minutes and a half. In three minutes and a half the inoculated animal exhibited the usual tetanic symptoms which result from the action of this poison, and in little less than four minutes afterwards, viz. about seven minutes from the time at which the poison was inserted, during the whole of which period a mutual interchange of blood between the two was clearly indicated by strong pulsation of the drained vessels throughout their whole course. Arteries were next secured by ligature, and the living was separated from the dead animal; but neither during the operation, nor subsequently, did the slightest symptom of the action of the poison upon the system.

The inference which has been drawn from this experiment is, that the art blood of an animal under the influence of poison is not poisonous. But it appears to me that this is not a necessary inference, and as it is opposed to the result of other experiments, it requires careful investigation ere we admit Vernière has proved that if the extract of nux vomica be thrust into the heart of an animal after a ligature has been tightened round the leg, so as to stop

4 Christison, Treatise on Poisons, 3d ed. p. 10.
at not the arterial circulation of the limb, blood drawn from an orifice between the wound and ligature, and transfused into the vein of another ill excite in the latter the usual effects of the poison, so as even to kill; while, on the contrary, the animal from which the blood has been not be affected at all, if a sufficient quantity is withdrawn before the f the ligature.”

Sennus, in noticing the different results obtained by Vernière and Morgan and Addison, observes, that “if it be inquired why the poi- "

son concentrated below a ligature, and transferred into the vein of an animal, proves destructive, while the blood of their common circulation by the one of the two animals which is the subject of the inoculation, is obvious—that either the mechanical impulse fails, or the activity is exhausted before, in the latter case, it reaches the second

remarkable error pervades the whole train of reasoning adopted by Messrs. and Addison, and vitiated some of their conclusions. They assume that considers actual contact with the brain as essential for the operation as poison. This assumption, however, is not correct. “In 1809,” endicè, “I laid before the first class of the French Institute, a series of its which had conducted me to an unexpected result; namely, that an any of plants (the bitter Strychnos) have the singular property of exciting the spinal marrow, without involving, except indirectly, the brain.” Now, this being Magendie’s opinion, it is evident that, experiment performed by Messrs. Morgan and Addison, the blood sent carotid artery of the poisoned animal to the brain of the sound one, by reach the spinal marrow by the usual route of the circulation; that is, returned by the jugular veins to the heart, from thence to the lungs, in to the heart; from thence into the aorta, and then distributed through. Now it is not too much to suppose that, during this transit, some of the poison might be decomposed, or thrown out of the system, before arrive at the spinal marrow; and even if this were not the case, this all only receive a small quantity of the poison contained in the system; that sent by the vertebral to the spinal arteries. Hence we ought to flat a poison thrown into the arteries will operate less powerfully than round into the veins, unless it be into the arteries supplying the parts on the poison acts. Moreover, as an anonymous reviewer [Sir David Barry?] reed, it is to be recollected, that as the carotid artery, in its healthy little more than one-fourth of the calibre of the vessels carrying blood to the brain, consequently the dog not inoculated was subject to the effect of one-fourth only of the quantity of the poison which was conveyed brain alone of the inoculated animal. Furthermore, I would add, that it is much to suppose that the circulation of the blood through the tube not be so free as through the artery. Another objection to this experi- as been raised by Mr. Blake, who asserts, that as “soon as the poison to exert its influence on either animal, the pressure in its arterial system diminished; and thus, far from the blood containing the poison being the brain of the sound animal, the only effect of the arrangement will make a reflux of pure blood from the arteries of the sound dog into those poisoned one.”

W 10 Medicines and Poisons, which have entered the vessels, affect distant organs? — Viewing the question generally, we can conceive three ways, by one or more of which the parts might become affected after medicinal globules have put into the blood.

† See pp. 42, 43, 47, 49, &c. of the Essay.
‡ Formulaires, 8th ed. p. 1.
1. By modifying or altering the properties of the blood, thereby unfurling it for carrying on the functions of the body. Although no facts are known which can be regarded as absolutely proving that the action of medicines or poisons is primarily on the blood, yet none I believe are inconsistent with such a notion in cases, while several strongly favour it; and it has been justly served by Andral, that "as the blood nourishes the solids, and without its presence they cannot support life, the state of the solvents cannot but be influenced by the state of the blood."

In the first place, it must be admitted that in many diseases the properties of the blood are altered, and in some cases these alterations often appear to be primary; that is, they precede alterations of the solids. Secondly, in some diseases the blood acquires poisonous properties, and is capable of transmitting the affection of an individual from whom it was taken. Thirdly, by the use of poisons, medicines, and particular kinds of diet, the properties of the blood may become altered, while at the same time the condition of the solids modified. Now as from the food is formed the chyle, from the chyle the blood, and from the blood the solids, a necessary connection must exist between the quality of the ingesta and the condition of the solids. For facts and arguments relative to these positions, I may refer to Andral's work before quoted.

But if medicines or poisons introduced into the torrent of circulation act primarily on the blood, what, it may be asked, are the effects produced?

In some cases the action is mechanical, as when air is introduced into a vein. "A very small quantity of air," says Magendie, "passed slowly into a vein, mixes with the blood, traverses the lungs, and is exhaled with the pulmonary transpiration, without causing any remarkable accident; but when the quantity is increased, especially in a sudden manner, the air mixes with the blood contained in the heart, and forms with it a foamy kind of liquid, which does not pass readily through the capillary system of the pulmonary artery. In consequence of this obstacle to the passage of the blood through the lungs, the respiration and circulation become necessarily troubled, and the animal soon dies in a state of asphyxia,—not from any pernicious action of the air on the nervous system." Water, when introduced into the circulation, probably acts merely as a diluent. For though when mixed with blood out of the body it causes no change in the condition of the red blood disks, we can hardly suppose that it produces a similar effect within the blood-vessels, from the circumstance that large quantities of water may be thrown into veins without causing any remarkable disorder of system; whereas if the disks were altered, great disorder of the system might be expected. Solutions of various substances (as sal ammoniac, chloro...
of sodium, carbonate of potash, sugar, &c.) produce no obvious change in the disks out of the body.

Some substances exercise a chemical action on the blood; as the mineral acids, the alkalis, various metallic salts, alcohol, &c. The affinity of these agents is principally directed to the fibrin and albumen of the liquor sanguinis, and to the constituents of the blood disks. Hydrocyanic acid even would appear to be a chemical agent, since it makes the blood oily, fluid, and bluish in colour. Such substances, therefore, as exercise a chemical influence, cause speedy death when they are thrown into the veins, unless, indeed, the quantity introduced be very small. It is possible that organic substances may, as Dr. Christison supposes, be decomposed in the blood, without that fluid undergoing any apparent change. "A very striking proof of this is furnished by oxalic acid. Dr. Coindet and I, in one of our experiments, injected into the femoral vein of a dog eight grains and a half of oxalic acid, which caused death in thirty seconds. Here it was impossible that the poison could have passed off by any of the excretions; yet we could not detect even that large proportion in the blood of the iliac vein and vena cava, collected immediately after death. As the blood possessed all its usual properties, we must suppose that the poison underwent decomposition in consequence of a vital process carried on within the vessels."

Liebig has suggested another mode by which medicinal agents may effect chemical changes in the condition of the blood. It is well known that the acetate of potash is converted, during its passage through the system, into carbonate of potash. Now, to undergo this alteration, it must absorb oxygen, and set carbonic acid and water free; and as there is no evidence that the system yields oxygen, Liebig assumes that the change takes place in the lungs. So far his opinion seems plausible. But he goes on to observe that this change in the lungs would prevent part of the oxygen inspired from performing its usual office: in other words, the arterialization of the blood would be impaired. This part of the explanation seems to me improbable.

We can readily believe that slight chemical changes may be affected in the blood disks, without our being able to demonstrate them: yet these changes may be sufficient to produce great disorder of system.

It must not, however, be assumed, that agents which effect chemical changes in the blood out of the body, or when injected into the veins, necessarily produce the same phenomena when absorbed from the intestinal or other surfaces; for the quantity taken up at any one time by this process is small in proportion to the volume of the circulating fluid, and the affinities between these agents and the constituents of the blood seem to be kept in check by the vital properties. Moreover, the affinities of these substances for organic matter are more or less satisfied in the alimentary tube.
As the blood is a vital fluid, medicines may effect changes in it which are neither mechanical nor chemical. Strychnia and morphia produce no obvious effect on the blood, yet it is not impossible that they may cause some changes in its vital condition; and that to these, part of the symptoms, caused by their use, are to be referred. Here, however, all our remarks are but conjectural.

2. By pervading the structure of the organ acted on.—The usual mode of explaining the action of medicines after their absorption, is, that when they have got into the blood, they are carried in the ordinary course of circulation to the heart, and from thence to the lungs. Here the blood undergoes certain chemical changes, and is probably deprived of part of the medicinal particles: at least this appears to be the case with respect to certain odorous substances. The blood, still impregnated with medicinal particles, being returned to the heart, is transmitted from thence to all parts of the system. In their passage through the tissues of the different organs, it is presumed that these particles act on one or more parts which are endowed with a peculiar susceptibility to their influence. Thus the opiate particles are supposed to exert a specific influence on the cerebral tissues; strychnia is thought to act on the grey matter of the spinal marrow; mercury, on the salivary glands; diuretics, on the kidneys; and so on. Müller supposes that a change is effected on the composition of the organic matter of the part acted on. The molecules are ultimately got rid of by the excretory organs. On this supposition, then, the blood is merely the “vehicle of introduction.”

It must be admitted that this theory, plausible as it may appear, cannot be satisfactorily proved. We may adduce several arguments in favour of it, but absolute proof or demonstration cannot be offered: our facts merely show the passage of medicinal particles into the blood, and the affection of remote organs; but the link which connects the two phenomena cannot be, or at least has not yet been, demonstrated. The strongest argument in favour of this mode of explanation is, that the molecules of certain medicines may be detected in some one or more of the excreted fluids; while, at the same time, the functions of the organs secreting or excreting these fluids, have become influenced by the medicine. Now the simplest, and therefore the most plausible explanation is, that the molecules, in passing through the organ, acted on its tissue, and thus gave rise to a functional change. The diuretic effects of nitre, alkalis, turpentine, &c., are readily explained on this theory. Even when the affected part is not a secreting organ, medicines have, in a few cases, been recognized in the organs on which they act. Thus alcohol and ether have been detected in the brain by their smell. But when the medicinal agent is not readily detected by its physical or chemical properties, we have not the same evidence to offer in support of this view, which, notwithstanding, may be not the less true.

Several objections present themselves to this explanation. Many medicinal substances may be detected in the secretion of an organ, though no evident influence has been exercised over the organ itself. Thus the colouring particles
ABSORPTION OF MEDICINES.

Barb may be recognised in the urine, although the action of the kidneys not appear to be altered; and, therefore, it may be said, that in those cases the quality of the secretion is affected, we have no right to infer that it passes on the passage of medicinal particles through the secreting vessels. But low the susceptibility of the same part is not the same to all medicines; for not every medicine which, when applied to the stomach, produces vomiting, has also been said that this theory of medicines "being conveyed by the action to different parts, is utterly gratuitous, and no less improbable." At intelligence," says an American writer, "directs them in this voyage omnivagation to the port of destination; and how, on their arrival (adg it to happen), are they separated from the great mass of fluids in which they are enveloped?" It is not supposed, on this theory, that medicines are cost to particular parts, but to every part of the body in which the blood circulates.

How then, it may be replied, is it that particular parts only are affected, medicinal molecules are in contact with every part? We do not pretend to answer this circumstance. Every one is familiar with the fact that carbolic acid may be applied to the stomach in large quantity with impunity; as, if taken into the lungs, it acts as a narcotic poison. The urine has very little effect on the bladder, but if introduced into the cellular tissue, gives rise to violent inflammation.

We have already (p. 115) alluded to another objection to this theory—namely, that it sometimes produce the same symptoms as poisons. But it must be recollected that, in a large number of instances, injuries do not produce the symptoms; and in those cases where the effects of the two are analogous, I see no difficulty in assuming that there are two modes of affecting the nervous system. Moreover, we know that two different conditions of the brain may have the same symptoms.

The most important objections that have been advanced against the operation of medicines through the circulation, by local contact with the tissues, are those on the experiments of Messrs. Morgan and Addison. Of all their extenuations, the following are, I conceive, the strongest against the theory under discussion:

A jugular vein of a full-grown dog was secured by two temporary ligatures; one of which was tied round the upper, and the other round the lower part of the exposed vein. The vessel was then divided between these two ligatures, and the truncated extremities re-connected by means of a short brass cylinder or tube (fig. 16), within which was placed a portion of wool, of the size of a grain of canary-seed (fig. 15). Both the temporary ligatures were then removed (fig. 17), the accustomed circulation through the vessels was re-established, and in forty-five minutes the dog dropped on the ground, completely deprived of all power over the

* Chapman, Elements of Therapeutics, 4th ed. vol. i. p. 73.
muscles of voluntary motion; in two minutes, convulsions and entirely ceased. This result was to be expected, whatever the tension of the ligature, a little then introduced between the vessels; another then applied above the space; after the reapplying the upper ligature, the apoplectic convulsions case, and minutes. Experiment, trance of the poison into the heart prevented by the ligature; hence operated by the brain, a great time was required for the effects to be as much as was no longer through the jugular itself, and, therefore, if the poison acted by actual contact got into the system by the vessels of the vein.

This experiment, however, cannot be regarded as conclusive, the result is certainly different from what might have been an supposition of the circulation of the poison in the blood being action, yet we cannot regard it as a conclusion against that supposition. It was shown that the poison, when the ligature above it is removed, mingles itself with the stream of blood in the vein, does not travel far back as the next anastomosing branches, and so make it work on the heart. That this is not the effect of removing the farther ligature in these authors; and their other experiments in favour of the trine of the mode of action of poisons, we have no difficulty in be inconclusive. Moreover, the poison may act by diffusion.

3. By acting on the lining membrane of the blood-vessels. Morgan and Addison contend, that when poisons are introduced into the current of the circulation in any way, their from the impression made upon the sensible structure of the vessels, and not from their direct application to the blood. The proofs adduced in support of this theory, are, extreme susceptibility of the inner coat of a vein, when extraction of a poison, as shown by the experiment re- secondly, that woorara acts on the brain as quickly when thrown into the femoral, as when thrown into the carotid, and that woorara, applied to the cut surface of the cerebrum.

nptoms of poisoning; fourthly, that by establishing a complete circulation between the carotids of a poisoned and of a sound, the latter does not become affected.

Of all these "proofs," however, the only important, though not objectionable one, is the first. The validity of the second objection has been denied by Mr. Blake (see page 125). The second and third are merely negative; their object being to show that poisons do not act by pervading the structure of the part: and to the fourth I have before offered some objections.

In conclusion, then, I would observe, that while Messrs. Morgan and Addison have thrown some doubt over our previously received opinions on the operation of medicines, it cannot be admitted that they have established their own hypothesis; and further experiments are still required to settle this doubtful question.

In a recent discussion on the operation of poisons, at the Royal Medical and Chirurgical Society, Dr. Addison admitted that "the researches of Mr. Blake and others, had rendered the balance in some measure favourable to the theory of absorption."

CHAPTER V.—ON THE OPERATION OF MEDICINES BY NERVOUS AGENCY.

Messrs. Morgan and Addison contend, "that all poisons, and perhaps, indeed, all agents, influence the brain and general system, through an impression made upon the sentient extremities of the nerves, and not by absorption and direct application to the brain."

The circumstances which have been adduced in favour of this view, are—

1. The rapid action of some poisons.
2. The effects being disproportionate to the facility for absorption.
3. The effects of several poisons being analogous to those of severe injuries.
4. The rapidity of action not being diminished by increasing the distance of the brain from the part of the vascular system into which the poison is introduced.

1. The rapid operation of some poisons.—One drop of pure hydrocyanic acid, says Magendie, placed in the throat of the most vigorous dog, causes it to fall dead after two or three hurried inspirations. Sir Benjamin Brodie once happened to touch his tongue with the end of a glass rod which had been dipped in the essential oil of bitter almonds; scarcely had he done so, before he felt an uneasy, indescribable sensation at the pit of the stomach, great feebleness of limbs, and loss of power to direct the muscles, so that he could hardly keep himself from falling. These sensations were quite momentary. In the cases now quoted, the rapid action of the poisons seems almost incompatible with the idea of their absorption. Dr. Chishom says, that two grains of conia, neutralized with thirty drops of diluted muriatic acid, being injected into the femoral vein.
of a young dog, stopped respiration, and with it all external signs of life, in two seconds, or three at farthest.

In this case the death appears to have been too speedy to admit of the supposition that the effect occurred in consequence of the direct contact of the poison with the brain or spinal marrow.

Mr. Blake has met this argument by declaring that poisons are not instantaneous in their action, but that sufficient time always elapses between the application of a poison and the first symptom of its action, to admit of its contact with the tissue which it affects. Thus he found, that after half a draught of concentrated hydrocyanic acid had been poured on the tongue, eleven seconds elapsed before any morbid symptom appeared, and death did not occur until thirty-three seconds after the exhibition of the poison; and on repeating Christison’s experiment, he found that fifteen seconds elapsed after ten drops of aconia (saturated with hydrochloric acid) had been injected into the femoral vein of a dog, before symptoms of the action of the poison appeared; and death did not occur until thirty seconds after the injection. Now the time required for a substance to be absorbed by the capillaries, and diffused through the body, may not exceed, according to Mr. Blake, nine seconds. So that the interval which elapsed in the preceding experiments, between the application and the effect, was quite sufficient to admit of the absorption and circulation of the poison.

2. The effects being disproportionate to the facility for absorption. Orfila says, that alcohol acts with much less energy when injected into the cellular texture, than when taken into the stomach; and, the power of absorption is greater in the former than in the latter part, he concludes that the remote action of alcohol must, in the first instance, be produced by the agency of the nerves. Opium, on the contrary, is supposed to operate by absorption, because it is more active when injected into the cellular texture than when taken into the stomach.

This experiment requires repetition. Even if the result be as stated by Orfila, the inference drawn from it is by no means a necessary one. As alcohol coagulates the blood when mixed with this fluid, its absorption would be more active in the dilute than in the concentrated state. Now, the secretions and contents of the stomach may, by diluting the alcohol, promote its absorption.

3. The effects of some poisons being analogous to those of severe juries.—Thus, a tetanic state is produced by Strychnia as well as by a punctured wound.

As tetanus can be produced without the absorption of any thing (as when it arises from the laceration of a nerve), it is not necessary, it has been urged to suppose this process in the case of strychnia. Mr. Blake has endeavoured to meet this objection by suggesting that, in the first case, the disease may arise from the propagation of some pathological state from the injured nerve to nervous centres; for were the symptoms the mere result of the local irritation of a nerve, we might expect, he observes, to produce them at pleasure, by merely irritating the nerve; but it is well known, he adds, that this is not the case. The latter part of this statement is not quite correct; for Dr. Marshall Hall says, that “if one of the lateral nerves [of the decapitated turtle] be laid bare,

2 Toxicologie Générale.
PARTS AFFECTED BY THE REMOTE ACTION OF MEDICINES. 125

and pinched continuously, the muscles of the upper extremities, as well as the lower, are forcibly contracted. This is, in my opinion, the very type of tetanus."

4. The rapidity of action not being diminished, by increasing the distance of the brain from the part of the vascular system into which the poison is introduced.—Messrs. Morgan and Addison found, that the woorara poison produced its effects, when thrown into the femoral artery, a few seconds sooner, than when introduced into the carotid artery. Now, if contact with the brain were necessary to the action of this poison, a longer time would be required in the former than in the latter case for the production of any morbid symptoms.

Mr. Blake, however, asserts that in his experiments he found, that the nearer to the nervous centres is the part of the vascular system into which the poison is introduced, the more rapid is its action.

CHAPTER VI.—OF THE PARTS AFFECTED BY THE REMOTE ACTION OF MEDICINES.

The remote effects of medicines consist of alterations in the blood or in the functions of one or more organs more or less distant from the parts to which these agents were applied. Although an alteration of function presupposes an organic change, yet the latter is not always obvious.

A medicine may affect a distant organ directly or indirectly. The stupor caused by Opium is presumed to arise from the direct influence exercised by this drug over the cerebrum, since it cannot be otherwise accounted for. The convulsions produced by Strychnia, on the other hand, depend on the influence which this agent exercises over the true-spinal or excito-motory system, and to its direct action on the muscles.

Some medicinal agents and poisons confine their direct remote influence principally to one organ, and indirectly disorder the functions of other organs, through the relations which exist between the affected organ and other parts of the body. Strychnia is an example of this kind. In some cases, however, poisons appear to exercise a direct influence over several remote parts. Arsenic and Mercury are agents of this kind.

The intimate relations which exist between the different organs and functions, make it exceedingly difficult, and, in many cases, even impossible, to distinguish between the direct and the indirect influence of a medicine. In the following examples, of parts and functions affected by medicines, this distinction has not been attempted.

1. The Blood.—We can readily believe that some agents may affect the whole system by altering the qualities of the blood. I have already added several reasons for believing, that changes are induced in the condition of the circulating fluid by some medicinal substances. If this be admitted, we can then readily understand how these agents affect the general system. "In fact, when all the

* See p. 118.
tissues thus receive a vitiated blood, is it not consistent with sound physiology to admit, that their regular modes of vitality, nutrition and secretion, must be more or less deeply modified? We must either admit this conclusion, or deny the influence which, according to every physiologist, the blood exerts over each solid. It may, then, happen that one or more organs are affected in a more decided manner than the rest, and there may thus be produced in them various lesions that are only accidental and secondary: but it is not in these lesions the origin of the affection lay; it is not on them all the symptoms depend; nor, lastly, is it to them alone we are to have recourse, to throw a light upon the true nature of the disease, as well as upon the treatment proper to be pursued. It is probable that Mercury, the Alkalis, and many other agents, affect the quality of the blood.

2. Cerebral and True Spinal Systems.—Substances which promote sleep, as Opium, or prevent it, as Green Tea; or which disorder the mental faculties, as Alcohol; or which impair sensibility, as Belladonna and Aconite, act on the cerebral system. Those agents which cause convulsions, as Strychnia; or paralysis, as Conium, affect the true spinal system.

3. Muscular System.—If the tone and irritability of the muscular fibre be, as it probably is, a direct function of the true spinal system, agents which affect these properties should properly be classed in the preceding division. At present, however, it is convenient to consider them under a separate head. Opium, Alcohol, Conium, and many other agents, diminish the irritability of the muscular fibre; while Strychnia and Brucium increase it. The substances denominated Tonics, increase the firmness and elasticity of muscles.

4. Circulatory System.—The action of the organs concerned in the circulation of the blood is affected by medicines, principally through the agency of the nervous system. Foxglove and Tobacco diminish the force of the circulation; while Alcohol, used in moderation, augments the volume and frequency of the pulse. Lead has a constricting effect on the blood-vessels. The temperature of the body is raised by agents which excite the circulation, and, vice versa, it is reduced by those which lower the action of the vascular system. Diluted Acids and the Neutral Salts of the Alkalis appear to check preternatural heat, and they are, in consequence, denominated Refrigerants. Some other agents, probably affect the calorific function by influencing respiration.

5. Respiratory System.—The action of the muscles of respiration is affected by those agents, already referred to, which either augment or lessen the irritability of the muscular system generally. Laennec supposed, and probably with truth, that some cerebrospinals (e.g. Belladonna and Stramonium) diminish the necessity.

Andral, Pathol. Anat. by Drs. Townsend and West, vol. i. p. 663.

* These terms are used in the sense assigned to them by Dr. Marshall Hall, (see his work On the Diseases and Derangement of the Nervous System, Lond. 1841.)

Belladonna causes dimness of sight; Aconite is a topical balsam of the nerves of touch.

ABSORPTION OF MEDICINES.

It is not improbable that certain medicines may, by their action in the blood, retard or promote the process of respiration (which the blood suffers in the lungs). Liebig has shown that the vegetable salts of the Alkalies (as the Acetate of Potash) do this, as I have already explained. The sensibility of the mucous membrane lining the air passages is diminished by Opium and other cerebro-spinants. The preparations of Lead, as well as other substances, stimulate the secretions of this part;—while some substances, named Expectorants, appear at times to promote it. In diseased states we sometimes find the vital actions of the respiratory membrane altered by agents (such as Ipecacuanha and Senega) which do not always produce an evident increase in the secretions of the bronchial membrane. Emetic Tartar and Corrosive Sublimate, when used in poisons, occasion a temporary condition of the pulmonary membrane.

DIGESTIVE SYSTEM.—The sensibility and the secretions of the intestinal membrane are diminished by Opium. Mercury, on the other hand, promotes the secretions of this part. It especially stimulates the salivary glands and the mouth, causing salivation; and, when given in large quantities, ulceration and sloughing. Belladonna (as well as Hyoscynamus) produce dryness of the mouth, when given in poisonous doses, diminish or even destroy the secretions of the salivary glands. Many substances, especially Emetics, promote vomiting: some of these, as Mustard, do so by their acridity; others, such as Ipecacuanha and Emetic Tartar, by a specific influence on the stomach. The digestive process is readily affected by medicines; Opium tapers it, and allays hunger; Condiments and the tinctures of the Tonics, under some circumstances, promote the appetite. In some disordered conditions of the stomach we employ medicines which often exercise a remarkably beneficial effect.

Thus, Hydrocyanic Acid, Cresote, Trinitrate of Bismuth, Calumba, and Effervescing Liquors, frequently allay pain and stomach pain. Purging is effected by the substances used in the treatment of Cathartics; and constipation by Opium. Mercury induces the secretion of the liver (and of the pancreas?)

RESPIRATORY SYSTEM.—The sensibility of the organs composing the lung is diminished by Opium, and its alkali Morphia, which relax the muscles of the bladder and ureters. Strychnia increases the irritability of the bladder and its muscular fibers. Several Vo-s (as those of Copaiba, Turpentine, Cubebs, &c.) affect the mucous membrane of the urethra and bladder, and relieve, or cure, certain diseases of these parts. Uva Ursi, Buchu, and Pareira, have a powerful stimulating influence over some morbid conditions of the mucous membrane. The Tincture of the Sesquichloride of...
Iron sometimes relieves spasmodic stricture of the urethra. Dras purgatives, especially those acting on the lower part of the bowe irritate the urinary organs, especially the bladder. The secret of the kidneys is augmented by certain substances, denominat Diuretics, and is lessened, in diabetes, by Opium. The Alkal Acids, certain Neutral Salts, Oil of Turpentine, &c. modify the quality of the urine.

8. Sexual System.—Ergot of Rye excites contractions of the uterus, by which matters contained in the cavity of this viscus are expelled. Savine operates as a stimulant to the blood-vessels and excretory apparatus of the uterus, and thereby acts as an emmenagogue. Opium dulls the sensibility of the sexual organs. Phosphorus and Cantharides have long been regarded as venereal excitants. Strychnia is said to possess a similar power.

9. Secreting and Exhaline Organs.—Mercury, the Alkali and Iodine, augment the activity of the secretory and exhaline organs. The Oleo-Resins, and the Balsams, stimulate the mucous surfaces. Opium diminishes the mucous secretions. Diuretics promote the secretion of urine—Diaphoretics the cutaneous exhalation—Sialogogues the saliva and buccal mucus—Emmenagogues the catamenia—Expectorants the bronchial secretion, &c.

CHAPTER VII.—OF THE GENERAL NATURE OF THE EFFECT OF MEDICINES.

The vital actions of the system may be either changed or annulated by medicines and poisons. The changes may be quantitativa or qualitativa. Agents which merely augment or lessen vital activity effect quantitative changes, and are termed, respectively, stimulat and sedatives; while those which alter the nature of vital act occasion qualitative changes, and are the true alteratives. Agents which destroy the essential composition of an organized tissue, destroy or annulate vital action.

1. Stimulants.—These agents are of two kinds: general vi stimuli, and special stimuli⁴.

a. General Vital Stimuli.—These are agents whose constant operation is essential to the maintenance of life. They are calor, water, atmospheric air, and nutriment. They support life by effecting constant changes in the composition of the organized body.

β. Special Stimuli.—These agencies vivify or strengthen or under certain conditions. They "produce this effect by restoring the composition of the organ by their ponderable or imponderable influence, or by so changing its composition that the renovation the general vital stimuli is facilitated. All this, however, depend on the state of the diseased organ; and the cases in which they called stimulant and tonic remedies have really their supposed effects are very rare." Special stimuli may be arranged in three gr ou

⁴ Müller’s Physiology, by Baly, vol. 1, p. 59.
according as their principal action is on the nervous system, the circulatory system, or the gastro-enteritic organs.

1. Nervous Stimuli, e.g. Alcohol.
2. Cardiac-vascular Stimuli, e.g. Ammonia.
3. Gastro-enteritic Stimuli, e.g. Spices.

2. Sedatives.—These are agents whose action is the reverse of that of stimulants; hence they have been termed Contra-stimulants. Cold is the most unequivocal sedative. Aconite is a sedative with regard to the sensitive nerves; Digitalis, to the cardaco-vascular organs.

3. Alteratives.—These are neither stimulants nor sedatives merely. They give rise to some alteration in the nature or quality of vital action, probably by effecting a change in the composition of the organic tissues. This class includes nearly the whole of the articles comprising our Materia Medica.

1. BRUNONIAN THEORY.

Dr. John Brown* supposed that all living beings possess a peculiar principle, termed excitability, and which distinguishes them from inanimate bodies. The agents which support life are termed exciting powers; and these, acting upon the excitability, maintain life; in the language of Brown, they produce excitement. Whatever can modify the excitability, and produce a greater or less degree of excitement, are termed stimulant powers: these are either universal or local. When the exciting powers act moderately, health is produced; when they act with too great energy, they cause indirect debility; when with too little, they produce direct debility. According to this doctrine, all medicines are stimulants, and differ from each other in little more than the degree in which they exert their stimulant power: moreover, they cannot cause exhaustion (of the excitability) except by an excessive action; in other words, by producing previous over-excitement.

Considered in a therapeutical point of view merely, the following objections present themselves to this theory:

1. Many agents produce exhaustion without previously occasioning any obvious over-excitement (as the respiration of sulphuretted hydrogen or hydrocyanic acid gases.)
2. Medicines differ from each other in something more than the degree of their power; compare together the effects of foxglove, ammonia, hydrocyanic acid, cinchona, mercury, alcohol, elaterium, and opium, and the truth of this remark will be obvious.
3. The great majority of our medicines act neither as stimulants nor sedatives merely; they alter the quality of the vital actions: and this altering effect has been quite overlooked by the Brunonians.

2. DOCTRINE OF CONTRA-STIMULUS.

(New Italian Doctrine).

This doctrine is a modification of the preceding. It was advanced about the commencement of the present century by Rasori and

Borda, and was subsequently adopted by Tommasini and some other distinguished Italian physicians.

It admits two classes of medicines, the one called stimulants or hypersthenics,—the other, contra-stimulants or hyposthenics. The first exalt, the second depress, the vital energies. Hence this doctrine obviates one of the objections to the hypothesis of Brown, since it admits the existence of agents possessing a positive power of reducing vital action.

The following is Professor Giaconini's arrangement of medicines:

Class I.—Hypersthenics.

Order 2. Vasculari-cardiac Hypersthenics. The Ethers.

Class II.—Hyposthenics or Contra-stimulants.

Order 2. Vasculari-cardiac Hyposthenics.

Contra-stimulants obviate or counteract the effects of stimulants. Thus Wine being universally admitted to be a stimulant, agents, which relieve the inebriation produced by it, are denounced as contra-stimulants. Reasoning thus, the supporters of this doctrine deny that purgatives stimulate the stomach or intestines; for that they evacuate the contents of the alimentary canal, yet their gen...
flects are depressing. If it be objected, that their continued use causes inflammation, it is answered that the same effect is produced by the most powerful contra-stimulant,—cold; and they account for this by ascribing it to re-action, which, though a consequence of contra-stimulus, is not directly caused by it. But by the same process of reasoning, it would not be difficult to show that some of the substances which the Italian physicians denominate stimulants (as opium), are really contra-stimulants, since they are frequently useful in relieving excitement. Indeed, the supporters of this doctrine are by no means agreed among themselves as to the stimulant or contra-stimulant quality of certain medicines; for some of them regard Cinchona as belonging to the class of stimulants, others to that of contra-stimulants.

It will be obvious, from the preceding remarks, that the supporters of the doctrine of contra-stimulants disregard, or overlook, the physiological or immediate effects of medicines, but direct their sole attention to the secondary effects or consequences, which are uncertain, and often accidental; for many of the agents denominated contra-stimulants do not always, or even frequently, relieve excitement, but often have the contrary effect. The founders of this doctrine have, therefore, assembled under the same head, substances causing the most dissimilar and opposite effects; while they have separated others whose general operation is very analogous. They assume the existence of certain diseases, which they call Sthenic, because they are produced by too much stimulus, and admit the existence of contra-stimulants, because certain agents sometimes, or frequently, relieve this state. In other words, they judge of the nature of a disease by the effect of the curative means, and of the virtues of medicines by the nature of diseases. So that if a disease, now supposed to be Sthenic, should hereafter prove to be Asthenic, the medicines used to relieve it would immediately pass from the class of contra-stimulants to that of stimulants!

But the most important objection to the doctrine of contra-stimulus is, that its supporters have totally overlooked that alternative action which nine-tenths of the most important articles of the Materia Medica evince. When we attentively watch the effects of medicines, it will become manifest that few of them excite or depress merely. Their most characteristic property is that of changing or altering the quality of vital action; and, among the more active of our medicinal agents, scarcely two agree in producing the same kind of alteration. This defect in the doctrine of contra-stimulus equally applies to the doctrine of Brown; and appears, to me, to be fatal to both hypotheses.

There is, however, one part of the doctrine of contra-stimulus which is interesting, since it has led to some useful practical results. It is asserted, that the doses of contra-stimulants should be proportioned to the degree of excitement; and that, when inflammatory action runs high, the patient can bear very large doses without any obvious evacuation; the disease being subdued wholly by the contra-stimulant effect upon the solids of the body. This asserted capabi-
lity of bearing increased doses has been denominated Tolerance medicines; and has led to the employment of medicines in markedly larger doses, and at shorter intervals, than were previously ventured; and, in the case of Emetic Tartar, the practice has proved highly successful. But, if the hypothesis were true, the tolerance ought to decrease as the disease declines; which certainly does not hold good with respect to Emetic Tartar, as will be hereafter mentioned. The truth appears to be, then, that many medicinal substances may be administered with safety, and, in certain maladies, with advantage in doses which were formerly unheard of; and for this fact we are indebted to the founders of the doctrine of contra-stimulus. It must be admitted, however, that the effects of blood-letting, as observed in different diseases, favour the notion of the supporters of contra-stimulus with respect to the tolerance of remedies. It is well known that certain maladies, as congestion or inflammation of the brain, large quantities of blood may be abstracted without causing syncope, and not with impunity, but with benefit. In this case, therefore, the disease appears to confer a protective influence,—in other words, the state of excitement increases the tolerance of the remedy. But, on the other hand, in fever, intestinal irritation, dyspepsia, and cholera, the extraction of a much smaller quantity of blood is attended with syncope; so that these maladies appear to diminish the tolerance of blood-letting. Dr. Marshall Hall has laid great stress on these facts and proposes to employ blood-letting as a diagnostic to distinguish irritation from inflammation. Thus when we are doubtful whether a disease is encephalitis or intestinal irritation, he says “we may prepare the arm, open a vein, and then place the patient upright, let the blood flow until the lips become pallid; if the case be encephalitis, an extreme quantity of blood will flow, even thirty or forty ounces, or more, before there is any appearance of syncope; if intestinal irritation, syncope occurs before one-fourth of that quantity of blood has left the circulating system.”

Thus assuming the degree of tolerance of blood-letting in health to be 3xxv, says the augmented tolerance in congestion of the brain will be 3xl.-i. inflammation of the serous and synovial membranes, 3xxx.-xl.—in inflammation of the parenchyma of organs, 3xxx.—and in inflammation of the skin and mucous membranes, 3xvi. The diminished tolerance in fevers and eruptive fever fixes at 3xij.-xiv.—in delirium tremens and puerperal delirium, at 3x.-xij. laceration or concussion of the brain, and in intestinal irritation, at 3viij. in dyspepsia and chlorosis, at 3vij.—and in cholera, at 3vi.)

But though I admit the general fact that some diseases augment, while others lessen the tolerance of blood-letting, yet I am by no means prepared to admit all the inferences which Dr. Hall has drawn from this. The distinction which he sometimes makes

Footnotes:

2. Researches principally relative to the Morbid and Curative Effects of Loss of Blood. 1832.

4. Introductory Lecture to a Course of Lectures on the Practice of Physicians delivered at the Medical School in Aldersgate Street, p. 42. London (1834).
CIRCUMSTANCES WHICH MODIFY THE EFFECTS OF MEDICINES. 133

...between irritation and inflammation, is oftentimes more ideal than real; as when he endeavours to shew that the pleurisy caused by broken ribs is rather irritation than inflammation. And, moreover, while we may fairly doubt whether blood-letting is capable of distinguishing inflammation from irritation, the propriety of resorting to so powerful an agent in doubtful cases, is fairly questionable. "In my opinion," observes my friend Dr. Billing, "before such a decided step is adopted, the physician ought to have made up his mind as to what is the nature of the disease."

CHAPTER VIII.—ON THE CIRCUMSTANCES WHICH MODIFY THE EFFECTS OF MEDICINES.

The circumstances which modify the effects of medicines may be ranged under two heads; those relating to the medicine, and those relating to the organism.

1. RELATING TO THE MEDICINE.—Under this head are included,—

a. State of Aggregation.—The state of aggregation of a medicine modifies the effect. Thus Morphia is more active in solution than in the solid state.

b. Chemical Combination.—The soluble salts of the Vegetable Alkalis are more active than the uncombined alkalis, and vice versa; the insoluble salts are less active. Lead and Baryta are rendered inert by combination with Sulphuric Acid.

c. Pharmaceutical Mixture.—The modifications produced by medicinal combinations have been very ably described by Dr. Paris.

The objects to be obtained, he observes, by mixing and combining medicinal substances, are the following:

1. To promote the action of the basis or principal medicine:

a. By combining together several forms or preparations of the same substance; as when we conjoin the Tincture, Decoction, and Extract of Cinchona in one formula.

b. By combining the basis with substances which are of the same nature, that is, which are individually capable of producing the same effect, but with less energy than when in combination with each other; as when we prescribe a compound of Cassia Pulp and Manna.

c. By combining the basis with substances of a different value, and which do not exert any chemical influence upon it, but are found, by experience, to be capable of rendering the stomach, or system, or any particular organ, more susceptible of its action; as when we combine Mercury with Antimony and Opium, to increase the activity of the former.

II. To correct the operation of the basis, by obviating any unpleasant effects it might be likely to occasion, and which would pervert its intended action, and defeat the objects of its exhibition:

a. By mechanically separating, or chemically neutralizing, the offending ingredient; as by digesting Cetraria Islandica in an alkaline solution, in order to remove the bitter principle, and to enable us to obtain a tasteless, but highly nutritious fecula.

Leafer, Nov. 4, 1857; and Principles of Diagnosis, and of the Theory and Practice of Medi-

1. p. 322. Lond. 1837.

III. To obtain the joint operation of two or more medicines.

a. By uniting those substances which are calculated to produce the same ultimate results, although by totally different modes of operation;—as when we combine Digitalis and Potash to produce diuresis,—the first acting on the absorbents, the second on the secreting vessels of the kidneys.

b. By combining medicines which have entirely different powers, and which are required to obviate different symptoms, or to answer different indications:—as when we combine Opium and Purgatives in painter’s colic, the first to relieve the spasm, the second to evacuate the contents of the intestinal canal.

IV. To obtain a new and active remedy not afforded by any single substance.

a. By combining medicines which excite different actions in the stomach and system, in consequence of which new or modified results are produced:—as when we combine Opium (a narcotic) with Ipecacuanha (an emetic) to obtain a sudorific compound.

b. By combining substances which have the property of acting chemically upon each other; the result of which is, the formation of new compounds or the decomposition of the original ingredients, and the development of their more active elements:—as when solutions of Acetate of Lead and Sulphate of Zinc are mixed to procure a solution of the Acetate of Zinc and when the Compound Iron Mixture of the Pharmacopœia is prepared.

c. By combining substances, between which no other chemical change is induced, than a diminution, or an increase, in the solubilities of the principles, which are the repositories of their medicinal virtues:—as when we combine Aloes with Soap, or an Alkaline Salt, to quicken their operation and remove their tendency to irritate the rectum.

V. To afford an eligible form.

a. By which the efficacy of the remedy is enhanced; as in the preparation of Decoctions, Infusions, Tinctures, &c.

b. By which its aspect or flavour is rendered more agreeable; as when we exhibit medicines in a pilular form, or when we exhibit them in a state of effervescence.

c. By which it is preserved from the spontaneous decomposition to which it is liable; as when we add some spirituous tincture to an infusion.

d. Organic peculiarities.—Vegetables have their medicinal properties considerably modified by the nature of the soil in which they grow, by climate, by cultivation, by age, and by the season of the year when gathered.

e. Dose.—The modifications produced in the effects of medicines by differences of dose, are well seen in the case of Opium, Mercureius, and Turpentine.

2. RELATING TO THE ORGANISM.—Under this head are included several circumstances, of which the most important are the following:

a. Age.—One of the most distinctive characters of organic beings is that of undergoing perpetual mutation during the whole period of their existence; thus constituting the phenomena of age. In order the better to appreciate these changes, the life of man has been portioned out into certain periods of ages, as they have been termed, though as these pass imperceptibly into each other, there...
absolute or fixed distinction; and, consequently, the number of these periods has not been generally agreed on; some admitting only three, others four, five, six, seven, or even eight; the most popular number being seven.

Each period of life is characterised by certain conditions of the lids, by particular states of the functions, by a tendency to certain seases, and by a different susceptibility to the influence of medicines.

The effects of medicines are modified both quantitatively and qualitatively, by the influence of age. Hufeland has drawn up the following scale for different ages:

Years	25	20	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
Doses	40	35	30	29	28	27	26	25	24	23	22	21	20	18	16	14	13	10

<table>
<thead>
<tr>
<th>Months</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>½</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doses</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>½</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suppose the dose at the end of the first year to be 1, then at the fifth it will be 2, at the fifteenth 3, and at the twenty-fifth 4. In the above table the dose for an adult is supposed to be 40 grains. Dr. Young gives the following rule for determining the doses for children under twelve years of age:—"The doses of most medicines must be diminished in proportion of the age to the age increased by 12. For example, at two years old, to \[\frac{1}{7} \times \frac{2}{2 + 12} = \frac{2}{28} \]. At twenty-one, the full dose may be given." But no rule is of much value, as the degree of development is very unequal in different children of the same age. Moreover the rule that applies to one medicine will not hold good with respect to others. This is particularly obvious in the cases of Opium and Calomel: the first must be given to children with the greatest caution, and in excessively small doses, whereas the second may be given to them almost as freely as to adults. Acetate of Lead, Nitrate of Silver, Arsenious Acid, and some other metallic compounds, ought, perhaps, never to be prescribed internally for infants.

6. Sex.—The sex has an influence in the operation of medicines. Females differ from males in greater susceptibility of the nervous system, more excitability of the vascular system, and less energy or power in all parts. In these respects, indeed, they approach children. Women, therefore, require, for the most part, smaller doses of medicinal agents than men.

The periods of menstruation, pregnancy, and lactation, are attended with peculiarities in relation to the action of medicines. Drastic purgatives should be avoided during these states, especially the two first. Agents which become absorbed, and thereby communicate injurious qualities to the blood, are of course to be avoided during pregnancy and lactation, on account of the probable ill effects on the offspring.

Mode of life: Occupation.—These circumstances affect the
susceptibility of the whole organism, or of different parts, to the influence of external agents.

d. Habit.—The habitual use of certain medicinal or poisonous agents, especially narcotics, diminishes the influence which they ordinarily possess over the body. Of the truth of this statement there have almost daily proofs in those who are confirmed drug-users, opium smokers, and tobacco-eaters. Instead of the use of enormous doses of opium, with comparatively slight effects, we shall find in every work on pharmacology, one or two remarkable cases of the kind I have met with, is that related by G. V. Zevi, of a woman of the name of Galvani, during a period of three years, took more than two cwts. of solid opium! When three years old she fell down stairs, and divided her urethra by the fall. Although the wound healed, she was unable to pass her urine by the usual way, but vomited it up daily with excruciating pain, to which, she resorted to the use of opium, the doses of which gradually increased to 200 grains daily.

Dr. Kreysig has recently published a case of vomiting of an urinoma.

The influence of acrid or irritating substances is but little diminished by repetition,—a remark which applies especially to substances derived from the mineral kingdom. There are, indeed, substances illustrative of the effect of habit in lessening the influence of inorganic agents, but their number is small. The common is the tolerance obtained by the repeated use of an Emetic in peripneumonia.

Several attempts have been made to account for the effect of habit, and ascribe it to an increased power acquired by the stomach of decomposing a medicinal agent,—an explanation adopted, in the case of poisons, by Lavoisier, and which he illustrates by reference to the increased facility with which the stomach of digesting substances which had at first resisted its action, readily absorb them. If this explanation were correct, we ought to observe the influence of habit principally when substances are swallowed, and little, or not at all, if they are applied to a wound, to the cutis vera, or other parts unendowed with digestive powers, and opium ought to have its usual effects in ordinary application to any part of the body of an opium-eater, except to his urine. But a strong objection to this hypothesis is, that the habit is observed principally in the case of narcotic vegetables, and not perceived in inorganic substances which evidence the most powerful and inorganic principles. The same physiologist ascribes part of the power observed in the effects of habit, to the excitability of the organ being increased by the stimulus being too often repeated.

e. Diseased conditions of the body.—Diseases of various kinds sometimes have a remarkable influence in modifying the effects...
a fact of considerable importance in practice. One of the
ruling instances is that of Opium in tetanus. A scruple of
stance has been given at one dose, and repeated every two or
ours for several days, without any remarkable effects being
ed. The late Mr. Abernethy mentions in his lectures”, a
who had tetanus from a wound which he received at the time
riots in the year 1780, to whom a scruple of opium was
very day, besides a draught at night. When his body was
, thirty drachms of opium were found undissolved in his sto-
It might perhaps be inferred, that the diminished effect arose
we want of solution of the medicine; and that this was Mr.
thy’s opinion seems presumable from his advice as to the mode
it in this disease. “Give it,” says he, “repeatedly in small
so that it may liquify.” However, that the want of liquefac-
tion, solution, is not the sole cause of this diminished influence, is
from the fact that the tincture is also less effective in tetanus
1 health.
C tells us, that M. Blaise, in a case of tetanus, administered,
days, four pounds, seven ounces, and six drachms of Laudanum,
oxounces, four drachms, and forty-five grains of solid Opium!
* endeavours to explain these facts by assuming, that the sto-
acquires an increase of assimilative power, so that it is capable
ging these enormous quantities of opium, in consequence of
the usual narcotic effects do not take place. He supports
thesis by stating, that if, during tetanus, opium be injected
the veins in much smaller quantities, it produces its usual effects.
this latter assertion be correct, it does not at all warrant Begin’s
on; and, bearing in mind that opium administered by clysters
 tetanus is less powerful than usual, and also taking into con-
tion the case related by Mr. Abernethy, I think we have evi-
sufficient to warrant our non-admission of this hypothesis.
therefore, that can be said in the way of explanation is, that in
as the nervous system has undergone some change, by which its
ibility to the influence of opium is considerably diminished.
other example of the influence of disease in modifying the effects
ctives is seen in the difficulty of causing salivation by the use
mercury in fever. I have repeatedly seen large quantities of Mer-
exhibited internally during this disease, and in some cases
amed with mercurial frictions, without affecting the mouth;
in general, such cases terminated fatally. I never saw a fatal
fever in which salivation was fully established; but whether
covery was the consequence of the mercurial action, or the sali-
te of the recovery, I will not pretend to decide, though the first
more plausible view.
Climate.—The well-known influence of climate in modifying
structure and functions of the animal economy, and in promoting

or alleviating certain morbid conditions, necessarily induce us to ascribe to it a power of modifying the effects of medicines. It is difficult to obtain pure and unequivocal examples of it, in consequence of the simultaneous presence and influence of other powerful agents.

3. Mind.—The effects of medicines are very much modified by the influence of the mind. Hufeland \(^1\) knew a lady who, having received a violent aversion to clysters, was thrown into convulsions by the injection of a mixture of Oil and Milk. I have heard the violent effects attributed to bread pills; which pills, the patient, being previously informed, exercised a powerful influence over the system. Much of the success obtained by empirical practitioners depends on the confidence which patients have in the medicines administered.

h. Race.—Differences of race have been supposed to give rise, in some cases, to differences in the action of medicines on the body. Thus Charvet \(^2\) ascribes to this circumstance the different effects of Opium on the Javanese and Malays (both belonging to the Mongolian race) as compared with those produced on Europeans, Turks, and Persians (the Caucasian race). The Javanese," says Lord Macartney \(^3\), "under the influence of an extraordinary dose of opium, becoming frantic as well as desperate, not only stab the objects of their hate, but sally forth to attack in like manner, every person they meet, till self-preservation required it necessary to destroy them." A similar account is given by Rapin \(^4\) of the effects of Opium on the Malays.

i. Temperaments.—Under the denomination of temperaments were included peculiarities affecting certain individuals, independent of race, and which consists in disproportions in the development and activity of certain organs, by which the whole animal economy is influenced. The term temperament is derived from the Latin \textit{tempero}, to mix together, or to temper, and is applied to certain conditions of the body formerly supposed to arise from variations in proportion of the fluids of the body. Thus, when the fluids were thought to be in proper relative proportions, they were said to temper each other, and by so doing, to produce a perfect temperament. When the yellow bile was supposed to be in excess, it produced a choleric or bilious temperament; when black bile, the atarbiolic; melancholic; when blood, the sanguineous; and lastly, when phlegm, the phlegmatic. Although in modern times physiologists do not admit these notions, yet we cannot but acknowledge that individuals do present certain physical and functional peculiarities: and thus the existence of temperaments has generally admitted, while the theory or explanation of them has variously been dealt with the prevailing doctrines of the day.

The number of temperaments has not been agreed on; Hippocrates admitted four, Boerhaave eight, others five. Under five head

ON THE THERAPEUTICAL EFFECTS OF MEDICINES.

189

Each of these temperaments varies in regard to its susceptibility to the influence of medicinal agents. In the sanguine temperament, stimulants are to be employed very cautiously: in the nervous and relaxed temperaments, evacuants are to be used with great care.

k. Idiosyncrasy.—Under this denomination are included these peculiarities which affect the functions of organs, without having any obvious relation to development, and which are not common to a number of individuals. Its effect in modifying the effects of medicines and poisons is, in general, to increase their activity. Thus, some individuals are peculiarly susceptible of the action of Opium, wine of Mercury, and others of Alcohol. The odour of Ipecacuanha will, in certain persons, produce short and difficult respiration, resembling almost to a paroxysm of asthma. The late Mr. Haden has related a case in which two drachms and a half of Tincture of Colchicum produced death: the mother of the patient was also exceedingly susceptible of the action of colchicum even in very small doses. In some instances the effect of idiosyncrasy is to diminish the activity of the medicines. Thus some persons are exceedingly susceptible of the action of Mercury.

l. Tissue or Organ.—The nature of the part to which a medicine is applied, has an important influence over the effect produced. The stomach, for example, is much more susceptible of medicinal impressions than the skin. Opium acts more powerfully on the system when applied to the serous than to the mucous tissues. Carbonic acid acts as a positive poison when taken into the lungs, but as a useful stimulant when applied to the stomach. The modifications exerted by the nature of the tissue will be more fully noticed hereafter.

CHAPTER IX.—ON THE THERAPEUTICAL EFFECTS OF MEDICINES.

The effects produced on diseases by the influence of medicines are denominated therapeutic. They are sometimes termed secondary, as, in a great majority of instances, they are subordinate to those usually described under the name of physiological.

From Brown’s Translation of Mepacide’s Formulary, with Notes by C. T. Haden, Esq. p. 98.
Mode of Production.—Therapeutical effects are produced in two ways:—

1. **By the influence of a medicine over the causes of diseases.**—This may be *direct* or *indirect*. Medicines which act directly are termed by Hufeland specifica *qualitative*. As examples, the Chemical Antidotes may be referred to. Those anthelmintics (as Oil of Turpentine), which poison intestinal worms, also belong to this division. If the efficacy of Sulphur in the cure of itch depend on its destroying the *Acarus Scabiei*, this will be another instance of the direct operation of an agent on the cause of a disease. As an example of a medicine acting *indirectly*, I may mention the dislodgement of a biliary calculus, contained in the ductus choledochus, by the administration of Ipecacuanha as an emetic; or the removal, by a Purgative, of a morbid condition of system, kept up by the presence of some depraved secretion in the bowels, the result of a previous disease.

2. **By modifying the actions of one or more parts of the system.**—In a large majority of instances the causes of disease are either not known, or they are not of a material nature. In all such cases we administer medicines with the view of producing certain changes in the actions of one or more parts of the system, and thereby of so altering the diseased action as to dispose it to terminate in health. Thus inflammation of the lungs frequently subsides upon the employment of nauseating doses of Tartarized Antimony; and Emetics will sometimes put a stop to the progress of hemia humoralis.

The medicines belonging to this division may be arranged in two classes; those which are applied to the diseased part, and, secondly, those which are applied to other parts.

a. Topical Agents. — Under this head we include Unguents. Lotions used in cutaneous diseases, ulcers, &c.; Gargles in affections of the mouth and throat; Collyria in ophthalmic diseases; Injections into the vagina and uterus in affections of the urino-genital organs. In all such cases we can explain the therapeutic effect no other way than by assuming that the medicine sets up a new kind of action in the part affected, by which the previous morbid action is superseded; and that the new action subsides when the use of medicine is suspended or desisted from. Sometimes it may be expected that the influence which certain medicines exercise in disease of remote organs, arises from their particles being absorbed, through the medium of the circulation, carried to the parts affected. Thus the beneficial influence which the Turpentine occasionally exerts in affections of the mucous membranes (as in gleet and leucorrhoea) may perhaps be owing to a topical influence of this kind also Strychnia in affections of the spinal marrow.

b. Medicines which indirectly influence diseased action.—Under this head I include all those agents operating on some one or more P
body, which have a relation with the diseased part. Thus
may influence a disease by the mechanical effects of the
which they induce. Alterations in the quantity of the food
in morbid changes of the blood,—as we substitute Fresh Meat and Vegetables, and the use of
Acids, for salt provisions in scurvy. Opium relieves
and pain, as in colic, and in the passage of calculi. Purga-
relieve cutaneous and cerebral affections; Diuretics, dropsies;
ternal diseases, &c.

VITAL METHODS OF CURE.—According to the homeopa-
there are only three possible relations between the symptoms
cases and the specific effects of medicines—namely, opposition,
blance, and heterogeneity. It follows, therefore, that there are
three imaginable methods of employing medicines against disease;
ese are denominated antipathic, homopathic, and allopathic.

1. ANTIPATHIA.

Antipathic (so called from ἀντι, opposite, and πάθος, a disease),
pathic, or palliative method consists in employing medicines
produce effects of an opposite nature to the symptoms of the
and the axiom adopted is “contraria contrariis opponenda.”
ocrates may be regarded as the founder of this doctrine; for in
enty-second Aphorism* he observes, that “all diseases which
ed from repletion are cured by evacuation; and those which pro-
from evacuation are cured by repletion. And so in the rest;
es are the remedies of contraries.”
adopt this practice when we employ Purgatives to relieve con-
tion; Depletives to counteract plethora; Cold to alleviate the
ets of scalds; Narcotics to diminish preternatural sensibility or
and Opium to check diarrhoea.

Purgatives are not to be invariably employed in constipation,
Opium in pain. Reference must be constantly had to the cause
these symptoms. If confinement of bowels depend on a torpid
ction of the large intestines, powerful purgatives may be ad-
dered with great benefit; but if it arise from acute enteritis or
ulated hernia, they will probably increase both the danger and
ings of the patient. Again, Opium may be beneficially given
relieve the pain of colic, but it would be highly improper in all
es of acute pain, as in pleurisy.

The homeopathists object to antipathic remedies, on the ground
though the primary effects of these agents may be opposite to
phenomena of a disease, the secondary effects are similar to them.
Constipation excited by Opium (primitive effect) is followed by
hena (secondary effect); and evacuations produced by Purgatives
primitive effect) are succeeded by costiveness, which lasts several
ays (secondary effect).* The only mode of meeting statements of

* Aphorism, Sectio 206.
* Hahnemann, Organon, § 79.
this kind is to appeal to experience. Is opium ever beneficial in diarrhoea? Are purgatives useful in any instances of constipation? The homeoeopathists reply to both of these questions—No. Answer—Yes. Here, then, we are at issue with them on a matter of fact.

2. HOMOEOPATHIA.

The _homoeopathic_ (so called) from _ẹmọọc, like or similar, πάθος, a disease) method of treating diseases consists in administering a medicine capable of producing effects similar to the one removed, and the axiom adopted is "similia similibus curantur."

Hahnemann's first dissertation on homoeopathy was published in 1796, in Hufeland's Journal. In 1805 appeared his "Fragi de viribus medicamentorum positivis." But the first systematic account of this doctrine appeared in 1810, in a work entitled "Organon der rationellen Heilkunde."

The following, says Hahnemann, are examples of homoeopathic cures performed unintentionally by physicians of the old school who did not suspect medicine:

The author of the fifth book, Ἐπικράτειν, attributed to Hippocrates, speaks of a patient attacked by the most violent cholera, and was cured solely by White Hellebore; which, according to observations of Forestus, Ledebur, Reimann, and many others, produces itself a kind of cholera. The English sweating sickness, 1415, which was so fatal that it killed 99 out of 100 affected, could only be cured by the use of Sudorifics. Dysentery is sometimes cured by Purgatives. Tobacco, which causes giddiness, nausea, has been found to relieve these affections. Colchicum cures diarrhoea because it diminishes the secretion of urine, and causes asthma as a consequence of exciting dyspnœa. Jalap creates gripes; these it allays the gripes, which are so frequent in young children. Senna occasions colic; therefore it cures this disease. Ipecacuanha causes effectual in dysentery and asthma, because it possesses the power of exciting hemorrhage and asthma. Belladonna produces dilatation of the bowels, burning thirst, a sense of choking, together with a headache of liquids when brought near the patient; a flushed countenance, eyes fixed and sparkling, and an eager desire to snap at the standers; in short, a perfect image of that sort of hydrophobia which Sir Theodore de Mayerne, Münch, Buchholz, and Neimich, say they have completely cured by the use of this plant. When in Belladonna fails to cure canine madness, it is attributable, according to Hahnemann, either to the remedy having been given in too small doses, or to some variation in the symptoms of the particular case, which required a different specific—perhaps Hyoscynamus, or Homicum. Drs. Hartlaub and Trinks have subsequently added another homoeopathic remedy for hydrophobia—namely, Hyoscynamus. Opium cures lethargy and stupor, by converting it.
ON THE THERAPEUTICAL EFFECTS OF MEDICINES.

is a cure for constipation. Vaccination is a protection from small-pox, on homeopathic principles. The best application to frost-bitten parts is Cold, either by the use of some freezing mixture or by rubbing the part with snow. In burns or scalds the best means of relief are the exposure of the part to Heat, or the application of heated Spirit of Wine or Oil of Turpentine.

Hahnemann thinks that it is of little importance to endeavour to ascertain, in a scientific manner, how the homeopathic remedy effects a cure; but he offers the following as a probable explanation. The medicine sets up, in the suffering part of the organism, an artificial but somewhat stronger disease, which, on account of its great similarity and preponderating influence, takes the place of the former; and the organism from that time forth is affected only by the artificial complaint. This, from the minute dose of the medicine used, soon subsides, and leaves the patient altogether free from disease; that is to say, permanently cured. As the secondary effects of medicines are always injurious, it is very necessary to use no larger doses than are absolutely requisite, more especially as the effects do not decrease in proportion to the diminution of the dose. Thus eight drops of a medicinal tincture do not produce four times the effects of two drops, but only twice: hence he uses exceedingly small doses of medicines. Proceeding gradually in his reductions, he has brought his doses down to an exiguiti before unheard of, and seemingly incredible. The millionth part of a grain of many substances is an ordinary dose; but the reduction proceeds to a billionth, a trillionth, nay, to the decillionth of a grain, and the whole materia medica may be carried in the waistcoat pocket!

The following is the method of obtaining these small doses:—
Suppose the substance to be a solid; reduce it to powder, and mix one grain of it with ninety-nine grains of sugar of milk: this constitutes the first attenuation. To obtain the second attenuation, mix one grain of the first attenuation with a hundred grains of sugar of milk. The third attenuation is procured by mixing one grain of the second attenuation with ninety-nine grains of sugar of milk. In this way he proceeds until he arrives at the thirtieth attenuation. Water is the diluent for liquid medicines. The following table shows the strength of the different attenuations, with the signs he employs to distinguish them:

<table>
<thead>
<tr>
<th>Attenuation</th>
<th>One hundredth part of a grain</th>
<th>One thousandth</th>
<th>One millionth</th>
<th>One billionth</th>
<th>One trillionth</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>V. Fifteenth</td>
<td>VI. Eighteenth</td>
<td>VII. Twenty-first</td>
<td>VIII. Twenty-fourth</td>
<td>IX. Twenty-seventh</td>
</tr>
<tr>
<td>Second</td>
<td>One quintillionth</td>
<td>One sextillionth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third</td>
<td>One septillionth</td>
<td>One octillionth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth</td>
<td>One nonillionth</td>
<td>One decillionth</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Here is a tabular view of the doses of some substances employed by the homoeopathists:
Charcoal, one or two decillionths of a grain.
Chamomile, two quadrillionths of a grain.
Nutmeg, two millionths of a grain.
Tartar emetic, two billionths of a grain.
Opium, two decillionths of a drop of a spirituous solution.
Arsenious acid, one or two decillionths of a grain.
Ipecacuanha, two or three millionths of a grain.

These doses are given in pills (globuli), each about the size of poppy-seed.

Hahnemann gravely asserts, that the length of time a powder rubbed, or the number of shakes we give to a mixture, influence the effect on the body. Rubbing or shaking is so energetic in developing the inherent virtues of medicines, that latterly, says Hahnemann, "I have been forced, by experience, to reduce the number of shakes to two, of which I formerly prescribed ten to each dilution. In mixing a powder with sugar, the exact period we are to rub it twice—"bis, brachio quidem bis moto, concutite."

The principal facts to be urged against this doctrine may be reduced to four heads:

1st. Some of our best and most certain medicines cannot be regarded as homopathic: thus Sulphur is incapable of producing scabies, though Hahnemann asserts it produces an eruption analogous to it. Andral took quina in the requisite quantity, but without acquiring intermittent fever; yet no person can deny the fact of the great benefit frequently derived from the employment of an agent in ague; the paroxysms cease, and the patient seems cured. "But," etc., Hahnemann, "are the poor patients really cured in these cases?" All that can be said, is, that they seem to be so; but it would appear, according to homopathic, that patients do not know when they are well. We are also told that whenever an intermittent resembles the effects of Cinchona, then, and till then, can we expect a cure. I am afraid, if this were true, very few agues could be cured. Acids and vegetable diet cure scurvy, but I never heard these means causing a disease analogous to it.

2ndly. In many cases homopathic remedies would only increase the original disease; and we can readily imagine the ill effects which would arise from the exhibition of Acris in gastritis, or of Cantharides in inflammation of the bladder, or of Mercury in spontaneous salivation.

3rdly. The doses in which these agents are exhibited are so exceedingly small that it is difficult to believe they can produce any effect on the system, as therefore, we may infer that the supposed homopathic cures are referrible to natural and spontaneous cure, aided, in many cases, by a strict attention to diet and regimen. What effect can be expected from one or two decillionths parts of a drop of laudanum? Hahnemann says, it is foolish to doubt the possibility that which really occurs; and adds, that the sceptics do not consider the rubbing and shaking bestowed upon the homopathic preparation, by which it acquires a wonderful development of power!

4thly. Homopathia has been fairly put to the test of experiment by some members of the Académie de Médecine, and the result was a failure. And as tried it on 130 or 140 patients, in the presence of the homopathists themselves adopting every requisite care and precaution, yet in not one instance successful.

1. Organon.
2. See Dr. Quin's Pharmacopoeia Homopathica.
ON THE THERAPEUTICAL EFFECTS OF MEDICINES.

3. Allopathia.

allopathic (so called from ἀλλόν, another, and πάθος, a disease), allopathic method, consists in the employment of medicines which act upon phenomena altogether different or foreign (neither similar nor opposite) to those of the disease.

For this head is included that mode of cure effected by what is Antagonism or Counter-irritation; that is, the production of a special or secondary disease, in order to relieve another or primary. It is a method of treatment derived from observation of the fact that maladies mutually exert over each other. For example, it has been frequently noticed in the progress of some internal diseases, the latter are often arrested, or perhaps rapidly disappear, apparently in consequence of the primary affection. The result of observations of this kind would naturally be the employment of alvine evacuations in analogous cases where diarrhea did not spontaneously take place, and this practice is frequently attended with beneficial results. Appearance of a cutaneous eruption is sometimes a signal for appearance of an internal affection; and vice versa, the appearance of a cutaneous disease is sometimes followed by disorder of some abdominal organs. Here, again, we have another remedy suggested, and that is, in the production of an artificial disease of the skin, as by the application of an ointment containing Tartar Emetic, or by other irritants in the shape of a curettage. A suggestion, the advantage of which experience has frequently verified. I might bring forward numerous additional instances to prove the fact (which, however, is so well known as to require little proof), that action in one part will often cease in consequence of action taking place in another. Diseases, then, to have what Dr. Pring calls a curative relation with respect to another; and we shall find that the greater part of our most powerful and certain remedies operate on the principle of antagonism or counter-irritation; that is, they produce a secondary disease which acts as a counter-irritation to the primary one. Dr. Parry calls this the "cure of a disease by conversion."

...
patible with the morbid action, than that it is merely a debilitant. The imme-
diate effect sometimes produced on disease, by this remedy, is so remarkable as
hardly to admit of the supposition of its acting as a mere weakening agent.
One full blood-letting will sometimes put an immediate stop to ophthal-
ma; and I have seen, even while the blood was flowing, the vascularity of the eye dis-
nish, and from that time the disease progressively declined. When to this fact
we add, that the same disease is often successfully treated by other different, and
even opposite remedies, such as Mercury and stimulant applications, we find
difficulty in explaining their beneficial agency, except by supposing that the
influence disease by some relation common to all of them. This view of the
counter-irritant operation of blood-letting is supported by Dr. Clutterbuck, Dr.
Pring, and others. The term counter-irritant is, however, objectionable, since
literally it expresses that the secondary disease should be a state of irritation—
a term hardly applicable to the condition caused by blood-letting. But this, as
well as other remedial agents (mental impressions, for example), agrees with the
counter-irritants, commonly so called (blisters, &c.) in influencing diseases on
by an indirect relation; it would be better, therefore, either to extend the mean-
ing of the term counter-irritant, or to employ some other, such as causae
morbifac.

The older writers employed two terms, Revulsion and Derivation:
the first was applied to those cases in which the secondary disease
occurred in a part remote from the seat of the primary affection; the
second was, on the contrary, confined to those instances in which the
secondary was produced in the neighbourhood of the primary disease.
For example, Leeches or Blisters applied to the feet in apoplexy
were called revulsives; but the same applications to the head, in the
same disease, would be derivatives. There is, however, no real
distinction between them, their operation being similar; for revulsives
was, even in their own sense of the word, only derivation at a distance.

Topical applications are frequently counter-irritants. Thus, stimulant washes, applied to the eye, sometimes cure opthalmia.
They operate, apparently, by altering the morbid action, and subs-
tituting a milder and more easily cured disease for the one previously existing.

Using the term counter-irritation in its most extended sense, see our list of agents producing this effect is a most extensive one. It comprehends Emetics, Purgatives, Diffusible Stimulants, Mercury, Blisters, Cauteries, Issues, Setons, Moxa, Blood-letting (including Arteriotomy, Venesection, Cupping, and Leeches), Irritati-
ting Lavements, Frictions, Sinapisms, Rubefacients, the Hot Cold Baths, and even Mental Impressions. That is, all these agents excite some action in the system which has a relation (often bene-
ficial) with the morbid action: to use Dr. Parry's words, the agents cure disease by conversion.

The most unsatisfactory part of the subject is, the theory or hypo-
thesis of the manner in which the mutual relations of diseased actions
are effected. Dr. Parry presumes most diseases consist in local
determinations of blood, and that it is a law of the human constit-

in that excessive morbid determination to two different parts shall not exist in the same person at the same time. Neither of these assumptions, however, is quite correct; but, if both were true, they ill leave untouched the question, how determination of blood to one organ is cured by producing a determination to another. To account for it, some assume that the system can produce only a certain quantity of nervous energy, and that as, in every disease, there is an undue preternatural distribution of nervous energy, so the production of an artificial disease in one part must, by consuming the nervous energy, diminish the disease in another. But the whole hypothesis is grounded on assumptions perfectly gratuitous and incapable of proof. As Dr. Pring justly observes, were this hypothesis true, it would lead us to employ, not bleeding, purgatives, blisters, and all direct remedies in hepatitis or consumption, but the exercise of the treadmill for a few hours; so that a patient, labouring under phrenitis or pneumonia, should be made to walk fifteen or twenty miles a day, by which, it would be presumed, so much nervous energy would be consumed in the arms and legs, that there could not possibly be any preponderance or excess in any other seat.

Let us, then, discard absurd hypotheses of this kind; and, for the present, be content with the knowledge of the fact, that one disease, whether artificially or spontaneously generated, will often, but not invariably, supersede another.

The Antagonisms of determinations of blood and of the secretions have been before noted. Muller states, that the antagonism of the secretions is subject to the following laws:—

1. The increase of a secretion in a tissue, a, which is less irritable than the organ, b, is incapable of producing a diminution in the secretion of the latter; hence, for example, artificially excited secretions from the skin, as by a blister, in the neighbourhood of the eye, in inflammation of the latter organ, are of no service, because the eye is a more irritable part than the skin.

2. An increased secretion in a certain tissue, a, cannot be diminished by exciting the same secretion in another part of the same tissue, a; on the contrary, such a procedure would rather increase the secretion from all parts of the tissue than diminish it, because the relation which exists between the different parts of one and the same tissue is that of sympathy, not of antagonism. Hence, a discharge from the generative or urinary organs cannot be arrested by an artificially excited diarrhoea.

3. On the contrary, the secretions of tissues which do not belong to the same class of structures, often antagonise each other. Thus, increased of the cutaneous secretion frequently induces diminution of the secretion of the kidneys: in summer, the cutaneous exhalation is more abundant, and the urinary secretion proportionally scanty; in winter, the reverse is the case. Effusion of watery fluids into the cellular membrane and serous cavities is attended with dryness of the skin, and diminution of the urinary secretion, the quantity of which is observed to increase in the same proportion as dropsical effusions diminish. Suppression of the exhalation from the skin by cold, gives rise to mucous discharges from the intestinal and pulmonary mucous membranes.

4. It is only towards the termination of consumptive diseases that this relation...
of antagonism between the secretions ceases to exist; when, in consequence, the relaxed state of the tissues, all are at length increased in quantity; in colloquative state that precedes death in phthisical patients, colloquative diarrhoea profuse sweating, and dropical effusions, take place simultaneously.

5. When one tissue is excited to increased action by an impression made on another, either the secretion of the two must have been in some respects similar in the case of the skin and kidneys, both of which have the office of excreting water from the blood; or the organ thus excited must have had a predisposition to morbid action, which is the rational explanation for the circumstance, the impression of cold produces in one person an affection of the mucous membrane of the lungs; in another, a disordered secretion of mucus in the intestinal canal.

CHAPTER X.—OF THE PARTS TO WHICH MEDICINES ARE APPLIED.

Medicines are applied to the skin; to mucous or serous membranes; to wounds, ulcers, or abscesses; or they are injected into the veins.

1. Applications to the Skin.

Medicinal applications are frequently made to the skin in order to produce local effects, as in the case of Blisters, Cataplasms, Fomentations, Lotions, Embrocations, &c.; and occasionally to affect remote parts of the system, as when we use Mercury. Most, if not all, medicines, which influence distant organs by application to the skin do so in consequence of their absorption; and, as the cuticle offers a mechanical impediment to this process, we generally either remove or make use of friction.

There are three methods of applying medicines to the skin; namely, the epidermic, the iatrepidetic, and the endermic.

1. The Epidermic Method consists in the application of medicines to the skin, unassisted by friction; as when we employ Pustules, Blisters, Poultices, Lotions, Fomentations, Baths, &c.

Baths are made of liquids (as simple water), soft substances (as dung and saline mud), dry bodies (as sand), gases (as hot air), vapours (as aqueous vapour). Gases or vapours are sometimes applied to the skin, either as local agents, or as means of affecting the constitution. Thus, baths of sulphurous acid gas are employed in the treatment of many diseases, under the name of medicated vapour baths; though the greater part of their efficacy is to be ascribed to the influence of the vapour.

2. The Iatrepidetic Method (which has been so called from ἀπαριβω, to cure or heal: and ἅλιμω, to anoint), consists in the application of medicines to the skin, aided by friction. It has been termed the epidermic method—sometimes anaepireologia (from ἀπαριβω, rub in; and λύω, a discourse), and also epiante medicine. It was employed by Hippocrates, and other old writers; but fell into disuse.
OF THE PARTS TO WHICH MEDICINES ARE APPLIED.

Attention was again drawn to it by Brera, Chiaretti, Christien, &c. Among the substances which have been employed in this way, are Camphor, Digitalis, Squills, Cantharides, Sulphate of Veratria, Colocynth, Rhubarb, Opium, Belladonna, Mercury, and Gold, &c.

mode of employing medicinal agents, according to the iatromethod, is the following:—The substance to be applied being divided into the finest possible state of division, is to be dissolved or red in some appropriate liquid, and in this state rubbed into the skin. The dose is always considerably larger than for the stomach—generally two or three, often as much as ten, and, in some even twenty times the ordinary dose: but no absolute rule can be laid down on this head. The liquids employed to dissolve or red the medicine may be water, spirit, or oily or fatty matter. Optic writers, however, prefer the gastric juice, or saliva, or even milk. But I am not acquainted with any just grounds for this preference.

Collard de Martigny concludes from his experiments, that limbs of the hands, soles of the feet, neighbourhood of the joints, test, the back, and the inner parts of the limbs, are to be preferred for the application of medicines.

objections to this mode of employing medicines are the uncertain results; the time required to affect the system; the frequent attendant nature of the process (as when mercurial inunctions are used); and the local irritation sometimes produced by the friction.

Notwithstanding these, however, it may be resorted to occasionally with advantage; as where the patient cannot or will not take medicine; or where the alimentary canal is very irritable, or insensitive. The action of medicines.

THE ENDERMIC, OR EMPLASTRO-ENDERMIC METHOD, consists in the application of medicinal agents to the denuded dermis. For its action into practice we are indebted to MM. Lembert and Diet.

The denudation of the dermis is usually effected by a blistering plaster. When the cuticle is elevated, an opening is made into it, to allow the serum to escape. The medicine is then applied to the dermis either with or without removing the cuticle. At the first the transparent pellicle formed by the dermis is to be carefully removed, as it very much impedes absorption. The medicine is applied to the denuded surface, either in its pure state, in the form of an imple powder— or, if too irritating, it is to be incorporated with beeswax, lard, or cerate. Should any circumstances arise to lead us to believe that the quantity of the medicine applied has been too large, the mode of proceeding is the following:—Cleanse the surface immediately; make compression (as by a cupping-glass) around the dermal part, in order to prevent absorption, and apply any substance which neutralizes the effect of the medicine. Thus, Lembert has

1 De la Méthode Intraleptique. Paris, 1011.
2 Des de Médec. et du Chirurge, prat. art. Intraleptique.
found, that two grains of the Acetate of Morphia will destroy tetanic symptoms caused by the application of two grains of Strychnia. Musk and Camphor are said to counteract the narcotism of Morphia.

Instead of a blistering plaster, Trousseau recommends a vesicating ointment, composed of equal parts of a strong solution of ammonia and lard. Two applications, of five minutes each, are sufficient to raise the cuticle. Boiling water, which has been employed by some persons, is uncertain, painful, and dangerous; it may cause mortification of the dermis, and thus stop absorption.

The advantages of the endermic method are, that substances not submitted to the influence of the digestive process, and their effects can be better ascertained;—their operation is in general quick, and in some cases more rapid than when they are applied to the stomach. If the gastric membrane be inflamed, or if the patient cannot (or will not) swallow, more especially if the case be urgent, this is an admirable method of putting the system under the influence of a medicine.

The disadvantages of the endermic method are, the pain sometimes experienced by the application of medicinal agents to a denuded surface—some even may occasion mortification of the part; the possibility of the skin being permanently marked; lastly, some substances have no effect when used endermically.

The substances which have been used by this method are Morphia and its Acetate, Hydrochlorate, and Sulphate, in doses of from a quarter of a grain to two grains; Strychnia, from a quarter of a grain to a grain; Aconitina, one-sixteenth to one-eighth of a grain; Extract of Belladonna, three or four grains; Sulphate of Quina, two to three grains; Musk, six or eight grains; Tincture of Asafetida, ten minims. Many other agents have also been employed endermically: as Datura, Extract of Squills, Aloes, Saffron, Bichloride of Mercury, Tartar Emetic, &c.

Method of Inoculation. — In connection with the endermic method may be mentioned another mode of employing medicines; namely, the method by inoculation, proposed by M. Lasargue de St. Emilion. In this way Morphia has been employed to relieve topical pain. It is introduced in the part in pain by the point of a lancet. In a few minutes a papula makes its appearance and an erythematous blush.

2. Applications to the Mucous Membranes.

We have two mucous membranes, to the different parts of each of which we apply medicines: the first is the gastro-pulmonary membrane, the second the urino-genital.
OF THE PARTS TO WHICH MEDICINES ARE APPLIED.

 a. Ocular mucous membrane.
 b. Vesical membrane.
 c. Eustachian membrane.
 d. Pituitary membrane.
 e. Tracheo-bronchial membrane.
 f. Recto-colic membrane.
 g. Gastro-intestinal membrane.

2. Urino-genital membrane.
 b. Rectal membrane.

 - Medicines are applied to the conjunctiva, to excite effects only, though we might employ this part for other purposes remote organs may be affected by it. Thus a drop of an acid applied to the conjunctiva of a dog produces death. The term Collyrium (Κόλλυριον) was formerly employed to indicate solid substances applied to the eyes. It now means liquid washes for the eyes, and is equivalent to eye-cotterean: calls all medicines (solids, soft substances, liquids, ointments or gases), which are applied to the eyes, collyria.

b. Pituitary membrane.—We seldom apply medicines to the membrane except in affections of the nose or of parts adjacent. Sometimes they are employed to irritate and excite a discharge; they are then called errhines; but when used to produce a discharge, as when foreign bodies are in the nasal cavities, they are termed nasal or nasal washes.

e. Tracheo-guttural mucous membrane.—Medicines are very rarely applied to the mouth and throat, except for local purposes. However, they are employed to excite the swallowing reflex by rubbing calcined into the mouth. Solids used in the mouth are termed lozenges (trocken) or pastilles, according as they are allowed to dissolve slowly or immediately; liquids are called collutoria or gargarismata. Powders (of Alum) are introduced by insufflation.

f. Eustachian membrane.—Aurists now and then apply washes to the Eustachian tubes in local affections; but the occasions for this are rare, and the operation difficult, except in practised hands.

g. Tracheo-bronchial membrane.—Accidental observation, as experiment, has shewn that medicines produce very powerful effects on the membrane lining the trachea and bronchial tubes. For instance, applications here are made use of for local purposes, as to the lungs, chronic bronchitis, phthisis, &c. though occasionally to the brain, the blood, the heart, &c. Dr. Myddleton has described, in pulmonary diseases, the inhalation of substances (as muriatic acid, Sulphate of Iron, Myrrh, &c.) reduced to an impalpable dust. The fumes (suffusus) of Tar, Balsam, Resins, and other bodies, have also been employed in these cases. Sir Alexander has strongly recommended Tar Vapour; the method
of using which is the following:—The Tar employed should be used in the cordage of ships; to every pound of which an ounce of Carbonate of Potash must be added, in order to the Pyroligneous Acid generally found mixed with the presence of which will necessarily excite coughing. The preparation is to be placed in a suitable vessel over a lamp, kept slowly boiling in the chamber during the night as well as the day. The vessel, however, ought to be cleansed and replaced every twenty-four hours, otherwise the residuum may be but decomposed,—a circumstance which will occasion increased and oppression on the chest.

The inhalation of aqueous vapour (halitus), either alone or in combination with other substances, is oftentimes useful in various affections of the lungs and of the throat, &c. The apparatus for this purpose may be that proposed by Dr. Gairdner7 or Dr. Mudge's inhaler. In the absence of these, a teapot, or basin with an inverted funnel, may be used. In many asthmatic cases the difficulty of breathing is so great that the patient cannot close the mouth around the tube, especially if the latter be small, without exciting a sense of impending suffocation. In such instances I have found the only easy and practical method of enabling the patient to inhale is, by holding the mouth closed, the water contained in a basin or teacup. Various narcotic and aromatic herbs are sometimes added to the water, but I suspect with little benefit in any way to its efficacy. The vapour of hot Vinegar, Phlegm, of Iodine, of Camphor, and of other volatile substances, is occasionally employed in pulmonary diseases. The vapour may be conveniently inhaled by means of a double-necked glass vessel (fig. 20), into which we pour about an inch of water, a few drops of the Tincture of Iodine have been added. One of the necks a straight tube passes, and dips down into the surface of the water. The other neck has a short curved tube passed through it, by which the patient inhales. In the case of a double-necked bottle, the common wide-mouthed bottle may be used, the cork of which has two perforations, through which pass the glass tubes. C. Scudamore 2 uses a Tincture of Conium along with Tincture of Iodine. Chlorides of Lime, instead of the Tincture of Iodine. If Nitrous Oxide, be inhaled, the most easy and convenient

7 Edinburgh Medical and Surgical Journal, vol. xix.
OF THE PARTS TO WHICH MEDICINES ARE APPLIED.

Effecting it is from a bladder; but for other and more complete, though more costly methods, I must refer to the works of the late Dr. Beddoes, and of the celebrated engineer, Mr. James Watt.

6. Gastro-intestinal membrane.—We employ both extremities of the alimentary canal for the exhibition of medicines; the upper, however, more frequently than the lower. This mode of employing medicines is called the method by ingestion. Of all parts of the body, the gastro-intestinal surface is the most useful for the application of medicines. This arises from the great susceptibility, the active absorbing power, and the numerous relations which the stomach has with almost every part of the body. In many cases remote effects are more easily produced by this than by any other organ, as in the case of Diffusible Stimulants. Medicines which act by absorption are more energetic when applied to the serous membranes, the bronchial membrane, the cellular tissue, &c. In some cases it is not only possible, but probable, that the stomach may either partially or wholly digest a medicine.

3. Recto-colic membrane.—Sometimes, though less frequently than the stomach, the rectum is employed for the application of medicines. It has been asserted that the general susceptibility of the rectum is only one-fifth of that of the stomach, and that medicines take five times as long to operate by the former as by the latter: hence it has been said that both the dose, and the interval between the doses, should be five times as great as when applied to the stomach. But this assertion is far from being universally correct, though it may be occasionally. Orfila asserts that those agents which operate by absorption, as Opium and Tobacco, are more active by the rectum than by the stomach; and he assigns as a reason the greater venous absorption of the rectum, and its less digestive power. But this statement is in direct opposition to the experience of almost every practitioner. Whenever I have had occasion to employ Opium by way of enema, I always exhibit twice or three times the ordinary dose, without exciting any remarkable effects. Dr. Christison states that he has given two measured drachms of Laudanum by injection, without producing more than usual somnolence; a quantity which, if Orfila’s statement were correct, would probably prove fatal.

We apply medicines to the rectum sometimes with the view of alleviating disease of this or of neighbouring organs (as of the uterus, bladder, prostate gland, &c.); at other times in order to irritate the rectum, and, on the principle of counter-irritation, to relieve distant parts (as the head); sometimes to produce alvine evacuations, or to dissolve hardened faces; occasionally, also, when we are precluded from applying our remedies to the stomach, on account of their unpleasant taste and smell, the inutility or indisposition of the patient, or the irritability of the stomach; and, lastly, in order to rove the small thread-worm (Ascaris vermicularis).

When the substances applied to the rectum are solid, we name

* Considerations on the Medicinal Uses, and on the Production of Fictitious Airs. 1796.
them suppositories (suppositoria, from suppono, to put under); but when of a fluid nature, they are termed clysters, lavements, or enemata.

Formerly suppositories were conical, or cylindrical, like a candle and of variable size,—sometimes one or two inches long. They are now usually made globular, and of small size. They are employed to evacuate the bowels; to irritate the rectum, and thereby to relieve affections of distant organs; but more commonly to act as local agents in affections of the rectum, bladder, uterus, prostate gland, urethra, &c. I have frequently employed with great advantage a mixture of Opium and Soap, to prevent the pain of priapism during the night, in gonorrhoea.

Clysters or lavements require to be considered under several points of view: first, in reference to the material of which they are made and which must vary with the object for which these remedies are employed; secondly, with respect to the quantity of liquid used, and which will depend on the age of the patient. The average quantity for an adult is about twelve or sixteen ounces; and I believe that it is rarely proper to use more than this. I am quite sure that the practice of introducing several pints of fluid into the large intestine with the view of exciting alvine evacuations, is bad. In the first place it often provokes the contraction of the gut, by which the injection is immediately returned; and, secondly, repeated distension diminishes the susceptibility of the part, so that the ordinary accumulation of fecal matter no longer acts as a sufficient stimulus.

Salmon* has related a case of this kind, where the patient had lost all power of relieving the bowels, except by enemata or purgatives, and had produced dilatation of the rectum, in consequence of having been in the habit of introducing into the intestine two quarts of gruel twice every day. A newly-born infant requires about five fluidounces; a child of one to five years, from three to four ounces; and a youth from ten to fifteen, from six to eight fluidounces. Thirdly, the impulse with which the fluid ought to be thrown deserves attention. If too much force be used, the sudden dilatation of the gut may bring on spasmodic action of its lower part, by which the clyster will be returned. Fourthly, the instruments by which the injection is effected, require notice. The common pipe and bladder are too well known to require description. I am inclined to think that the most convenient, safe, and useful apparatus is the elastic bottle and tube. Any quantity of liquid, however small, may be thrown up with the greatest ease, and without any danger of the impulse being too great. Its application is exceedingly convenient to a lusty person, by placing one foot on a stool or chair, may be easily applied it without assistance; and its price is very moderate. Another form of enema apparatus is a narrow water-proof tube, holding about a pint of liquid, about four feet long, narrower at one end, which

* For some remarks on Suppositories, by Dr. Osborne, see Lond. Med. Gaz., March 6, 1849.
* Practical Essay on Proctopexy of the Rectum, p. 44. Lond. 1841.
OF THE PARTS TO WHICH MEDICINES ARE APPLIED.

The fluid being placed in the tube, the pipe is introduced into the rectum, and the apparatus held in a perpendicular direction, by which the fluid is propelled into the gut by its own gravity. This apparatus, although very simple, appears to me to be less convenient for common use than the elastic bottle, and not to be well adapted for the administration of small quantities of fluids. In the shops are sold syringes, of various forms, as enema apparatus.

Gaseous matters have been sometimes thrown into the rectum. Thus the injection of common air has been proposed in ileus. Tobacco-smoke has sometimes been employed in hernia: it is injected by a peculiarly constructed pair of bellows. Carbonic acid gas has been used in ulceration of the rectum.

2. URETHRO-VESICAL MEMBRANE. a. Urethra-vesical membrane.—Applications to the urethra are made only for local purposes; either in a solid form, as caustic or medicated Bougies, or in that of a liquid, as an injection: the latter is easily applied by a common syringe. Syringes of various kinds, for this purpose, are sold by Messrs. Maw, of Aldersgate Street, London.

Injections are sometimes thrown into the bladder, but always for local purposes. The operation is easily performed by attaching a catheter to an elastic bottle.

b. Vagina-uterine membrane.—Medicines are applied to the vagina and uterus, to produce local effects only. Thus injections are made to relieve vaginal discharges, to excite the catamenia, &c. They are usually liquids, but the following case, related by my friend, Dr. Clutterbuck, proves that gases are sometimes employed. A lady, who had suffered a considerable time from some uterine affection, and had derived no relief from the treatment adopted, was advised to consult a physician in Italy (Dr. Rossi). After he had examined the condition of the uterus, he assured her there was no organic disease, but merely a considerable degree of irritation; for which he proposed to apply Carbonic Acid, as a sedative. This was done by means of a pipe and tube, communicating with a gasometer situated in another room. The patient obtained immediate relief, and although she had been obliged to be carried to the doctor’s house, on account of the pain experienced in walking, she left it in perfect ease. On her return to England she had a relapse of the complaint, and applied to Dr. Clutterbuck to know whether she could have the same remedy applied in London, in order to save her the necessity of returning to Italy.

3. APPLICATIONS TO THE SEROUS MEMBRANES.

c. Tunica vaginalis. — Irritating injections, such as Wine and Water, solutions of Metallic Salts, &c. are thrown into the cavity of

* Edinburgh Medical and Surgical Journal, vol. xvi.
the serous membrane of the testicle in hydrocele, in order to excite inflammation and the subsequent adhesion of the sides of the sac.

b. Peritoneum.—Injections have also been made into the peritoneal sac in ascites, and in some cases with success*. The practice, however, is very dangerous. Mr. Cooper† has seen two fatal cases of it.

4. APPLICATIONS to ULCERS, WOUNDS, AND ABScesses.

These are employed principally to excite local effects, and sometimes, though rarely, to produce a constitutional affection. Thus it has been proposed to apply Corrosive Sublimate to wounds, with the view of causing salivation.

5. INJECTION of Medicines into the Veins.

(Chirurgia infusionis; Ars chymatica nova; Infusion of medicines.)

This history of this operation is inseparably connected with that of Transfusion. The first experiments on infusion are said to have been performed in Germany*. But the first scientific examination of the operation was made by Sir Christopher Wren*. His example was followed by Boyle, Clarke, Henshaw, Lower, and others†.

The partisans of this method of treatment assert, that when medicines are administered by the stomach, their properties are more less altered by the digestive powers of the viscera; and that by injecting medicines at once into the veins, we avoid this influence. The statement, however, is not accurate, since Drs. Christison and Coindet have shewn that some substances are decomposed in the blood, or at least that they cannot be recognized in the fluid. Furthermore, it has been proved that the effects are of the same general nature as when medicines are applied to the skin. Here: thus, Tartar Emetic occasions vomiting, Senna purgative; Opium stupifies, and so on. So that some of the supposed advantages of this operation have no real existence, while several objections to it exist: such as the danger of introducing air into the veins, or of throwing in too large a dose of the remedy (for a slight excess in some cases may prove fatal), or of the occurrence of phthisis. These, then, are sufficient reasons for not resorting to such practice, except on very urgent occasions; for example, to excite speedy vomiting when the patient is unable to swallow. Köhn (mentioned by Dieffenbach, who notices also several other analogous cases) preserved the life of a soldier, in whose throat a piece of tendon was sticking, by throwing a solution of six grains of Tartar Emetic into a vein of the arm: vomiting was induced, and the me

* Philosophical Transactions for the year 1744.
† Dictionary of Practical Surgery, art. Purgation.
* See Paul Scheld's work, entitled "Die Transfusion des Bluts und Einspritzung der Arzneien die Adern," Kopenhagen, 1803; Zweiter Band, 1805.
† Philosophical Transactions for 1805, vol. i. p. 131.
* For further information on the history of this operation, consult Scheld's work, before quoted also Dieffenbach's essay, "Ueber die Transfusion des Bluts und die Infusion der Arzneien," 1825 or MATE*N "Die Lehre von den Giften," 1827 and 1829.
expelled. Meckel injected two grains of this salt, dissolved in water, into the veins of a woman, to restore suspended animation, from immersion in water. Lastly, cold water has been injected into the umbilical vein in cases of retained placenta.

In some obstinate and dangerous diseases this operation is admissible as a last resource; for example, in cases of poisoning, in hydrophobia, in malignant cholera, &c. As plethora appears to diminish absorption, it has been proposed to throw Tepid Water into the venous system in cases of narcotic poisoning, and thus to cause artificial plethora, in order to prevent the occurrence of the symptoms of poisoning by stopping absorption. Vernière found three grains of nux vomica produced no effect when applied to a wound in a dog into whose veins water had been thrown; and he asserts, that by the early use of aqueous injections we may prevent the development of contagious diseases. Magendie has tried the effects of injecting tepid water into the veins in hydrophobia. The operation was first performed at the Hôtel-Dieu, at Paris, in October, 1823: the convulsions were stopped, but the patient died in a day or two afterwards. This operation has been several times repeated, and with the same results. In June 1832, I tried it on a patient (afflicted with this terrible disease) under the care of the late Mr. Bennett, of the Commercial Road: the patient was a boy about nine years of age; he was nearly insensible at the time I performed the operation. I threw in about one quart of tepid water without any obvious effect on the pulse: no convulsions were subsequently observed, but the patient died in a few hours. Saline solutions were injected into the veins in malignant cholera, and often with apparent advantage. Purgatives, Narcotics, &c. have been thrown into the veins by different physiologists, and in most cases the effects observed were similar to, though more powerful than, those produced when these agents were administered by the stomach. To this statement, however, the Oils are an exception; for when injected into the veins in large quantities they interrupt the circulation, and produce a kind of asphyxia.

CHAPTER XI.—ON PHARMACOLOGICAL CLASSIFICATION.

In some works on Medical Botany, which contain figures of the plants employed in medicine, the authors have not followed any arrangement; in consequence, I presume, of the impossibility of procuring specimens in regular order. This is the case in the following works:

W. Woodville, M.D. Medical Botany, 3 vols. 4to. London, 1790. A Supplement to the Medical Botany, 4to. London, 1794. [In the second edition of this work, published in 1810, the subjects were arranged according to their natural orders.—The third edition, in 1832, by Dr. Hooker and Mr. Spratt, was, in fact, the second edition with a new title and an additional volume].

ELEMENTS OF MATERIA MEDICA.

Flora Medica, 2 vols. 8vo. 1827.

The large number of substances employed in the treatment of diseases renders some arrangement of them almost absolutely necessary;—and I conceive any order of treating of them to be better than none.

Arrangements or classifications of medicines, like those of plants, may be divided into empirical and rational ones.

1. EMPIRICAL ARRANGEMENTS.

These are independent of the nature of, and have no real relation or connection with, the substances to be arranged. An alphabetical order, since it is founded on names which are arbitrary, and have no relation to the bodies they are intended to designate, is of this kind.

Two advantages have been supposed to be gained by its employment; firstly, a ready reference to any particular substance; and, secondly, the avoidance of errors committed by writers who adopt other methods. But the first is more imaginary than real; for an index gives to any mode of classification every advantage derived from an alphabetical arrangement; and, as each substance is known by a variety of names, an index becomes as necessary to an alphabetical as to any other method. Like other classifications this has its disadvantages, the most important of which are, that it brings together substances of the most incongruous natures, and separates those which agree in most of their properties; and from its want of order, it distracts the attention of the student, and is, therefore, totally unfitted for an elementary work.

The following are some of the more important works in which medicines are described in an alphabetical order:—

J. Rutté, Mat. Medica antiqua et nova, repurgata et illustrata, 4to. Rotterdam, 1775.
W. Lewis, an Experimental History of the Materia Medica, 4to. 1761.—4th edit. by Dr. Aikin, 2 vols. 8vo. 1791.

PHARMACOLOGICAL CLASSIFICATION.

F. P. Dulk, Die Preussische Pharmakopoe, ubersetzt und erlautert; 2te Aufl. 2 Th. 8vo. Leipzig, 1830.

2. RATIONAL ARRANGEMENTS.

These have an actual relation with the bodies for which they are used, and are the classifications, properly so called. They are founded on the properties of the substances treated of; consequently are as numerous as there are classes of properties. Thus medicines may be arranged according to their

a. Sensible properties (colour, taste, and smell).
β. Natural-historical properties (external form and structure).
γ. Chemical properties.
δ. Physiological effects.
ε. Therapeutical properties.

a. CLASSIFICATIONS FOUNDED ON THE SENSIBLE QUALITIES.

Classifications founded on the Colour, Taste, and Odour of plants are necessarily very imperfect, owing to the impossibility of defining sensations. Moreover, their use is very limited, in consequence of these properties having no necessary relation to the medicinal powers*. In the best executed arrangements of this kind, the denominations of many of the classes, or orders, are objectionable;—dissimilar bodies are brought together, and similar ones separated.

The following writers have offered the best examples of this mode of classification:

Jon. Oudorne, M.D. On the Indications afforded by the Sensible Qualities of Plants with respect to their Medical Properties. Contained in the Transactions of the Association of Fellows and Licentiates of the King’s and Queen’s College of Physicians, vol. v. 1828.
A. F. A. Greeves. An Essay on the Varieties and Distinctions of Tastes and Smells, and on the Arrangement of the Materia Medica. [Published by Dr. Duscan, in his Supplement to the Edinburgh New Dispensatory. 1829].

* See p. 93.
MR. GREEVES’ CLASSIFICATION.

<table>
<thead>
<tr>
<th>CLASSES</th>
<th>FAMILIES</th>
<th>ORDERS</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INODOUS AND INSIPID</td>
<td>1. Liquid</td>
<td>1. Water</td>
<td></td>
</tr>
<tr>
<td>5. Hard</td>
<td>5. Britle</td>
<td>5. Antimony</td>
<td></td>
</tr>
<tr>
<td>2. Sweets</td>
<td>7. Amylaceous</td>
<td>7. Starch</td>
<td></td>
</tr>
<tr>
<td>5. Sweets</td>
<td>10. Frugous</td>
<td>10. Tamarinds</td>
<td></td>
</tr>
<tr>
<td>II. INODOUS AND SAPID</td>
<td>1. Bitters</td>
<td>1. Quassia</td>
<td></td>
</tr>
<tr>
<td>5. Saline</td>
<td>5. Styrptic</td>
<td>5. Nitre</td>
<td></td>
</tr>
<tr>
<td>III. ODOROUS AND INSIPID</td>
<td>6. Acid</td>
<td>6. Potash</td>
<td></td>
</tr>
<tr>
<td>2. Fragrant</td>
<td>8. Acrid</td>
<td>8. Orange juice</td>
<td></td>
</tr>
<tr>
<td>IV. ODOROS AND SAPID</td>
<td>1. Sweets</td>
<td>1. Yellow Wax</td>
<td></td>
</tr>
<tr>
<td>2. Sweets</td>
<td>2. Aromatic</td>
<td>2. Saundery’s Wood</td>
<td></td>
</tr>
<tr>
<td>5. Sweets</td>
<td>5. Sweet-spicy</td>
<td>5. Caraway</td>
<td></td>
</tr>
<tr>
<td>10. Sweets</td>
<td>10. Sharp-bitter</td>
<td>10. Aloes</td>
<td></td>
</tr>
<tr>
<td>15. Acidous</td>
<td>15. Saline</td>
<td>15. Camphrous aromatic</td>
<td></td>
</tr>
<tr>
<td>27. Acidous</td>
<td>27. Astringent</td>
<td>27. Camphrous</td>
<td></td>
</tr>
<tr>
<td>32. Acidous</td>
<td>32. Astringent</td>
<td>32. Camphrous</td>
<td></td>
</tr>
<tr>
<td>33. Acidous</td>
<td>33. Astringent</td>
<td>33. Camphrous</td>
<td></td>
</tr>
<tr>
<td>34. Acidous</td>
<td>34. Astringent</td>
<td>34. Camphrous</td>
<td></td>
</tr>
<tr>
<td>35. Acidous</td>
<td>35. Astringent</td>
<td>35. Camphrous</td>
<td></td>
</tr>
<tr>
<td>37. Acidous</td>
<td>37. Astringent</td>
<td>37. Camphrous</td>
<td></td>
</tr>
<tr>
<td>38. Acidous</td>
<td>38. Astringent</td>
<td>38. Camphrous</td>
<td></td>
</tr>
<tr>
<td>40. Acidous</td>
<td>40. Astringent</td>
<td>40. Camphrous</td>
<td></td>
</tr>
</tbody>
</table>

β. CLASSIFICATIONS FOUNDED ON NATURAL-HISTORICAL PROPERTIES.

By natural-historical properties, I mean those made use of in natural history. They are principally external form and structure.

In living beings we find that peculiar structure denominated organisised. The structure called crystalline is peculiar to mineral and other inorganic bodies.

I. Of Vegetables.

In the following works the vegetable substances employed in medicine are arranged according to their natural-historical properties:

2. Of Animals.

The animal substances used in medicine are arranged in natural-historical order in the following works:—

John Stephenson, M.D., Medical Zoology and Mineralogy. Lond. 1832.

Dr. T. W. C. Martyus, Lehrbuch der pharmaceutischen Zoologie. Stuttgart, 1838.

3. Of Vegetables and Animals.

Both the vegetable and animal materia medica are arranged according to the natural system in the following works:—

As in the subsequent part of this work the vegetable and animal substances used in medicine will be arranged in natural-historical order, it will be unnecessary here to offer any examples illustrative of it. I have preferred this mode of arrangement principally on account of the great difficulties attending any other method, especially that founded on the effects of medicines.

I am unacquainted with any natural-historical arrangement of the inorganised substances of the materia medica; that is, of an arrangement founded on the external forms and structure of these bodies. Most writers who have followed the natural system in their descriptions of vegetable and animal medicines, have adopted a chemical classification for the inorganised medicinal substances; a mode of proceeding which I shall follow in this work. In the following works on minerals a natural-historical classification is adopted:—

Modern crystallographers* arrange crystalline forms in six groups called

* For further details the reader is referred to the following works:—

4. Encyclopædia Metropolitana, art. Crystallography, by Mr. Brooke.

5. Table de l'Abé,天然的abkömmlinge den verschiedenen Crystallographie Systemen. Nach Prof. C. S. Weiss, für Vorlesungen ausgearbeitet und durch Figuren erläutert von Dr. J.T.C. Background.

systems, each of which comprehends all those forms having axes equal in number, in length, and in direction. These six systems may be conveniently arranged in two classes.

CLASSIFICATION OF CRYSTALS.

CLASS I.

☞ As the refraction of this class is single, the crystals present no change when tested by polarised light.

SYSTEM 1.—THE REGULAR SYSTEM.

Characters.—Those of the class.

Forms.—The homohedral forms of this system are seven; namely, the Octahedron, the Hexahedron or Cube, the Dodecahedron, the Icosahedron, the Triakisoctahedron, the Tetrakishexahedron, and the Hexakisdodecahedron; the hemihedral forms are five; namely, the Hemi-icosahedron or Tetrahedron, Hemi-icositetrahedron or Pyramidal Tetrahedron, the Hemitriakisoctahedron, Hemi-tetrakishexahedron, and the Hemitetrahexahedron.

Fig. 22. Octahedron. Fig. 23. Dodecahedron. Fig. 24. Cube. Fig. 25. Hemioctahedron. Tetrahedron.

Examples.—The following substances belong to this system:

CLASS II.

☞ As the refraction of this class is double, the crystals present, in directions, rings when tested by polarized light.

SYSTEM 2.—SQUARE PRISMATIC SYSTEM.

(Pyramidal System, Molar and Miller. The 2- and 1-axed System, Rose. The 4-membered:)

Characters.—Geometric: Axes three, rectangular; only two equal. Octahedral: Refraction double in all directions, except one, one axis of double refraction. Thermotic: Expansion equal in two rectangular directions; but unequal to the third rectangular direction.

☞ As the crystals of this class have only one axis of double refraction, they present a single system of rings, intersected by a cross, tested by polarized light. (See figs. 29 & 30).
CLASSIFICATION OF CRYSTALS.

Forms.—To this system belong the Octahedron with a Square base, and the [Right] Square Prism.

![Fig. 26. Square Octahedron.](image)

![Fig. 27. Square Prism.](image)

![Fig. 28. Combination of the Octahedron and Prism.](image)

Examples.—The following substances belong to this system:

- Calomel
- Bicarbonate of Mercury
- Ferrocyanide of Potassium

SYSTEM 3.—Rhombohedral System.

(Rhombohedral System, Miller. The 3- and 1-axed System, Rose.)

Characters.—Geometric: Axes four; three equal to one another, and placed in one plane, crossing at angles of 60°; the fourth axis differs from the others in length, and is placed perpendicular to all of them. Optical: Refraction double in all directions except one, (one axis of double refraction). Thermotic: Expansion equal in the directions of the three equal axes, but unequal to that of those in the direction of the fourth axis.

As the crystals of this system, like those of the preceding system, have only one axis of double refraction, they present a single system of rings, intersected by a cross, when tested by polarised light, as in Calcareous Spar. (See figs. 29 and 30).

Single system of rings seen by looking through a slice of Calcareous Spar (cut perpendicular to the axis of the crystal) placed between two plates of Tourmaline (cut parallel to the axis of the crystal).

Fig. 29. A

Fig. 30. B

Fig. 29 is seen when the plane of the axis of the Calcareous Spar is parallel or perpendicular to the plane of polarization.

A, B, C, and D, are the arms of the black cross.

Fig. 30 is seen when the Calcareous Spar is turned 45° to the preceding positions.

Forms.—To this system belong the Hexagonal Decahedron, the Rhombohedron (frequently called a Rhomboid) or Hemidodecahedron, the Hexagonal Prism, and the Hemidodecahedron or Scalenohedron.

Fig. 31. Rhombohedron

Fig. 32. Hexagonal Prism

Fig. 33. Combination of the Rhombohedron with the Hexagonal Prism

Fig. 34. Scalenohedron
EXAMPLES.—The following substances belong to this system:

Antimony.
Arsenicum.
Plumbago.
Ice.

Chinabur.
Chloride of Calcium.
Calcareous Spar.
Carbonate of Iron.

Carbonate of Zinc.
Dolomite.
Nitrate of Soda.
Hydrate of Magnesia.

SYSTEM 4.—RIGHT PRISMATIC SYSTEM.
(Prismatic System, Miller. The 1- & 1-axed System, Rose.—The 2- & 2-membered System).
CHARACTERS.—Geometric; Axes three, rectangular, all of different lengths. Optical; Refraction double in all directions except two (two axes of double refraction). Ternary; Expansion relatively unequal in the directions of all the axes.

As the crystals of this system have two axes of double refraction, a double system of rings, intersected by bands, is seen when they are tested by polarised light. (See figs. 35 and 36).

Double system of rings seen by looking through a slice of Nitre (cut perpendicularly to the axis of the crystal) placed between two plates of Tourmaline (cut parallel to the axis of the crystal).

Fig. 35. Fig. 36.

Fig. 35 is seen when the plane of the axis of Nitre is parallel or perpendicular to the plane of polarization. Fig. 36 is seen when the Nitre is turned 45° to either of these planes.

FORMS.—To this system belong the Octahedron with a Rectangular base, the Right Rectangular Prism, the Octahedron with a Rhombic base, and the Right Rhombic Prism.

Fig. 37. Fig. 38. Fig. 39. Fig. 40.

Octahedron with a Rectangular base.
Right Rectangular Prism.
Octahedron with a Rhombic base.
Right Rhombic Prism.

EXAMPLES.—The following substances belong to this system:

Iodine.
Sulphur (native).
Pyrolusite (Bihoxide of Manganese).
White Antimony (Sesquioxide).
Chloride of Mercury.
Chloride of Barium.
Sesquisulphuret of Antimony.
Orpiment.

Carbonate of Lead.
Carbonate of Baryta.
Carbonate of Ammonia.
Aragonite.
Sulphate of Potash.
Sulphate of Magnesia.
Sulphate of Zinc.
Sulphate of Baryta.
Sulphate of Strontian.

Bi-sulphate of Potash.
Nitre of Silver.
Nitre of Potash.
Bitartrate of Potash.
Rochelle Salt.
Emetic Tartar.
Citric Acid.
Morphia.

SYSTEM 5.—OBLIQUE PRISMATIC SYSTEM.
(The 2- & 1-membered System, Rose).
CHARACTERS.—Geometric; Axes three, all unequal; two of them cut off another obliquely, and are perpendicular to the third. Optical; Refraction double...
in all directions except two (two axes of double refraction). *Thermotic*: Expansion, in the direction of the axes, relatively unequal.

As the crystals of this, like those of the preceding system, have two axes of double refraction, a double system of rings, intersected by bands, is seen, when they are tested by polarized light.

Forms.—To this system belong the *Oblique Octahedron with a Rectangular base*, the *Oblique Rectangular Prism*, the *Oblique Octahedron with a Rhombic base*, and the *Oblique Rhombic Prism*. Mr. Brooke *refers the Right Oblique-angled Prism* to this group.

Fig. 41. Oblique Octahedron with a Rectangular base.

Fig. 42. Oblique Rectangular Prism.

Fig. 43. Oblique Octahedron with a Rhombic base.

Fig. 44. Oblique Rhombic Prism.

Examples.—The following substances belong to this system:

- Sulphur (by slow cooling).
- Realgar.
- Red Antimony.
- Carbonate of Soda.
- Toma (Sesquicarbonate of Soda).
- Bicarbonate of Potash.
- Sulphate of Soda.
- Sulphate of Iron.
- Sulphate of Lime.
- Chlorate of Potash.
- Phosphate of Soda.
- Borax (Tincal).
- Acetate of Soda.
- Acetate of Copper.
- Acetate of Zinc.
- Acetate of Lead.
- Binaceta of Copper.
- Tartaric Acid.
- Oxalic Acid.
- Sugar.
- Crystals from Oil of Cubeba.

SYSTEM 6.—DOUBLY-OBILE PRISMATIC SYSTEM.

(The 1-1-1-membered System, *Rosa*).

Characteristics.—*Geometric*: Axes three, all unequal, and oblique-angular to one another. *Optical*: Refraction double in all directions except two (two axes of double refraction). *Thermotic*: Expansion in the direction of the axes relatively unequal.

The crystals of this system present a double system of rings, intersected by bands, when they are tested by polarized light.

Forms.—To this system belong the *Doubly-Oblique Octahedron* and the *Doubly Oblique Prism*.

Fig. 45. Doubly-Oblique Octahedron.

Fig. 46. Doubly-Oblique Prism.

Examples.—The following substances belong to this system:

- Boracic Acid.
- Nitrate of Bismuth.
- Sulphate of Copper.
- Sulphate of Cinchonia.
- Sulphate of Gallic Acid.

1. **Artificial Method of Linnaeus.**—This appears to me the best place for noticing those pharmacological works in which the Linnaean artificial method of arranging plants is followed.
2. Methods founded on the parts of organized beings employed. — In some works the vegetable and animal substances employed in medicine are classified according to the parts used; as barks, roots, seeds, secretions, &c.

Dr. T. W. C. Martius, Grundriss der Pharmakognosie des Pflanzenreiches. Erlangen, 1832.

γ. Classifications founded on the chemical constituents.

The difficulties attending the analysis of organized substances present a great obstacle to the formation of a chemical classification. Most of the writers who have attempted an arrangement of this kind are Germans.

L. A. Kraus, Wissenschaftliche Uebersicht der gesammten Heilmittellehr Götting. 1831.

As an example of a chemical classification I shall select Schwartz's and must refer the reader to the late Dr. Duncan's (jun.) Edinburgh Dispensatory, 11th ed. p. 172, for Pfaff's chemical classification of the vegetable materia medica.

Schwartz's classification.

Div. 1. Aqua communis 7. Finguis-oleosa
2. Gummosa, mucilaginosa 8. Extractiva amara
4. Gelatinosa 10. Aludrea-oleosa
5. Aluminoasa 11. Resinosas
7. Finguis-oleosa 13. Spirituosa
14. Acida
15. Alcalina
16. Salina
17. Metallica
18. Corpora simplicia, non metallic
19. Kallia sulphurata
20. Sapones.
PHYSIOLOGICAL CLASSIFICATION OF MEDICINES.

It will be observed that the author has not always founded his divisions on the chemical properties of medicines; since some of them refer partly or wholly to the effects produced by these agents on the body. The nomenclature is not always perfect: thus, his seventeenth class is called "Metallica," as if it alone contained metallic substances; whereas divisions fifteen and sixteen also contain them. Again, some of the divisions, for example "Resinosae," contain substances whose effects are most dissimilar; while substances of analogous operation are placed in separate divisions.

3. Classifications founded on the Physiological Effects of Medicines.

As the ultimate object of all our inquiries into the materia medica is to obtain a knowledge of the mode of operation of medical substances, it follows, that the most desirable and useful, because the most practical, classification of these agents, would be that founded on the similarity of their effects. But so many difficulties exist in the way of producing such an arrangement—so much remains yet to be determined with respect to the nature of the modifications impressed on the organised tissues by the influence of medicines—that it must be evident to every one who attentively studies the subject, that in the present state of our knowledge no such classification can be satisfactorily effected.

Physiological classifications are variously formed. Those that I am acquainted with may be reduced to six groups, or classes. Thus, they may be formed:—

1. According to the General Quality of the Effects.
3. According to the Doctrine of Contra-Stimulus.
5. According to Chemico-Physiological Principles.
6. According to the Part affected.

1. According to the General Quality of the Effects.

These arrangements are founded on the nature, quality, or general character of the effects; as in the following works:—

T. Young, M.D. An Introduction to Medical Literature, art. Pharmacology, 2d edit. 1823.
C. Sandelin, Handbuch der speciellen Heilmittelehr, 2 Bde. 3rd ed. 1833.
A. Ducan, M.D. Physiological Classification of the Materia Medica. In the Supplement to the Edinburgh New Dispensatory, 11th edit. 1829.
As examples of this kind of classification, I subjoin those of Dr. Duncan and Sundelin:

DR. DUNCAN’S PHYSIOLOGICAL CLASSIFICATION OF THE MATERIA MEDICA.

External Agents act,

I. By nourishing the body \[\text{ALIMENTA.} \]

(a) Drink \[\text{POTUX.} \]
 When they act medicinally

(b) Food \[\text{CIBI.} \]
 When they act medicinally

II. By evacuation \[\text{EVACUANTIA.} \]

(a) By the skin insensibly \[\text{DIAPHORETICA.} \]
 Sensibly

(b) By the mucous membrane
 Of the nostrils \[\text{SUDORIFICA.} \]
 Of the lungs
 Of the stomach
 Of the intestines
 Of the uterus

(c) By glandular secretion
 The kidneys \[\text{DIURETICA.} \]

III. By exciting the vital powers \[\text{STIMULANTIA.} \]

(a) Chiefly of the parts to which they are applied \[\text{TOPICA.} \]

 Applied externally
 Causing redness
 — serous secretion
 — purulent secretion
 Administered internally

 Condimenta when alimentary

 (b) Of the system generally \[\text{GENERALIA.} \]

 (a) Obscurely, but more durably \[\text{PERMANENTIA.} \]
 Producing no immediate obvious effect
 Constricting fibres and coagulating fluids
 (b) More evidently, but less durably \[\text{TRANSITORIA.} \]
 Acting on the organic functions
 Acting on the mental functions

IV. By depressing the vital powers \[\text{DEPRIMENTIA.} \]

 Acting on the organic functions
 Acting on the mental functions

V. By chemical influence on the fluids \[\text{CHEMICA.} \]

 Acidifying
 Alkalizing

A very cursory examination of the substances placed by the author under each of the above classes will satisfy the most superficial observer, that this classification does not, in a large number of instances, effect that which it proposes to do; namely, to arrange together "substances according to the effects which they produce in a state of health." For example, under the head of Diaphoretics and Sudorifics we have Mustard, Copaiva, Opium, Ipecacuanha, Alcohol, Antimony, Ammonia, and Mercury; among Narcotics are Opium, Nux vomica, Foxglove, Saffron, and Colchicum; in the class Stimulants we have Horseradish, Tobacco, and Mercury. Now, no will pretend to affirm that the substances thus grouped togeth are similar.
Sundelin's Classification:

<table>
<thead>
<tr>
<th>B. Alterative Agents</th>
<th>C. Agents which augment vitality, and are adapted for apparently or actually lessened vitality.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolvents adapted for an alteration of vitality from material causes.</td>
<td>I. Irritants adapted for turgid debility.</td>
</tr>
<tr>
<td>b. Absorvents.</td>
<td>b. Drastics.</td>
</tr>
<tr>
<td>c. Liquefacients.</td>
<td>c. Acrids.</td>
</tr>
<tr>
<td>d. Irritant resolvents.</td>
<td>II. Strengthening Agents adapted for true debility.</td>
</tr>
<tr>
<td>e. Strengthening resolvents.</td>
<td>a. Animating, analeptics.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Strengthening Agents adapted for true debility.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Animating, analeptics.</td>
</tr>
<tr>
<td>b. Exciting - animating agents.</td>
</tr>
<tr>
<td>c. Exciting - strengthening agents.</td>
</tr>
</tbody>
</table>

2. According to Brunonian Principles.

Physicians have classified the articles of the Materia Medica according to Brunonian principles. I have already mentioned that I regarded all medicines as stimulants; that is, as agents for excitation. But he supposed some of them to produce less and is requisite for health; and, therefore, to be the agents for sphenic diathesis: hence they were termed **Debilitating agents**. On the other hand, some agents give more excitement and the healthy state; and are, therefore, the remedies for the diathesis. These he called **Stimulant or Sphenic agents**. The pharmacological works are based on Brunonian principles.

Wien. 1797.
Stuttgart, 1798.

Wörterbuch der medicinischen Wissenschaften, 3 Bd. art. Arzneimittelwissenschaft.
3. According to the Doctrine of Contra-Stimulus.

I have already given a sketch of this doctrine, as well as an outline of the classification adopted in the following work:

Andral, who quotes Fanzago, Tommasini, and Gozzi, says, that the Italians divide medicines into two classes, dynamics and irritants. The first comprehends those agents which augment or depress excitability,—stimulants and contra-stimulants; the second includes mechanical and chemical agents.

The followers of Broussais, the founder of what the French denominate the New Medical Doctrine, or Physiological Medicine, consider all medicines to be either stimulants or debiliments. When a stimulant is applied to the organ affected, it is termed a direct stimulant; but when applied to a part more or less distant from that affected, it is termed a revulsive, or sometimes an indirect debiliment. Hence medicines are divided into debiliments, direct stimulants, and revulives. This is the plan adopted in the following work:

5. According to Chemico-Physiological Principles.

Another mode of classifying medicines is on chemico-physiological principles; or, to use the phrase of Dr. Osann, “on the chemico-therapeutical basis of natural philosophy.” This method has been adopted in the following works:

W. Grabau, M.D., Chemisch-physiologisches System der Pharmakodynamik, 1ste Theil Kiel, 1837. 2ste Theil Kiel, 1838.

* See p. 130.
* Diet. de Méd. et de Chirurg. grat. art. Contra-Stimulant.
6. According to the Part affected.

Another mode of classifying medicines is to arrange them according to the particular structure or organ which they affect; as into classes acting specifically on the nervous system; medicines acting on the vascular system, and so on. Some authors have classified the local, or class of medicines, from which the order from the nature or quality of the

The following writers have founded their classifications on the particular organs affected by medicines:

M. de Jussieu, Medical and Physical Journal, for April, 1822, vol. xlvii.

W. Vogt, Lehrbuch der Pharmakodynamik. 2 Bde. 2e Aufl. 1828;—1832.

EBERLE’S CLASSIFICATION.

- I. Medicines that excite discharges from the alimentary canal
- II. Medicines calculated to destroy or counteract the influence of morbid substances lodged in the alimentary canal
- III. Medicines calculated to correct certain morbid conditions of the system, by acting on the toxicity of the muscular fibres
- IV. Medicines calculated to correct certain morbid states of the system, by acting on the contractility of the muscular fibres
- V. Medicines calculated to promote the menstrual discharge
- VI. Medicines calculated to increase the parturient efforts of the womb
- VII. Medicines that lessen the sensibility and irritability of the nervous system
- VIII. Medicines that increase and equalize the nervous energy

VOGT’S CLASSIFICATION.

- I. Medicines that increase the action of the heart and arteries
- II. Medicines that act on the cutaneous exhalations
- III. Medicines that alter the state of the urinary secretion
- IV. Medicines that promote the secretory action of the salivary glands
- V. Medicines calculated to increase the mucous secretion in the bronchi, and to promote its discharge
- VI. Medicines whose action is truly topical
- VII. Enetics
- VIII. Cathartics
- IX. Antimonials
- X. Antacids
- XI. Tonics
- XII. Astringents
- XIII. Emmenagogues
- XIV. Abortivs
- XV. Narcotics
- XVI. Antispasmodics
- XVII. Stimulants
- XVIII. Diaphoretics
- XIX. Epileptics
- XX. Emollients
- XXI. Diuretics
- XXII. Antilithics
- XXIII. Siлагогуеs
- XXIV. Expectorants
- XXV. Inhalations
- XXVI. Emollients
- XXVII. Escharotics

E makes three classes of medicines: the first including those agents which act on the sensibility of the body, the second containing those which act on the irritability of the system, and the third embracing those agents which...
influence what he calls the *vegetation* of the body—that is, the organic functions, namely, nutrition and reproduction.

Orders.

1. Medicines which limit the vital manifestation of the nervous system (Narcotics)...
2. Medicines which exalt and strengthen the vital manifestations of the nervous system (Nervine)...

Class 1. Medicines operating specially on the nervous system, and particularly used as nervous agents.

1. Weakening (Antiphlogistics)...
2. Medicines which heighten and strengthen the vital manifestations of the irritable system...

Class 2. Medicines operating specially on irritative life.

1. Medicines operating specially on the secreting and excreting systems...
2. Medicines which specially operate on the formative process...

Class 3. Medicines operating specially on the vegetative (Organic) system, and which are particularly used in diseases of vegetation (Nutrition and Reproduction).

Divisions.

1. Opium and its allies.
2. Nux Vomica, and mediators to it.
3. Hydrocyanic Acid, and allies to it.
4. Belladonna, and medicinals to it.
5. Nervina volatilia.
6. Nervina altem, and allies (Ipecacuanha, Zinc, Bismuth, &c.)
7. as the Neutral Salts, Cold.
8. the ancient Greeks, Latin, and Arabs, has been given in the...
PHYSIOLOGICAL CLASSES OF MEDICINES.

But the benefit procured in venereal diseases by Mercury, in ague by Sulphate of Quina, &c. cannot be accounted for by reference to any known physiological effects which these substances produce, and our use of them, therefore, is, at present, empirical. It cannot, however, be doubted that had we a more intimate acquaintance with, and precise knowledge of, the action of remedies, the therapeutical properties of medicines would no longer appear incomprehensible and mysterious.

Though no systematic therapeutical classification has, to my knowledge, been attempted by modern authors, yet in some recent works several therapeutical classes have been admitted; especially in the following:—

F. Foy, M.D. Cours de Pharmacologie. 2 tomes. Paris, 1831.—[His class of Specifics includes Antisyphilitics, Antipsories, Febrifuges or Antiperiodics, Antidysenterious medicines, and Anthelmintics].

CHAPTER XII.—ON THE PHYSIOLOGICAL CLASSES OF MEDICINES.

I have already (p. 167) expressed my opinion that, in the present state of our knowledge, a physiological classification of medicines cannot be satisfactorily effected. It is principally on this ground that I have thought it advisable, in the following pages, not to follow any attempted arrangement of this kind in describing the substances used in medicine. It, however, appears to me advisable to precede the account of medicines individually, by some notice of the more important groups which they form when arranged on physiological principles.

Medicines may be arranged physiologically on two principles:—according to the parts or organs which they affect, or according to the nature or quality of the action which they set up. But to the exclusive adoption of either principle, obstacles almost insurmountable oppose themselves. These mainly arise from the difficulty experienced in discriminating between the primary and secondary effects of medicines.

In a classification of medicines according to the parts or organs affected, it would be found, I suspect, that four-fifths of our Materia Medica might be placed in one class, under the denomination of medicines affecting the nervous system (cerebral, true spinal, and ganglionic systems); while in a classification strictly founded on the nature or quality of the action which they induce, most of our medicines would belong to the class of alteratives.

* See some remarks on the therapeutics of these systems, in Dr. Marshall Hall’s work On the Diseases and Derangements of the Nervous System, pp. 110, 112, and 120.

* Medicines may augment, lessen, or alter vital action. See p. 128.
CLASS 1. Medicamenta Cerebro-spinantia.—Cerebro-spinants.

(Narcotics, Auctorum).

Definition.—Medicines which produce or prevent sleep, or which affect the intellectual functions, sensation, or the irritability of the muscular fibres, I denominate Cerebro-spinants, because they affect the functions of the cerebro-spinal system (cerebral and true spinal systems of Dr. Marshall Hall).

Physiological Effects.—The only essential physiological property which these agents possess in common, is that of specifically affecting the cerebro-spinal system. In other respects they present considerable diversity of operation,—though they are so mutually related that we cannot with propriety place them in separate classes.

Cerebro-spinants differ among themselves with regard to both their topical and remote effects. The topical effect of Opium is that of a very slight numbing agent; Aconite causes numbness and tingling; Conium occasions local paralysis; Tobacco, Foxglove, &c. operate on the alimentary canal as acids; Alcoholic and the Metallic Cerebro-spinants are caustics. In their remote effects we observe the same want of uniformity. Alcohol renders the pulse fuller as more frequent; while Foxglove reduces its power and frequency. Opium causes constipation, while Tobacco relaxes the bowels. Lastly, in the modification occasioned in the functions of the cerebral and spinal system, we observe a great diversity of operation.

Considered with regard to their effects on the cerebro-spinal system these agents may be arranged in ten orders, as follows:—

Order 1. Convulsives (Tetanics). Agents which augment the irritability of the muscular fibres, and in large doses occasion convulsions.—This order includes Strychnia, Brucia, and all substances which contain one or both of these alkalys; as Nux Vomica, St. Ignatius's Bean, Snake-wood (ligum colubrium), the Upar Téuté, and probably the Tanghin poison. These agents are principally employed in torpid or paralytic conditions of the muscular system, under regulations which will be pointed out hereafter.

Order 2. Parlysers. Agents which cause paralysis of voluntary motion, or lessen the irritability of the muscular fibres.—This order contains Conia, an alkaline procured from Hemlock; and which, considered physiologically, would appear to be the remedy for augmented irritability of the muscles, as in Tetanus and Hydrophobia.

Order 3. Benumbers. Agents which cause topical numbness [paralysis of the sensitive nerves?] and muscular weakness.—Monkshood, and its alkali Aconite, occasion numbness and tingling in the parts to which they are applied. They give rise to a feeling analogous to that produced, on the return of sensation, all the removal of pressure upon a nerve, and which is commonly denominated "pins and needles." When swallowed, they also occasion muscular weakness. As they diminish feeling, they are adapted for the relief of neuralgia.

Order 4. Convulsive Stupeficients, acting rapidly and suddenly (Epileptificiens?). Agents which cause sudden loss of intellect, sensation, and motion, and usually occasion convulsions.—This order includes Hydrocyanic Acid, Cyanides of Potassium and Zinc, Bitter Almonds and their Volatile Oil, and Cherry-laurel and its Volatile Oil and Distilled Water. The narcotic gas (Carbonic Acid, Sulphuretted Hydrogen, &c.) when inhaled, belong to this order. In celerity of effect, and rapidity with which they prove fatal, no age exceed, and few equal, the poisons of this order. The sudden loss of sensation and of consciousness, with violent convulsions, which are the characteristic effects of this order, constitute also the essential symptoms of an epileptic paroxysm: they also sometimes occur from the loss of large quantities of
ne analogy between these three conditions (i.e. hydrocyanic poisoning, epilepsy, and the effect of hemorrhage) is further shewn by the fact that the symptoms of all are relieved by Ammonia. As therapeutical agents, hydrocyanic acid and its allies prove exceedingly useful in certain painful affections of the mact, unaccompanied by inflammation.

Order 5. Convulsives which cause Delirium followed by Sleep or Stupor. Agents which, in moderate doses, act as cardio-vascular stimulants, exhilarate; in excessive doses cause confusion of head and impaired volition, followed by delirium, convulsions, and insensibility.—This order was contrived to indicate

Order 6. Paralyzing, Pupil-contracting Stupefacients (Narcotics: soplectificants?). Agents which lessen feeling, and the irritability of the muscular system, and cause contraction of the pupils, and paralysis of voluntary motion, and stupor.—Opium and its alkalies Morphia constitute the type of this Order, which, probably, Lactucarium also belongs. In small doses they usually act the vascular system, check the mucous secretions of the alimentary canal, promote sweating. In larger doses they lessen sensation, diminish the irritability of the muscular fibre (when fatal doses have been taken actual paralysis precedes death), cause contraction of the pupils, and occasion sleep or stupor.

An apoplectic condition thus induced is denominated narcotism. In therapeutics, these agents are used—

a. To check profuse mucous secretion of the gastro-intestinal membrane.
b. To promote sweating.
c. To diminish augmented irritability of the muscular system (spasm or convulsion). When thus used they are termed antispasmodics.
d. To relieve pain. In this case they are called anodynes (from αν, privitive, and δοκτόν, pain), or paregorics (from παραγορίς, to soothe or alleviate).
e. To procure sleep. When thus used they are denominated hypnotics (ενυπνῶκε, from ενυπνο, sleep), or soporifics (from sopor, a deep sleep, and facio, I make).

Order 7. Inebriating, Paralyzing Stupefacients (Inebriants: Intoxicants). Agents which produce a peculiar disorder of the intellect, called inebriation or intoxication, impair volition, and, when used in excess, occasion paralysis of voluntary motion, and stupor.—Alcohol, Wine, and Ether, belong to this Order, which is closely allied to the preceding one. The agents composing it are remarkable for their exciting influence over the cardio-vascular system, and for a peculiar form of intellectual disorder which they occasion, but which varies somewhat in different persons. By long-continued use, alcohol gives rise to the disease termed delirium tremens, which is characterized by wakefulness, delirium, and tremor. The substances of this group are employed in medicine principally as excitants and stimulants.

a. Protoxide of Nitrogen should, perhaps, constitute a subdivision of this order. When inhaled it causes exhilaration, temporary delirium, and blueness of the lips. Stupor is sometimes produced by it.
b. Indian Hemp (Cannabis indica) should form either another subdivision, or, perhaps, a distinct order. It causes a very agreeable kind of delirium, augmented appetite, venereal excitement, and impaired volition, followed by insensibility, during which the patient retains any position in which he may be placed. Its effects, therefore, simulate catalepsy (*). (Cataleptifacient?).

Order 8. Delirifacients which Dilate the Pupil and Paralyse the Thorax. Agents which cause dilatation of pupil, obscurity of vision, dysphagia, aphonia, and delirium, terminating in stupor.—Belladonna, Stramonium, and Hyoscyamus, belong to this order. They cause dilatation of pupil, obscurity of vision, or actual blindness, dryness of the throat, difficulty or entire loss of power

* For the operations of the Indian Hemp, or Gunja (Cannabis indica), their Effects on the Animal Health, and their Utility in the Treatment of Tetanus and other Convulsive Disorders, in ughnessy, M.D. Calcutta, 1832.

and facio, I make.
of deglutition, aphonia or difficult articulation, weak pulse, fainting, and death, followed by sopor or lethargy. Convulsions are not constant. These symptoms have been compared to the symptoms of hydrophobia. Spasmodic dyspnea, of breathing, and angina pectoris, have been alleviated by these agents. Tobacco is employed to dilate the pupil, and to allay neuralgic pain.

Order 9. Nauseating, Cardiac-Vascular Sedatives, which produce nausea, sometimes vomiting and purging, weakness of body, dizziness, and sensation of pressure of the brain, convulsions, delirium, and stupor, are occasional symptoms. Foxglove and Tobacco belong to this group.

Order 10. Metallic Cerebro-spinants. Metallic substances having chemical action, and which affect the functions of the true spinal system.—This is a very heterogeneous one, and admits of several subdivisions.

1. Plumbeous Cerebro-spinants. The preparations of Lead occasion and paralysis. From their strangling effects on the capillaries they have been termed astringents.

2. Manganese Cerebro-spinants.—According to Dr. Couper, the preparation is paralytic without colic or tremor.

3. Mercurial Cerebro-spinants.—By long-continued use, in small doses, mercurials occasion paralytic tremor (tremor mercurialis), a tremor of the limbs. Cerebro-spinants are used as a tonic in the treatment of diseases of the nervous system (Choreafaciens).

4. Antispasmodic Metallic Cerebro-spinants.—This group includes arsenic, bismuth, copper, silver, and zinc. Arsenic in large doses is used as a tonic in the treatment of diseases of the nervous system.

Locality and Quality of the Action of Cerebro-spinants. These cerebro-spinants which occasion lesions of the mental processes, of sensibility, or of volition, or which prevent or produce paralysis, affect the cerebrum or cerebellum.

These lesions often take a variety of forms. Mania, delirium, incoherence, incoherent perceptions or judgments, and stupor or coma, are morbid conditions of the mental faculties. Pain, numbness, tingling, loss of feeling, incapacity, impaired vision, amnesia, and other disorders of the cerebral functions. Paralysis (cerebral) of voluntary motion is a lesion of the motor cortex of the cerebrum.

Those cerebro-spinants which either augment or lessen the irritability of muscles, affect the true spinal system.

Spasm or convulsion is the result of an augmentation of the irritability of the muscles. If the influence of the true spinal system is stroyed, the muscles are no longer irritable. This state, which may be accompanied by true spinal paralysis, or paralysis of irritability, must not be confounded with cerebral paralysis, or paralysis of voluntary motion.

Mr. Gurney has shown that the centre of the true spinal system is the matter of the true medulla oblongata and medulla spinalis. From this proceeds the incident excitor and the reflex motor nerves.

The affection of either the cerebral or true spinal systems in

* British Annals of Medicine, Jan. 15th, 1837, p. 41.
* See Dr. Hall's paper on this subject in the Medico-Chirurg. Trans. vol. xxii. [vol. iv. N.
Cerebro-spinants, may be primary or secondary; for these two
together are so mutually related, and have such an influence over
each other, that if one be disordered, the other readily becomes
plicated.

Thus convulsions arise from a lesion of the true spinal system; yet it is well
known that they frequently attend diseases of the encephalon. The "cause,"
seems Dr. Hall, "appears to be either irritation or counter-pressure; the former
act through the medium of the nerves distributed to the membranes,—as
recurrent of the trifacial of Arnold,—as in epilepsy induced by a spicula of
the latter is illustrated by the case of meningitis, by Dr. Abercrombie,
which the anterior fontanelle became prominent; pressure upon it induced
vulsion. On the other hand, affections of the true spinal system may
cause lesions of the cerebral faculties. Thus convulsion may, by stopping
vital system, cause coma.

Attempts have been made to localize more precisely the action of
cerebro-spinants, but without much success. Thus Flourens says
that Opium acts specifically on the cerebral lobes; that Belladonna,
a limited dose, affects the tubercula quadrigemina, and in a larger
dose the cerebral lobes also; that Alcohol, in a limited dose, acts
incessantly on the cerebellum, but in a larger quantity, it affects also
neighbouring parts; and, lastly, that Nux Vomica more particularly
effects the medulla oblongata.

It cannot be doubted, that most of the peculiarities which attend the operation
of the individual cerebro-spinants arise from different parts of the nervous centres
by unequally affected by different agents.

Great difficulty attends all attempts made to ascertain the nature
of the changes which cerebro-spinants induce in the nervous centres.
This arises, in part, from the fact, that similar symptoms attend
various affections of these parts.

Thus coma may be induced by compression of the cerebrum, or by loss of
sense. Delirium may arise from irritation of the cerebrum, or from loss of
sensorium. Convulsions may be produced by irritation, or lesion of the medulla ob-
guata and spinalis, or by loss of blood. Paralysis may arise from lesion of the
epithalum, destructive injury of the medulla oblongata or spinalis, and loss of
sensorium.

Alterations in the quantity or quality of the blood supplied to the
different parts of the cerebral and true spinal systems, are probably
the primary causes of the changes which cerebro-spinants induce in
the condition of the functions of these systems. By long-continued
exposure of these agents, slight chemical changes may, perhaps, be
seen in the nervous tissue (see p. 108).

Augmented arterial action, or venous congestion, sometimes attends the opera-
tion of cerebro-spinants. Flourens declares that Opium, Belladonna, Alcohol,
and Nux Vomica, give rise to phenomena resembling those which attend mecha-
nical lesions of the parts on which he asserts these agents operate (see above); and
furthermore he states, that in birds it is possible to observe, through the
skin, changes of colour [some alterations in the vascular condition of the
skin] which these agents effect in the brain.

2. "Oeuvres experimentales sur les Propriete et les Fonctions du Systeme Nerveux dans les Ani-
3. &c. &c.
CAUSE OF DEATH.—In general, the immediate cause of death in cases of poisoning by the cerebro-spinants, is an impediment to respiration or circulation. Thus, the process of respiration may be stopped by a paralytic or a spasmodic condition of the respiratory muscles, by closure of the larynx; and the circulation of blood may cease as a consequence of paralysis of the heart. These are obvious and readily understood causes of death. But in some cases the cerebro-spinants appear to destroy life in some other way. Thus, Hydrocyanic Acid injected into the veins kills within a few seconds, when stopping the action of the heart, which continues to beat for a few minutes after the chest has been laid open. Now in such cases it appears to me, that the death is too rapid to be fairly ascribed to the stoppage of respiration,—nor can it be referred to cessation of heart’s action.

a. Paralysis of the muscles of respiration.—In some cases the respiratory muscles do not receive their proper supply of nervous energy, in consequence of respiration being performed with increasing difficulty, until, ultimately, asphyxia is produced. The failure of the excito-motor power, in these instances, arises from the action of the poison on the true spinal system. This kind of death is often produced by Opium, and sometimes by Diluted Hydrocyanic Acid. If the body be exsanguinated immediately after death, the heart is found beating, oftentimes with considerable force, and for some minutes. These are the cases in which it has been proved that life may be prolonged by artificial respiration until the effect of the poison has passed off. The proposition is not supported merely by its ingenuity and plausibility, but by experience. The following is a case in point, related by Mr. W. H. Ely, and quoted by Dr. Christie’s:—A middle-aged man swallowed half an ounce of crude Opium, and soon became lethargic. He was roused from this state by appropriate remedies, and his surgeon left him; but, the poison not having been sufficiently discharged, he fell again into a state of stupor; and when the surgeon returned, he found the face pale, cold, and deadly, the lips black, the extremities motionless, so as to remain in any position in which they were placed, the breath very small and irregular, and the respiration quite extinct. The chest was instantly inflated by artificial means; and, when this had been persevered for seven minutes, expiration became accompanied with a groan, which was gradually increased in strength till natural breathing was established; emetics were given, and the patient eventually recovered. Another most interesting case of recovery from poisoning by Opium, by artificial respiration, has been detailed by Mr. Howship. I have several times restored animals apparently dead, from the use of Hydrocyanic Acid, merely by keeping up artificial respiration; and Benjamin Brodie has done the same with animals apparently killed by the use of Bitter Almonds.

b. Convulsions or spasm of the respiratory muscles.—Another cause of death brought on by cerebro-spinants is spasm of the respiratory muscles, whereby the function of the respiration is stopped, and asphyxia produced. In such cases...
CEREBRO-SPINANTS.

We have an example of this mode of operation by Strychnia, Brucia, and the substances containing these alkaloids.

Suture of the larynx.—When an attempt is made to inspire pure Carbonic acid as well as some other gases, the larynx spasmodically closes, and death from asphyxia. In a case of complete insensibility from intoxication reported by Mr. Sampson, the comatose state was thought to arise, not from apoplexy but from torpor of the brain, in consequence of that organ being imperilled by blood not duly oxygenated; for the shrill tone and expiratory efforts of respiration showed the existence of collapse of the glottis, and the transmission of air into the lungs, which might be accounted for by a state of the eighth pair of nerves and recurrent branches. Tracheas performed, and with complete success; in about half an hour the respiration was regular and easy through the wound.

Analysis of the heart.—In some instances the immediate cause of death appears to be paralysis of the heart; for the heart ceases to beat before respiration ceases, as when the Alcoholic Extract of Aconite is applied to wounds in the chest be opened, the heart does not contract as usual when irritated by the infusion of Tobacco appearing to kill dogs and cats by paralysing the heart. In the case of poisons acting in this way, it has been proposed to the heart by slight galvanic shocks, in order to avert the fatal term. Even acupuncture has been advised, if the patient appeared in articulo mortis, to repeatedly punctured the brain, heart, lungs, and of young dogs, without the least inconvenience; and Carraro has tried this practice on animals in a state of asphyxia.

The Principles.—A considerable number of the vegetable spinants owe the whole or part of their activity to an organic acid. Lastly, volatile oil is, in some cerebro-spinants, the active principle.

ANIC OR VEGETABLE ALKALIS; OR THE ALKALOIDS.—These substances are poisonous to a vegetable. As the juices of the plants in which they reside are not injurious to the human body, the vegetable alkaloids must exist in them in the form of an acid or alkaline fraction. It has been found that the active principle is best isolated by boiling the substances containing them in water, adding hydrochloric acid, and neutralizing the filtered decoction with ammonium carbonate, or magnesia, by which the organic alkali is precipitated, and is then purified by dissolving it repeatedly in water. This purified organic alkali is solid, inodorous, and of a crystalline nature; e.g. Morin, Cinchona. Some are palatable, as Veratrum. Conium is liquid at temperatures, volatile, and highly odorous. All are combustible. They produce a violent reaction on vegetable colouring matter, and unite with acids to form esters.
form salts; but their saturating power is very low (i.e. their atomic weight are very high). The alkalies with which we are best acquainted are of slightly soluble in water; but, in general, they readily dissolve in boiling alcohol and some of them separate in a crystalline state from this liquid as it cools. Their taste is for the most part bitter; that of some is also acrid. Tannic acid unites with them to form tannates, which usually are very slightly soluble in water. Hence the infusion of galls (which contains this acid) is employed for detecting the alkaloids, and as an antidote in poisoning by them. Iodic acid in excess, precipitates several of them; but is decomposed by Morphia, iodiine being set free. Concentrated nitric acid reddens Morphia and Brucia, and gives a yellow tinge to Narcotina; but a green one to Aricina. Bichloride of Merc precipitates the hydrochlorates of some of these alkaloids, forming, with the double salts. The sulphates, nitrates, hydrochlorates, and acetates of the alkaloids, are generally soluble in water. Ammonia and Magnesia decompose the solutions, and precipitate the alkaloid. Carbazotic acid causes yellow precipitates with solutions of Quina, Cinchonia, Brucia, Strychnia, Codeia, and O- canthina; but not with Morphia, Narcotina, Veratrina, Solanina, Conia, or Emetina*. If chlorine gas be passed through a solution of Disulphate of Quina and Ammonia be subsequently added, an emerald-green liquor is obtained. Morphia, in the place of the Quina, be similarly treated, a dark-brown color results.

The constituents of all the organic alkalies, are, carbon, hydrogen, nitrogen, and oxygen. In each equivalent of the alkali there is only one equivalent of nitrogen.

The organic alkalies operate powerfully on the animal economy. Some of them are energetic cerebro-spinants; as Morphia and Strychnia; some are acrids; Veratrina; while others are tonic, as Quina and Cinchonia.

2. HYDROCYANIC ACID.—The properties of this acid will be described in subsequent part of this work. Though readily obtained from the bitter almonds and other substances of that tribe, it does not exist in them ready formed; but is produced by the mutual reaction of amygdalin, emulsin, and water.

3. VOLATILE OIL.—The general properties of the volatile oils will be described under the head of Stimulants. Tobacco and Hops owe part of their medicinal properties to volatile oil. Camphor may be regarded as a concrete volatile oil.

CLASS 2. STIMULANTIA.—STIMULANTS.

(EXCITANTS; INICTANTS; CALEFACTENTS.)

DEFINITION.—An agent which increases the vital activity of an organ is termed a stimulant (from stimulus, a goad or spur), or sometimes an incitant (from incito, to incite or spur on), or excitant. Those which, by exciting the nervous and vascular systems, affect all organs or functions, are termed general stimulants; while others which influence one or two organs only, are called local stimulants. Those which excite the parts to which they are applied are denominated irritants.

The distinction to be made between the vital stimuli and the medicinal agents called stimulants (special stimuli), has been already pointed out.

PHYSIOLOGICAL EFFECTS.—Most stimulants are odorous,—many of them, indeed, powerfully so. Their taste is warm, acrid, and pungent. Swallowed in moderate quantities, they give rise to a sensation of warmth in the stomach, expel gaseous matters, and assist digestion.

* See Mr. Kemp’s paper in the London Medical Gazette for April 24, 1849.
† Dr. Meeson (by mistake printed Roper), in London Medical Gazette, vol. xi. p. 320.
‡ See p. 129.
quantities, they excite thirst, and often give rise to nausea: Many of them increase the force and frequency of the
stomach, and promote the warmth of the surface of the body.

its produce their effects through the agency of the nervous
system, the true spinal and ganglionic systems) by a reflex action.
ne are absorbed, and have been recognised in the
secretions.

and closely related to some other classes, especially to cerebro-
mics and evacuants. Thus, Alcohol and Ether are, at the
stimulant and narcotic; Myrrh, Cascarilla, and the Fer-
compounds, possess both stimulant and tonic qualities.

eral of the stimulants are sudorific, diuretic, emmenagogue,

vision of stimulants into groups, founded on the parts or
which they respectively affect, has been already noticed'. I
arrange them into five orders, founded partly on their
properties, and partly on their physiological effects.

Condimentary Stimulants.—This order contains those stimulants
employed as condiments. They contain a volatile oil, to which they
medial and condimentary uses. The action of many of them is prin-
ted to the alimentary tube. They form three sub-orders, or groups,

roup, called by Dr. Duncan* volatile pungent stimuli, contains the
ed siliqueous stimulants. The alliaceous stimulants are Garlic, the
leek, which are obtained from the natural order Liliaceae. The
mulants are Mustard, Horse-radish, Scurvy-grass, and Cardamine,
procured from Cruciferae. Most of the substances composing this
m, or yield, an acrid volatile oil (formed of carbon, hydrogen, nitro-
and sulphur), to which they owe their medicinal qualities. Several
employed as condiments. In medicine, we use Mustard as a rubefac-
ycetic; Horse-radish as a masticatory; and Garlic as a stimulating

From their beneficial effects in scurvy, the substances of this group
ominate antiscorbutics.

roup contains the labiate and umbelliferous stimulants. Several of the
nts of the natural order Labiatae are used in cookery as pot herbes, or
oury herbes; and the carminative fruit of several Umbelliferous plants
ome of the Composite, as Tansy, are used as pot herbes. Volatile
itive principle of the whole group. In the Labiatae plants this
receptacles in the leaves; while, in the Umbelliferous fruit, it is
alvate vessels, called eitc, situated in the pericarpial coat. Cooks
es of the substances of this group to form seasoning for certain kinds

meats. The liqueur-maker uses some of them for flavouring his
medicine, we employ them principally as flavouring or carminative

Thus, they are added to many other medicaments, the unpleasant
ate of which they are intended to cover, and whose nauseating proper-
They are also useful in flatulency, and in spasmody affections
ary canal, especially the flatulent colic of children.

ird group consists of the substances called Spices (aromatæ). These
sets of warm climates, as the Molucca or Spice Islands, Ceylon, the
, &c., and are obtained from the orders Zingiberaceae, Lauraceae, My-
aceae, Myristaceae, Solanaceae, &c. They owe their strong and grateful
ate principally to an acrid volatile oil. When applied to the skin, some
Pepper) act as powerful aperients, and excite local inflammation. Taken

* See p. 129.

* Supplement to the Edinburgh Dispensatory, p. 220.
internally, in moderate quantities, they stimulate the stomach, create a sense of warmth in this viscus, and promote digestion and assimilation. In large quantities, they occasion thirst, increase the fulness of, and accelerate, the pulse and produce a febrile condition of body. In doses of two drachms, Nutmegs are acted as narcotics.

Spices are distinguished from the last group of stimulants by their more agreeable flavour; by their greater acridity; by their less tendency to occasion nausea and by their more powerful agency in promoting the assimilation of substances reputed difficult of digestion. Both groups, however, yield condiments. (pp. 10 and 74.)

In medicine they are used as flavouring ingredients, as carminatives, as a spasmodics, and as cordials or stimulants. Thus, they are added to other medicaments to correct their nauseous flavour, or their griping qualities. They are given to relieve flatulence and cramp at the stomach; to assist digestion in enfeebled or relaxed habits; to allay griping pains of the bowels, and to check purgation in mild forms of diarrhoea. Some of them (Pepper and Ginger) are applied to the skin as rubefacients, or are chewed as masticatories. Pepper has been successfully employed in intermittents, Culebs in gonorrhoea. The volatile spirit of some of the spices (as of Cloves or All-spice) is occasionally placed in hollow of a curious tooth to allay tooth-ache.

On account of their acrid and heating properties, spices are objectionable in inflammatory conditions of the alimentary canal, and in febrile conditions of the system.

Order 2. Resinous Stimulants.—All the stimulants of this order consist of resin. Some (resins) of them, indeed, consist almost solely of it. Other (oleo-resins) contain also volatile oil. A third group (balsams) contains balsam acid and resin. A fourth group (gum-resins) consists of gum, resin, and volatile oil. As these groups differ not only in their chemical composition, but also in certain extent in their effects and uses, they will require separate examination.

a. Resins (resinae).—Under this head I include Elemi, Mastic, and Guaiacum; obtained, the two first from Terebinthaceae, the last from Zygophyllaceae. They exude either spontaneously or from incisions made in the stems of the plant yielding them. Common resin (called resin) obtained as a residue in the distillation of the Turpentines, may, in regard to its chemical and medicinal qualities, be placed in the same group with the natural resins. The local action of resins is irritant; applied to the skin they produce rubefaction, and when swallowed in large doses, occasion heat of stomach, nausea, vomiting, or even purging. Their constitutional effects are those of stimulants. Thus they occasion the quickening of the pulse, raising the temperature of the surface, and promoting the secretions, especially of the skin and kidneys. Elemi and Mastic are rarely employed in medicine; their effects are analogous to the Turpentines, but much milder. Guaiacum is used as a stimulant and sudorific.

b. Oleo-resins (oleo-resina : liquid resins ; balsams devoid of benzoic acid; terebinthnates).—These are oleo-resinous, semi-liquid, or glutinous juices, which are spontaneously, or by incisions, from various vegetables, especially those belonging to the orders Conifera, Terebinthaceae, and Leguminoseae. Their liquidity, semi-liquidity, their odour, and most of their medicinal activity, are owing to the volatile oil they contain, and which may be procured from them by distillation. From the true balsams they are distinguished by not yielding benzoic acid. They have a strong odour, which, in some, is very fragrant,—in others peculiar as to be taken as the type of certain odours under the name of terebinthinate. Those oleo-resins, employed in medicines, are the Turpentines, pine, and Opolasamum (commonly termed Mecca Balsam). They taste and are acrid. They are all local irritants, causing rubefaction when applied to the skin; some of them giving rise to active inflammation. When swallowed occasion more or less irritation of the alimentary canal, according to which they are taken; the symptoms being epigastic heat, loss of appetite, nausea, or even vomiting; and, sometimes, when the quantity swallowed is large, purging or purging. Their constitutional effects are thirst, dryness of mucus membranes, increased frequency and fulness of pulse, and heat of skin, frequently accompanied with sweating. They exercise...
of the bladder. In chronic pulmonary catarrhs they are sometimes
eously employed; but not unfrequently prove injurious, as Dr. Fother-
shown. Oil of Turpentine has been used in neuralgia, against tape-
puerperal peritonitis, and in other cases to be mentioned hereafter.

Balsams (Balsama naturalia: balsams containing benzoic acid).—The term
was formerly applied to all liquid vegetable resins, as well as to many
cutical preparations. But to avoid confusion, the French chemists con-
cern balsam to vegetable substances composed of resin and benzoic acid,
less volatile oil. But as this would exclude Copaiva and some other
popularly called balsams, most of the German chemists retain the old
on of the term, and divide balsams into those which do, and those
not, contain this acid.

is (under which term I include those only which contain benzoic acid)
soft, or liquid substances, according to the quantity of volatile oil which
bain: they have an aromatic, usually agreeable, odour, and a warm, acid
ly dissolve in alcohol; and the solution, when mixed with water, be-
ily, owing to the deposition of resin. By sublimation, as well as by
ethods, they yield benzoic acid. Those employed in medicine are Styrax, Tolu, Peruvian Balsam, and Liquidambar. They are obtained
orders Styraceae, Leguminose, and Balsamaceae. They owe the principal
heir medicinal activity to the contained benzoic acid. The liquid bal-
Styrax and Peru) are sometimes applied to chronic indolent ulcers, to
iprove the quality of the secreted matter (detergents), and to pro-
trization (epulotics or cicatrisants). Taken internally the balsams act-
ants, their operation being principally directed to the mucous membrane
-passages; on this account they are termed expectorants, and are em-
e chronic catarrhs. MM. Trouseau and Pidoux * assert, from their own
, that there are few substances in the materia medica so powerful in
chronic pulmonary catarrhs and old laryngeal inflammations as the
n chronic inflammation of the larynx, whether accompanied or not
balsamic fumigations are more serviceable than the internal ex-
of the balsams. The air of the patient’s chamber may be impregnated
amic vapours by placing a little Benzoin or Tolu on some live coals, and
the vapour to escape into the room: or the patient may inhale the
boiling water to which a drachm or two of the balsams have been added.

id or antispasmodic gum-resins (gummi-resinae foetidae).—The gum-resins,
enominated foetid or antispasmodic, are Asafetida, Ammoniacum, Gal-
Applied to the skin they act as mild stimulants. Taken internally they produce in the stomach a sensation of warmth, and cause eructations. The particles of Aasefettida become absorbed, and may be recognised in the bladder secretions. The fœtid gum-resins have been principally, and most success-fully employed in hysteria, flatulent colic, spasmodic asthma, chronic bronchi- tions, and in uterine disorders. From their beneficial influence in these diseases, they are inferred to possess a power of specifically affec-
ting nervous (the true spinal) system. They probably operate by a reflex action.

Myrrh is a gum-resin procured from a plant of the order Terebintha; it does not possess the antispasmodic power of the fœtid gums, but appears nearer to the tonics.

Olibanum is also a gum-resin, obtained from the same order as myrrh; its stimulant properties are principally directed to the mucous membranes; in this respect, it is analogous to the resins, or rather to the oleo-resins.

Order 3. Ammoniacal, Empyreumatic, and Phosphoric Stimulants. This order contains Ammonia and its salts, the Empyreumatic Oils, Pho-stitres, and Castoreum. It is termed by Vogt volatile nervinae (nervinae). All the substances of which it is composed agree in producing a prin-
tic effect on the nervous system, the energy and activity of whose function they exalt. According to Vogt, the more volatile the remedy the more it increases the activity of the nervous functions, and the more fixed the less it raises their energy. Thus, according to the same writer, the prepa-
rations of ammonia raise the activity more than the energy of these functions; th
}

ese remedies act as excipients to the organs of circulation, increasing the force and frequency of the pulse, augmenting the warmth of skin, and pro-

ing diaphoresis. On account of the latter effect they have been termed reticia calida. The effects of the substances composing this group are very quickly produced, and soon disappear. Consequently these remedies are adapted to urgent cases, when the danger is imminent, and an immediate effect is required.

On the same reason they require to be frequently repeated, in order to keep the effects. From their exciting operation, they are indicated in cases of apoplectic fevers, cholera, &c. On account of their specific influence over the nervous system, they are administered in various spasmodic or convulsive diseases, especially in hysteria, and also in epilepsy.

Order 4. Camphoraceous Stimulants.—This order includes Camphor, Contra-

ery, Valerian, the Oil of Cajuportu, &c. It corresponds with that division of volatile excitants called by Vogt atherio-olesa; it is a less group than any of those already mentioned. To a certain extent it agrees with the last-mentioned; thus it specifically stimulates the nerv-

system, increases the activity of the vascular system, and produces diaphoresis; however, are much less powerful, are not so speedily produced, and they so fleeting. Some of these (for example, Serpentary and Contra-

}
STIMULANTS.

1. **Volatile Oil** (oleum volatile, vel aetherum, seu essentiale).—Volatile oil is found in both the inorganised and organised kingdoms of nature; it is most common in vegetables. Petroleum and Naphtha are examples of volatile oil in the mineral kingdom. Among animal substances Castoreum may be referred to as containing it. It is found in various parts of vegetables—as in the cortical parts of their stems, in Cinnamon and Cassia; in their rhizomes—as in Ginger and **Acorus Calamus**; in the root—as in Valerian and Horse-radish; in the leaves—as in Buchu, Labiate, and Myrtaceae; in buds—as in the bulbs of Garlic and Onions; in the flower—as the Rose, Lavender, and Clove; in fruits—as the Orange and Umbelliferous; and sometimes, though very rarely, in the seeds—as in the Nutmeg. From these different parts it is occasionally obtained by pressure, but more commonly by distillation. Thus Oil of Lemons is procured by pressure. Oil of Turpentine by distillation. Several volatile oils are obtained by the decomposition of organic substances. Oil of Bitter Almonds is one of the products of the mutual reaction of amygdalin, emulsin, and water.

The volatile oils may be solid or liquid, at ordinary temperatures; when solid they are crystalline. They may be lighter or heavier than water; their sp. gr. varying from 0·627 to 1·094*. They may be coloured or colourless; if the former, the tint is various in different oils. All the essential oils have a strong odour, and a hot acrid taste. They are easily volatilised by heat; are combustible, in consequence of the large quantity of carbon and hydrogen which they contain; and are decomposed by chlorine, iodine, bromine, and the acids. Some of them (as the Oil of Turpentine) combine with hydrochloric acid. They are very slightly soluble only in water. The distilled waters of the Pharmacopoeia are un satu rated solutions of them. If the oils be previously rubbed with sugar they dissolve more readily in water. The mixtures or compounds of volatile oils and sugar are called essences. According to the Prussians, Pharmacopoeia they are composed of one drop of oil and a scruple of sugar. Volatile oils dissolve readily in alcohol, ether, pyroxilic spirit, and naphtha, and easily mix with the fixed oils and resins.

The volatile oils, as ordinarily met with, usually consist of two oils—the one liquid, at ordinary temperatures (volatile oil, properly so called; the *eleopténe* of Berzelius; the *hygrusin* of Bizio)—the other solid (stéaropténe of Berzelius; sterusin of Bizio; camphor of the German chemists). When the latter predominates, the oil readily concretes in cold weather—as the Oil of Anise and the Oil of Star-anise. The Camphor of the shops is a solid volatile oil (stéaropténe).

In regard to ultimate composition the volatile oils may be divided into three classes: 1st, some of them are hydro-carbons; that is, are composed of carbon and hydrogen only—as the Oils of Turpentine, Juniper, Savin, Lemon, and Bergamot. 2ndly, some of them are hydro-carbons; that is, they consist of oxygen, carbon, and hydrogen, or oxygen, carbon; as the Oils of Lavender, Anise, Mint, and Rosemary. 3rdly, some are Aseterated or Sulphured, and contain no less than five ingredients; namely, carbon, hydrogen, oxygen, sulphur, and nitrogen; as the Volatile Oil of Mustard.

It is remarkable that all the volatile oils which contain carbon and hydrogen only, have the same ultimate composition (10 C + 8 H); or, at least, they consist of the same elements in the same relative proportion.

The volatile oils undergo chemical changes when exposed to the air. They become deeper coloured and thicker, absorb oxygen, and give rise to the formation of carbonic acid and resin. The resins of Turpentine and Copaiva appear to be simple oxides of their respective oils.

2. Resin (resina).—This is rarely found in the mineral kingdom, or in animal substances; but is common in vegetables. In the latter it exists almost invariably, if not universally, in combination with volatile oil, from which, perhaps, it may be formed by the action of the oxygen of the air. It is a transparent or partially opaque, hard, soft, or elastic solid; coloured or colourless; lighter or heavier than water, its sp. gr. varying from 0·93 to 1·27; fusible and combustible.

L. Gmelin, Handbuch der theoretischen Chemie, 2nd Bd. S. 331. 1829.

Gmelin, op. supra cit.
It is a bad conductor of electricity, and becomes negatively electrical by friction. As commonly met with it is odoruous, but probably, if completely deprived of volatile oil, would be inodorous. Its taste is usually more or less acid; sometimes bitter, and, occasionally, is not perceptible. It is not soluble in water, though some resins form hydrates with this liquid. It is soluble in ether and volatile oil, and frequently more or less in alcohol; and on the addition of water to the alcoholic solution, the resin is thrown down as a white powder, which gives a milky appearance to the fluid.

Most resins possess acid properties; that is, they redden litmus, and combine with alkalis and other metallic oxides. This is the case with the two resins (Pinac and Syline acids) of which Colonophy is composed; as well as the resin of Copaiva (Copaivic acid); of Guaiacum (Guaiaciac acid); of Gamboge (Gambogiac acid), &c. The salts formed by the union of resins with alkalis, or other basic substances, are called resinous soaps. The sopo-guajacinus and sopo-jalacpinus of the Prussian Pharmacopoeia, as well as the savon de l’ériquiste (Starkey’s soap) of the French Codex, are soaps of this kind, and will be noticed hereafter.

The resins are composed of carbon, hydrogen, and oxygen. Some of them (e.g. Turpentine and Copaiva resins), appear to be oxidized essential oils. It is not improbable that the first degree of oxygenation of the volatile oils forms resins insoluble in cold alcohol, while the most oxygenated are soluble in this liquid.

CLASS 3. Medicamenta Tonica.—Tonics. (Corroborants.)

Definition.—Under the denomination of tonics are usually comprehended those therapeutic agents which, by continued administration in debilitated and relaxed conditions of the body, increase gradually and permanently the tonicity of the whole system, and thereby render the fibres tenser and stronger, and give greater firmness and density to all the tissues and organs. They have received their names from περισσον, tone or vigour, on account of their strengthening or invigorating properties.

Physiological Effects.—Tonics produce their proper or real tonic effects in certain conditions of the system only; that is, they do not invariably strengthen. In some cases they give rise to no obvious results—in others they act as irritants and stimulants. In the healthy state moderate doses produce no sensible effects, or, perhaps, a slight excitement of the appetite merely, while large quantities give rise to nausea and vomiting. In irritation or inflammation of the stomach and intestines, and in febrile conditions of system, attended with a hot and dry skin, and a furred and dry tongue, tonics act as local irritants and excitants, and add to the severity of all the morbid symptoms. In a weak and debilitated condition of body, they act very differently. Their immediate effects are to increase the appetite and assist digestion. After they have been administered for some time, the soft solids (as the muscles, cellular tissue, &c.) become firmer, the muscular system more powerful, and the pulse stronger, though not quicker. In fact, all the functions are per-
formed with more energy, and the patient is capable of greater exertion.

Tonics sometimes purge, at others constipate. When diarrhea occurs from, or is kept up by, a weakened state of the intestinal tube, tonics, by restoring strength, may produce constipation. On the other hand, when constipation depends on a debilitated and torpid condition of this tube—a circumstance not uncommon in females, tonics not unfrequently occasion alvine evacuations. Dr. Cullen having noticed how frequently bitters act as laxatives and purgatives, has inserted them in his list of cathartics.

Tonics are closely connected with stimulants; and on many occasions, the so-called tonic substances act really as stimulants. Thus in weak but irritable subjects just recovering from a protracted state of fever, Sulphate of Quinia will frequently act both as a local irritant and stimulant, and produce nausea, vomiting, furred tongue, afebrile state of system, headache, &c. In fact, the two classes (tonics and stimulants) mutually approach and gradually pass one into the other, and several substances may with equal propriety be arranged under either.

Tonics are also closely related to the cerebro-spinants. Several of the vegetable bitter tonics especially affect the cerebro-spinal system (for example, Quassia); while some of the cerebro-spinants (as Strychnia), in very small doses, act as tonics. Moreover, the beneficial influence of some of the vegetable tonics (as Cinchona) in intermittent diseases, should probably be referred to the specific effects of these agents on the nervous system. And, in the same way, we ought to explain the power of tonics to increase the tone of the muscular system; for it appears from Dr. Marshall Hall's experiments, that one function of the true spinal system is to give tone to the muscles.

The Preparations of Arsenic, Silver, Copper, Bismuth, Zinc, &c are usually, but, as I think, most improperly, denominated tonics. They are agents which, in small and repeated doses, as well as in large and poisonous doses, specifically affect the nervous system, and I have already referred to them under the class of cerebro-spinants. They have been called tonics principally for the following reason:—Cinchona, the most powerful of the vegetable tonics, and, in fact, the type of the class, has long been celebrated as a curative agent in ague and other periodical diseases; hence it has been assumed that any substances capable of fulfilling the same indication must be possessed of the same properties, and thus Arsenic has been called a tonic. But the conclusion is erroneous; it is indeed true that Cinchona and Arsenic have, in common, the power of curing an ague, but the same effect is frequently produced by many other very dissimilar substances: for example, by Bloodletting, by Alcohol, and by Mental Influences. If, therefore, Arsenic be a tonic, so also must bloodletting, &c. If we admit this, it follows tonics can no

* On the Diseases and Derangements of the Nervous System, p. 78. Lond. 1841.*
longer be regarded as substances promoting strength, but merely as agents curing particular diseases. Before we have any right to associate Arsenic among tonics, we must completely alter our definition of these substances, or show that Arsenic improves the appetite and promotes the strength of the body.

Tonics may be arranged in orders or groups, as follows:

Order 1. Simple Bitters.—This order includes those vegetable tonics which possess bitterness with little or no astringency; and which have been termed bitters (amaro), or sometimes pure or simple bitters (amauro pura seu simplicie). To this group are referred Quassia and Simaruba, obtained from the order Simarubaceae; Gentian, American Calumba (Fraseria), Chirayta, Common Centaury, and Buckbean, from Gentianaceae; Calumba and Pareira brava from Menispermacae; and Cetraria islandica, from Lichcnaceae. The latter is a mucilaginous or demulcent tonic. These remedies are employed to promote the appetite and assist digestion in atonic and enfeebled conditions of the stomach, as general tonics in feebleness and debility of the whole system, and especially of the muscles; as antiperiodics in intermittent diseases; and as antihemorrhagic. Their beneficial operation in expelling intestinal worms has been referred to their poisonous influence over these parasitical animals, but ought perhaps rather to be ascribed to their improvement of the condition of the alimentary canal, and to the removal of those states which favour the production of these beings. The power which they possess of retarding the acetous fermentation may, perhaps, contribute to their beneficial operation in some dyspeptic cases accompanied with acidity and flatulence.

Order 2. Pure Vegetable Astringents b.—This order comprehends those vegetable tonics which possess considerable astringency with little or no bitterness. These are the pure astringents (astringentia pura). In this group are contained Oak-bark and Nut-galls, from the order Cupuliferae; Uva-ursi, from Ericaceae; Casto-chu and Logwood, from Leguminosea; Rhatany, from Polygalaceae; Tormentilla, from Rosaceae; the Pomegranate-rind, from Myrtaceae; Bistort, from Polygonaceae; and to these may be added Kino. These agents are principally remarkable for causing local contraction and corrugation (or striction) of the tissues. They contract and give greater density to the muscular fibres; diminish the calibre of the blood-vessels and exhalants, and thereby check hemorrhage (whereas their denomination of sphytis), and diminish secretion and exhalation when applied to mucous membranes or other secreting surfaces. In the mouth they give rise to a peculiar sensation of roughness and styepticity. Some writers have ascribed these effects to a chemical or physical agency. Thus Dr. Cullen places astringentia among substances acting on the simple solids, though, in another part of his treatise, he admits that they act on the living, as well as on the simple solids. The late Dr. Adair Crawford a ascribed the effects of both astringents and bitters to their influence in promoting the cohesion of the animal fibre. He immersed some pieces of intestines, of skin, &c., in various bitter and astringent infusions while others were placed in water, merely as a standard; and he then observed the comparative weights required to break them, from which he inferred the relative strength of different tonics. But this mode of reasoning naturally leads to erroneous inferences, since the vital powers of the system are quite overlooked. The relaxed state of parts, which astringents are useful in obviating, depends not on a mere mechanical or chemical alteration, but on some change in the state of vital powers; and, therefore, the agents which counteract it, must have some other than a mere physical action. Moreover, the results obtained by Dr. Crawford depended probably on the different degrees of antiseptic power possessed by the substances employed. Astringents produce the constitutional effects of the bitter tonics; administered in moderate doses, they promote the appetite, assist digestion, and increase

a For some observations on the distinction between astringency and bitterness, see Percival's Essays, vol. i. 3d edition, London, 1773.

b An Experimental Inquiry into the Effects of Tonics, &c., 1815.
the tone and vigour of the general system. They are capable of fulfilling some therapeutic indications as the bitter tonics. Thus, they have the of preventing the occurrence of a paroxysm of intermittent fever; and of debility are often useful, independently of their power of checking deb discharges. But this group is principally employed for its local effects; to relaxation of fibres and tissues, and to prevent or check excessive dischan

Order 3. Astringent Bitters.—This order contains those vegetable which possess both bitterness and astringency in an eminent degree; therefore, be denominated astringent bitters. It includes Cinchona-bark Cinchonaceae; Spigelia, from Spigeliaceae; Elm-bark, from Ulmaceae; and bark, from Salicaceae. It combines the effects of both bitters and astringency is by far the most important group of the class, since it contains Cinchon the most powerful of the vegetable tonics.

Order 4. Aromatic Bitters.—This order contains the aromatic bitters, possess bitterness, with an aromatic flavour (derived from the presence of oil), and, in some cases, astringency likewise. This group contains Wood and Klee campane, from the order Composite; Cascarilla, from Euphorbiaceae; castor-bark, from Rutaceae; and Hops, from Urticaceae. They possess the combined properties of aromatics and bitter tonics, and are, therefore, useful these are indicated.

Order 5. Acid Tonics.—This order contains the acid tonics; namely, Mineral Acids, to which, perhaps, may be added Alum. These, taken state, allay thirst, promote the appetite and digestive process, and the secretion of urine. By continued use, they reduce the heat of the diminish the fullness and quickness, but increase the firmness, of the pulse; the cutaneous and pulmonary exhalation and secretion; and heighten the tonicity of all the fibres and organic tissues. If their employment be too too long a period, the digestive functions become much disturbed, inflammation of the mucous lining of the alimentary canal is set up, according with wasting and disorder of the whole system. They are employed as candid and temperate means in fevers, especially of the hectic kind, and like another. They are useful adjuncts to some of the bitter infusions.

Order 6. Metallic Tonics.—This order consists principally of the iron of Iron. These combine tonic and stimulant properties, and will be fuller.

Active Principles.—The active principles of the vegetable or vegetable alkaloids, non-alkaline crystalline substances alkaloids, certain vegetable acids, and the substances.

1. **Vegetable Alkalis.**—Quina, Cinchonina, and Aricinia, are tonic ve alkalalis. The general properties of this class of substances have been examined.

2. **Non-alkaline Neutral Crystalline Principles.**—Saline, Quin to have some analogy to the vegetable alkaloids, but are too imperfectly to permit any general account of them to be given.

3. **Certain Tonic Vegetable Acids.**—Tannic, Gallic, and Catechins appear to possess tonic properties.

- **Tannic acid (acidum tannicum).**—As this substance is employed in man it will be described in a subsequent part of this work. It will be sufficient here to state, that its presence in the astringent tonics is shown a tannish, or yellowish-white, precipitate (tannic gelatin), which infusions substances form with a solution of isinglass, and by the blue precipitate (blue iron) which they give on the addition of a perferruginous salt. causes precipitates (tannates) with the vegetable alkaloids.

* See p. 179.
β. Gallie acid (acidum gallicum).—The properties of this acid are very similar to those of tannic acid. From this circumstance, as well as from the fact that gallie acid is easily produced by the action of air on tannic acid, it is difficult to prove whether certain vegetable substances contain both these acids, or only tannic acid. Gallie acid agrees with tannic acid in producing a deep blue colour with the persalts of iron, but it does not precipitate gelatine or the vegetable alkaline. Though obtained from several vegetables, yet it probably either does not exist in many of them, or is present in very small quantities only: it is to be regarded, in most cases, as a product rather than an educt. Thus, though nutgalls yield one-fifth of their weight of gallie acid, Pelouze thinks that, originally, they contain none of it, but that what is procured is obtained by the action of atmospheric air on the tannic acid. Taken internally, in small doses, gallie acid causes no inconvenience. It has been given in the dose of from fifteen to thirty grains, against the Tanina Sollum, but without any benefit. Swallowed to the extent of twenty-four grains, it gave rise to a sweetish taste and a slight feeling of internal heat, but no other symptom.

γ. Catechic Acid. —This is a constituent of several vegetable astringents; as Catechu, Gambier, &c. It probably constitutes the essential part of the substance called by Pelletier red eucamnicie. It produces a green colour with the salts of iron, but does not occasion any precipitate in a solution of gelatine. Its physiological effects have not been ascertained.

4. Extractive.—Some of the vegetable tonics are said to owe their bitterness and medicinal activity to a principle to which the terms materia hermaphrodita, materia saponeuse, and extractive matter, have been applied. It is described as being of a brown colour, soluble in water and alcohol, insoluble in ether, and becoming insoluble in water, by long-continued boiling, and by exposure to light and air. That a substance, or mixture of substances, possessed of these properties, may be obtained from various plants, cannot be doubted, but it is not probable that chemists have yet succeeded in obtaining a proximate principle to which the term extractive can with propriety apply. What has hitherto been procured is a mixture or compound of several principles, such as vegetable acids and their combinations with potash and lime, colouring matter, sugar, gum (rendered soluble in alcohol by its combination with other substances), vegetable bases, &c.

CLASS 4.—Medicamenta Emollientia—Emollients.

(Demulcents.)

Definition.—Agents which diminish tone or insensible contractility of the living tissues to which they are applied, and thereby cause relaxation and weakness, are denominated emollients (from emollio, I soften).

Physiological Effects.—They have an operation diametrically opposite to tonics, especially to those which are astringent. They relax, soften, and swell the tissues, and render them more flexible. Applied to inflamed parts they diminish heat, tension, and pain, and oftentimes assist in producing the resolution of the disease; and when the inflammation is too violent, or too far advanced, for this to be effected, they are useful by promoting suppuration. They have a relaxing effect on the muscular fibre, and are, therefore, employed to relieve spasm. These effects have been referred, by some, to a physical, by others, to a vital agency. During life the particles of the body are kept in approximation by two forces—attraction and the vital principle; and as emollients render the parts to which they are applied soft and flexible, that is, they produce relaxation, it becomes a

question whether they operate by overcoming the cohesion of the molecules, or by modifying the vital properties. Most writers have regarded them as mechanical agents, and explain their influence just as they account for the action of warm water, or oil, on inorganic substances—leather, for example. But we should always be cautious in applying physical explanations to vital phenomena; and in the present instance this is particularly necessary. Emollients act physically on inorganised parts of the body (the cuticle, for example), but on living parts they exert another kind of influence; for cold water, which diminishes the cohesion of dead parts and renders them softer and more flexible, has not the same effect on living tissues. Moreover, Dr. A. Crawford has shown that some medicinal agents diminish the cohesion of dead animal tissues, and have an opposite effect on the living ones.

The constitutional effects of emollients are for the most part those of nutrients, not of medicines; though the continued use of some is said to diminish the tone or vigour of the system generally—an effect ascribed by Barbier to their absorption and local action on all the fibres of the body. This statement, however, is unsupported by fact in the case of gum, starch, sugar, gelatine, albumen, and some other principles.

Emollients are used to prevent the action of irritating matters on the body, by involving them, or by sheathing or defending surfaces from the action of substances capable of acting on them injuriously. When used for these purposes they are denominated demulcents (demulcentia, from demulceo, to mitigate or soften). Thus we administer them when acrid poisons have been swallowed. They are applied externally, in the form of local baths, poultices, fomentations, &c. both as emollients and demulcents, in local inflammations, painful ulcers, &c. In irritation, inflammation, and ulceration of the alimentary canal (as in gastritis, enteritis, diarrhoea, dysentery, &c.), they are taken either by the mouth or in the form of oyster. In catarrh, pertussis, and pulmonary affections in general, where the cough is dry and harsh, and the expectorated matters are acrid, the use of emollients is often attended with very beneficial effects. By their lubricating and soothing influence over the nerves distributed to the sinuses, they probably affect the bronchial membrane and pulmonary structure by a reflex action. In affections of the urinary passages, as ardor urinæ, emollients (especially aqueous fluids) are very serviceable.

Emollients may be arranged in the following orders:—

Order 1. Aqueous Emollients.—This order contains Water, the principal and most important substance of the class. In order, however, that it may act as an emollient, it must have a certain temperature; for neither very cold nor boiling water has any emollient effect. Dr. Cullen fixes 62° F. as the lowest temperature at which this fluid can be emollient; and observes, that the greater its

warmth the greater will be its emollient power, provided that pain or scalding be not produced. Aqueous vapour is, for two reasons, more emollient than liquid water: in the first place, it penetrates the organic tissues more powerfully; and, secondly, a greater degree of heat can be applied by it than by liquid water. Dr. Cullen was doubtful whether advantage could be gained by any addition made to water.

Order 2. Mucilaginous Emollients.—This group has been subdivided into the pure mucilaginous emollients (as Gum Arabic, Tragacanth, Mallow, Marshmallow, &c.), the sweets (as Figs), the bitters (as Cetraria islandica, Coltsfoot, and Sarsaparilla), and the oily (as Linseed, Sweet Almonds, Poppy seeds, &c.)

Order 3. Amylaceous Emollients.—This order includes starchy or farinaceous substances; as Wheaten Flour, Oatmeal, Barley, Arrow-root, Sago, Tapioca, ordinary Starch, &c.

Order 4. Saccharine Emollients.—This order consists of the saccharine substances; as ordinary Sugar, Honey, Liquorice, &c.

Order 5. Oleaginous Emollients.—This order includes the waxy, fatty, and oily substances; such as the animal fats, &c. (as Lard, Mutton Suet, Butter, Wax, and Spermaceti), and the vegetable oils (as Olive, Almond, Sesame, Palm, Poppy, Linseed, &c.)

Order 6. Albuminous Emollients.—This includes the White and Yolk of Eggs, and Milk. Saliva and gastric juice are employed on the continent for medical purposes.

Order 7. Gelatinous Emollients.—This order comprehends the gelatinous substances; as Gelatine in its pure form, Isinglass, Hartshorn shavings, &c.

Active Principles.—Water and oily substances are, perhaps, the essential emollient principles. For though gum, starch, sugar, albumen, and gelatine, are termed emollient principles, they do not act as such unless water be present. The properties of these principles will be described in other parts of this work.

Class 5. Medicamenta Refrigerantia.—Refrigerants. (Temperants.)

Definition.—Medicinal substances which diminish the temperature of the body when it is preternaturally increased, are denominated refrigerants (from refrigero, I cool), or temperants (from tempero, I moderate).

Physiological Effects.—The only agent which in all cases reduces animal heat, is cold, used in the form of ice, cold air, cold baths, cold lotions, cold drinks, &c. Their agency is obvious: they abstract heat, and thereby lower the intensity of the vital movements, diminish vascular action, and reduce the calorific functions. But there are certain medicinal substances which, by continued internal use, allay febrile heat, and usually promote the secretions, though they have no power of diminishing the ordinary or healthy temperature, and to these the term refrigerant is usually applied. How they act is not completely understood. Dr. John Murray thought they furnished oxygen to the system, and in that way prevented so large a quantity of it being consumed in the process of respiration,—an

8 See p. 21.

EVACUANTS.

198

explanation borne out by the observations of Mr. Spalding and Dr. Fye, that vegetable diet reduces the consumption of oxygen gas in respiration.

Refrigerants may be arranged in two orders, as follows:

Order 1. Acidulous Refrigerants.—This order consists of the mineral and vegetable (Sulphuric, Hydrochloric, Acetic, Citric, Tartaric, &c.) acids, as well as the acid- or super- salts (Alum and Bitartrate of Potash). To the same order also belong certain acridulous fruits (as Oranges, Lemons, Mulberries, Tamarinds, Prunes, fruit of the Dog-rose, &c.), and herbs (as Wood Sorrel, Common Sorrel, Lettuce, &c.), and Acid Whey (serum lactis acidum).

Order 2. Saline Refrigerants.—This order includes certain neutral salts; namely, the Nitrate and Chlorate of Potash.

Active Principles.—Acids and the Alkaline Salts are the active principles of this class.

CLASS 6. Medicamenta Evacuantia.—Evacuants.

(see-curing Agents, Natuall; Vital Agents which operate on the secrening system, A. T. Thompson.)

Definition.—Agents which provoke a discharge by some eumunctory, are termed evacuants (from evacuo, I evacuate or make void).

Physiological Effects.—As evacuants promote secretion, their action on the secreting organs must be that of excitant; and, when carried too far, is followed by inflammation. They are employed to restore natural secretion, the diminution or stoppage of which has arisen from torpor, or deficient vascular activity of the secreting organ. But their secondary effect is exhaustion; and thus these agents, having a weakening or depressing influence on the system, are employed as antiphlogistics, and are denominated contra-stimulants or hyposthetics by the supporters of the doctrine of contra-stimulus. They diminish the quantity of circulating fluid; and hence they are obviously indicated in plethora. By their depressing influence over the vascular system, as well by their power of unloading the blood-vessels, they indirectly promote absorption; and are, in consequence, used in dropsical cases to hasten the removal of the effused fluid. I have already alluded (pp. 9 and 147) to the mutual influence which the secretions have over each other, and which constitutes what has been denominated the antagonism of the secretions. In therapeutics we sometimes take advantage of this and excite the secretion of one organ, with the view of diminishing that of another. Moreover, we frequently employ evacuants as revulsives (see p. 146), to relieve local determinations of blood to parts remote from those on which the evacuant operates. Thus purgatives are employed in affections of the head. Some of the milder evacuants, which gently and moderately promote the action of two or more secreting organs, are beneficially employed.

See p. 129.

"Since all secretions, inasmuch as they extract certain ingredients from the blood, produce a change in its composition, no one secretion can be altered in quantity or quality without disturbing the balance which exists between all in their action on the blood; hence, the increase of one secretion gives rise to the diminution of another." (Müller's Physiology, by Baly, vol. i. p. 475.)
in chronic diseases under the name of *alteratives*, or *purifiers of the blood*. The agents called *resolvents* (as Mercury, Iodine, and the Alkalis), and which are used to combat visceral and glandular enlargements, augment the activity of the secreting organs.

Modus Operandi.—In a considerable number of cases evacuants exert a topical, stimulant, or irritant influence over the organs whose secretions they augment. In some instances we apply them directly to the part on which we wish them to act; as in the case of Errhines, Masticatories, and Cathartics (usually). In other instances, the active principle of the evacuant is absorbed, circulates with the blood, and is thrown out of the system by the secreting organ, whose activity it augments. It is probable, therefore, in this case, that the increased secretion arises from the local stimulus communicated to the secreting vessels by the evacuant (or its active principle) in its passage through them. The operation of the Turpentine and Copaiva on the mucous surfaces, and of many diuretics on the kidneys, is readily accounted for in this way.

Active Principles.—*An acrid principle* is found in a considerable number of the medicines of this class. The *salts of the alkalis* operate as evacuants.

Acrid Principles.—*Acrida* are organic substances which irritate or inflame living parts with which they are placed in contact, independently of any known chemical action. They were formerly supposed to owe their activity to a peculiar proximate principle, which was denominated the *acrid principle of plants* (*principium acre plantarum*); but modern chemistry has shewn that there is no one constituent of organic substances to which this term can be exclusively applied; but that many dissimilar principles agree in possessing acridity. Thus acrid substances are found among *acids* (e. g. Crotonic, Ricinie, and Gambogic), *vegetable alkalis* (e. g. Veratrum and Emetia), *neutral crystalline matters* (e. g. Elaterin), *volatile oils* (e. g. Cantharadin, and the Oils of Mustard, Garlic, and Rue), *resins* (e. g. the resins of Euphorbium and Mezereon), and *extractive matter* (e. g. Colocynthin). The acrid matter of some plants (e. g. of Ranunculus) has not yet been isolated. This arises from the facility with which it becomes decomposed.

Sub-class 1. Liquefacientia.—*Liquefaciens.*

(Verdünnende Mittel, *Siunctia*.)

Definition.—Medicinal agents which augment the secretions, check the solidifying, but promote the liquifying, processes of the animal economy, and which, by continued use, create great disorder in the functions of assimilation, may be termed *liquefaciens* (from *liquefacio*, I liquify).

Practitioners must have long felt the want of some term which should indicate the physiological action of Mercury, Antimony, Iodine, the Alkalis, and other medicinal agents employed as resolvents. To supply this desideratum I have adopted, in the absence of a better, the word Liquefacient.

Physiological Effects.—Liquefacients promote secretion and exhalation generally. Thus Mercurials augment the secreting func-

See the Principles of Modern Chemistry systematically arranged, by Dr. E. C. Green., translated from the German, vol. 1. p. 428. Lond. 1802.—Also Guer, De Prisco Plantarum acri. Halae, 1794.
tions of the mucous follicles of the mouth, the salivary glands, the alimentary canal, the liver, the kidneys, and the skin; and it is probable that they also increase the secretions of the pancreas and the exhalation from the pulmonic surface. Antimonials, Iodine, and the Alkalis, exert a similar, though not equally powerful, influence over the same organs. So that in their effects on these parts, liquefacients correspond with the ancient *panchymagoquo* (from παν, all; χυμάς, juice; and ὁγω, I drive away), or medicines which were supposed to purge away all sorts of humours.

They also check solidifying, while they promote liquefying, processes in the animal economy; and on this account I have ventured to name them *liquefacients*, a term which corresponds nearly with the phrase **verflüssigende Mittel**, used by Sundelin⁷. Thus these agents soften and loosen textures, and assist the removal of adhesions and exudations. This effect is best seen after the use of mercurials, the action of which, observes Dr. Farre⁸, "is positively anti-phlegmonous. If it be pushed far enough, it produces an effect the exact reverse of the phlegmonous state, namely, the erythematicous inflammation; the tendency of which is to loosen structure, while that of phlegmonous inflammation is to bind texture." Under the influence of Mercury the gums become spongy, the intestinal and pulmonic membranes softened, and deposits of coagulable lymph (as in Iritis) are removed. The beneficial effects of Mercurials, Antimonials, Iodine, Alkalis⁹, &c. in promoting the resolution of visceral and glandular inflammation, and in relieving active congestion, may be ascribed to this anti-phlegmonous action referred to by Dr. Farre. These agents are opposed to the exudation of plastic or coagulable lymph (hence they check union by adhesion), and to the formation of false membranes, during their use, visceral and glandular enlargements and indurations, thickening of membranes (as of the periosteum), and morbid, but non-malignant, growths of various kinds, are sometimes observed to get softer and smaller, and ultimately to disappear. Dr. Ashwell⁰ graphically describes indurations, and hard tumours of the uterus, as having "melted away" under the influence of Iodine. In hepatisation of the lungs, the solid matter, deposited in the air-cells, is often absorbed, and the cells rendered again permeable to air, by the use of Mercury. It is on account of the influence of liquefacients in checking phlegmonous inflammation, obviating its consequences, and promoting the removal of enlargements, indurations, &c. that they are frequently denominated *resolvents* (from *resolvo*, I loosen or dissolve). Lastly, the long-continued use of liquefacients gives rise to a considerable disorder of the functions of assimilation.

A course of Mercury, it is well known, produces paleness or blanching; an
effect which Dr. Farre* ascribes to the diminished number of red globules of the blood. A prolonged use of this mineral gives rise to other symptoms of cachexy. The long-continued employment of Alkalis appears to induce a scurbutic cachexy ।. Iodine causes a morbid state, which has been termed iodium.

Our acquaintance with the extent of the order of liquefacients is too limited to enable us to group them for any useful purpose. As a provisional arrangement of them I suggest the following:—

Order 1. Mercurial Liquefacients.
Order 2. Antimonial Liquefacients.
Order 3. Iodic Liquefacients.
Order 4. Alkaline Liquefacients.
Order 5. Saline Liquefacients, including probably Sal Ammoniac, Common Salt, Chloride of Barium, &c.

Modus Operandi.—The resolvent operation of medicines of this order is usually explained by referring it to an augmented activity of the absorbents. But this explanation is imperfect, and does not account for all the phenomena. The effect is ascribable to a change in the nutrition of the parts affected. My friend, Dr. Billing”, is of opinion that “Mercury and Iodine remove morbid growths by starving them, which they effect by contracting the capillaries.” But I conceive there must be something more in the influence of these remedies than a mere reduction in the quantity of blood supplied to the affected parts. The enlargements which these agents remove are not mere hypertrophies; their structure is morbid, and they must, in consequence, have been induced by a change in the quality of the vital activity; in other words, by morbid action. Medicines, therefore, which remove these abnormal conditions, can only do so by restoring healthy action,—that is, by an alterative influence. By what force or power they are enabled to effect changes of this kind must, for the present at least, be a matter of speculation. Müller* thinks it is by affinity. “They produce,” he observes, “such an alteration in the composition of the tissues, that the affinities already existing are annulled, and new ones induced, so as to enable the vital principle—the power which determines the constant reproduction of all parts in conformity with the original type of the individual—to effect the further restoration and cure; the Mercury itself does not complete the cure.”

Sub-class 2. Diaphoretica.—Diaphoretics.

(Sudorifica; Diaphoica.)

Definition.—Medicinal agents, which promote cutaneous transpiration, are denominated diaphoretics (from διαφορέω, I transpire).

* Ferguson’s Essay, p. 216.
* See Huxham’s Essay on Fevers, pp. 48 & 306. 3d edit. 1757.—See also Dr. Burrows’s Catechism in Lectures in the London Medical Gazette, vol. xiv.
* First Principles of Medicine, pp. 69, 70. 4th ed. Lond. 1841.
* Physiology, by Baly; vol. i. p. 363.
DIAPHORETICS.

Sudorifics (from sudor, sweat, and facio, I make), or diaphoicoes (from diadoxo, perspiration).

The terms diaphoretic and diaphoico have been used to designate substances which augment the insensible perspiration; while the word sudorifico indicates a substance increasing the sweat or sensible perspiration. But insensible perspiration and sweat differ in their physical conditions only—the former being the vaporous, the latter the liquid state of the same fluid. Hence there can be no essential difference between diaphoretics and sudorifics, and I, therefore, use the terms synonymously.

Physiological Effects.—The agents which, under certain circumstances, augment cutaneous exhalation, are both numerous and heterogeneous. External heat, assisted by the copious use of diluents, constitutes an important and powerful means of promoting sweating. Whenever a large quantity of fluid is taken into the system, the excess is got rid of by the kidneys, the skin, and the lungs; and if we keep the skin warm, as by warm cloathing, or the use of hot air or hot vapour-bath, the action of the cutaneous exhalants is promoted, and sweating results; but if the skin be kept cool, the kidneys are stimulated, and the greater part of the liquid passes off through them. Friction, exercise, and all agents which excite vascular action, have a tendency to promote sweating. The sudden and temporary application of cold, as in the affusion of cold water, sometimes causes sudorific by the reaction which it occasions. Lastly, many medicinal agents, acting through the circulation, cause sweating. The latter are the substances which are usually indicated by the word sudorific or diaphoretic.

Diaphoretics are relative agents; they succeed only in certain states of the body. Moreover, for different conditions, different diaphoretics are required. They constitute an exceedingly uncertain class of remedies, with regard both to the production of sweating and to the advantage to be derived therefrom. Dr. Holland suggests that when benefit follows the use of diaphoretic medicines, it is often ascribable, not to their direct influence on the exhalant vessels, but to other changes which they excite in the system, of which sweating is to be regarded rather as the effect and proof than as the active cause.

The operation of diaphoretics is promoted by the exhibition of large quantities of warm mild diluents, and by keeping the skin warm. Moreover, they are more effective when given at bed-time, since there appears to be greater disposition to sweating during sleep than in the waking state. The exhibition of diuretics should be avoided during the operation of diaphoretics, as they appear to check the operation of the latter. The same rule has been laid down with regard to purgatives; but it is well known that perspiration is often the consequence of hypercatharsis.

Diaphoretics may be arranged in seven orders, as follows:—

* See pp. 12, 15, and 19.
* See p. 27.
* Medical Notes and Reflections, p. 52. Lond. 1839.
198

ELEMENTS OF MATERIA MEDICA.

ORDER 1. AQUEOUS DIAPHORETICS.—Under this head are included only simple Water, but Gruel, Whey, and Tea. These, when assisted by
ternal warmth, often prove very effective diaphoretics, even when used alone
while to all the other groups they are valuable adjuvants; and in no cases are
they injurious.

ORDER 2. ALKALINE AND SALINE DIAPHORETICS.—The salts of the alkali
are frequently used to promote perspiration. Acetate and Carbonate of Amo
monia, Alkaline Citrates and Tartrates, Sal Ammoniac, and Nitrate of Potash
are employed for this purpose in fevers.

ORDER 3. ANTIMONIAL DIAPHORETICS.—The liquefactive operation of Amo
monials has been already referred to. Diaphoresis is one of its consequen
tes. We use this group of diaphoretics in febrile and inflammatory cases. It is
referred to the opiate diaphoretics when there is inflammation or congestion of
brain, or a tendency to either of these conditions.

ORDER 4. OPIATE DIAPHORETICS.—Opium and its alkali Morphia have
remarkable tendency to produce sweating. The former is often used as a
phoretic, commonly in the form of Dover’s Powder, when no disorder of
brain exists; and especially when an anodyne is indicated. When the stom
is very irritable, an opiate diaphoretic is preferred to an antimonial one.

rheumatism, and slight catarrh, Dover’s Powder proves highly serviceable.
In diabetics and granular disease of the kidneys, it is the best sudorific we
use, especially when conjoined with the warm bath. Opium and Camphor for
a serviceable sudorific compound when the surface is cold, as in Cholera.

ORDER 5. OLEAGINOUS AND RESINOUS DIAPHORETICS.—This group includes
a large number of substances, some of which owe their activity to volatile
oil, as the Labiatae and the Lauraceae (e.g. Sassafras and Camphor); other
resin, as Mesereon and Guiaum; while some contain both oil and resin.
Copaiva and the Turpentines. The substances of this order possess stimula
properties. They may act locally on the cutaneous vessels through the
blood; for some of them (e.g. Copaiva) can be detected by their odour in the
spiratory, and they occasionally excite a slight eruption on the skin.

Diaphoretics of this group are useful in chronic rheumatism, secondary syphi
and chronic cutaneous diseases.

ORDER 6. ALCOHOLIC DIAPHORETICS.—Alcohol and Wine augment cutaneous
exhalation.

ORDER 7. IPEACACUANHA.—I believe the diaphoretic property of Ipeacacuan
be considerably less than is commonly supposed. Dover’s Powder owes
power of producing sweating almost exclusively to the Opium which it contains.

MODUS OPERANDI.—Dr. Edwards* has shewn, that cutaneous tran
spiration is effected in two ways,—by a physical action or evapo
ration, and by an organic action or transudation. Evaporation, or
physical action, is the consequence of the porosity of bodies, and ta
place equally in the dead and living state. It is influenced by
hygrometric states of the surrounding air, by its motion or stillness,
its pressure, and by its temperature. Thus, dryness, agitation, a
diminution of the weight of the air, increase it. Transudation, or
organic action of transpiration, is a vital process, effected by min
spiral follicles or sudoriferous canals, and depends essentially on cau
herent in the animal economy, although it may be influenced to
certain extent by external agents. Thus, elevating the tempera
ture of the surrounding air, preventing its frequent renewal, and cov

* See Dr. Osborne’s paper in the Dublin Journal of Medical and Chemical Science, Jan. 1854.
Also Dr. Christison, On Granular Degeneration of the Kidneys. Edinburgh, 1839.
patient with warm clothing, are means which promote the organic, not check the physical, action of transpiration. Diaphoretics affect the transudation or the vital process. They probably affect the ex- lants in one or both of two ways;—by increasing the force of the general circulation,—or by specifically stimulating the cutaneous vessels.

Sub-class 3. Diuretica.—Diuretics.

Definition.—Medicines which promote the secretion of urine are denominated diuretics (from δια, through; οηρ, the urine; and πεω, flow).

Physiological Effects.—There are two principal modes of promoting the secretion of urine; the one direct, the other indirect. The direct method consists in augmenting the quantity of fluids taken into the stomach, or in removing any cause which checks the secretion. The direct mode is to stimulate the kidneys by means which specifically affect these organs. These means are the diuretics, properly so called. But almost all the substances thus denominated are most inconstant in their effects.

The quantity of urine secreted in the healthy state is liable to considerable variation. Temperature, season of the year, climate, time of day, quantity of fluid consumed as drink, state of health, &c. are among the common circumstances modifying this secretion. Whenever an unusual quantity of aqueous fluid is taken into the system, the kidneys are the organs by means of which the excess is, for the most part, got rid of. If the customary discharge from the skin or lungs be checked, by cold, for instance, the kidneys endeavour to make up for the deficiency of action in the other organs. Thus, in winter and in cold climates, more urine is secreted than in summer and in hot climates. Again, if transpiration be promoted, as by external warmth, the secretion of urine is diminished. Hence when we wish to augment the renal secretion, diluents should be freely administered, and the skin kept cool.

Mr. William Alexander endeavoured to determine, as nearly as possible, the relative powers of different diuretics, and he has given the following tabular views of his results:

A table of the different quantities of urine always discharged in an equal time; viz. from nine o'clock in the morning till two o'clock in the afternoon, when an equal quantity of the same liquid was drunk, but with different diuretics, in different quantities, dissolved in it.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>By 1 lb. 3 days, simple infusion of bohea tea, standard</td>
<td>15</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>By do. with 3 j of salt of tartar</td>
<td>22</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>By do. 3 j of nitre</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>By do. 4 drops oil of juniper</td>
<td>30</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>By do. 3 j salt of wormwood</td>
<td>19</td>
<td>7</td>
<td>1 1/2</td>
</tr>
<tr>
<td>By do. 5 j Castile soap</td>
<td>19</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>By do. a teaspoonful of spt. nit. dulc.</td>
<td>17</td>
<td>6</td>
<td>1 1/2</td>
</tr>
</tbody>
</table>

Experimental Essays. Edinb, 1768.
A Table of the different quantities of urine evacuated in the same space of time after drinking the same quantity of different liquors.

<table>
<thead>
<tr>
<th>Liq.</th>
<th>3</th>
<th>5</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>By 1 lb. 3vjiss. of weak punch, with acid</td>
<td>21</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>By do. new cow whey</td>
<td>18</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>By do. decoct. diuret. Pharm. Edin.</td>
<td>17</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>By do. London porter</td>
<td>16</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>By do. decoct. bardan. Pharm. Edin.</td>
<td>14</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>By do. warm water gruel</td>
<td>14</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>By do. small beer</td>
<td>13</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>By do. warm new milk</td>
<td>11</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

These tables are to a certain extent useful, but as diuretics are very unequally at different times, and cannot, therefore, be relied on, the value of Mr. Alexander’s experiments is considerably diminished.

By augmenting the secretion of urine we diminish the quantity of blood in the blood-vessels, and thus create thirst, and promote the absorption from the serous cavities. Hence diuretics are commonly resorted to in dropsical complaints; but they are most uncertain in their operation. Moreover, when they increase the quantity of urine, their influence on the effusion is not always curative. In dropsy attended with albuminous urine, and which arises from granular degeneration of the kidneys, diuretics have usually been considered objectionable, on account of their stimulant influence over the kidneys. Dr. Christison, however, thinks the distrust has been carried too far, and asserts, that they “do not increase the capacity of the urine in the early stage: in many instances they even diminish it.” He also suggests that the irritation set up by a diuretic may be of a different kind to that of the disease; and the one may not possibly increase,—nay, perchance, may diminish the other. In relieving the effusion and the coma, he thinks they are serviceable, and prefers Digitalis and Cream of Tartar to other agents of this order.

Diuretics may be arranged in the following groups:

Order 1. Aqueous Diuretics.—Aqueous drinks promote diuresis indices when the skin is kept cool, as I have before mentioned.

Order 2. Saline Diuretics.—This order consists principally of the table Salts of the Alkalis; especially Bitartrate and Acetate of Potash. They undergo partial digestion in the system, and are converted into carbonic acid. Hence they communicate an alkaline quality to the urine. Their supposed influence in the respiratory process has been before alluded to. To this order also belong Nitrate and the Carbonates of the Alkalis.

Order 3. Sedative Diuretics.—To this order belong Digitalis and To...
whose power of reducing the force and frequency of the heart's action has been already referred to. The diuretic effect has been referred, by Dr. Paris, to their sedative operation. For as the energy of absorption is generally in the inverse ratio of that of circulation, it is presumed that all means which diminish arterial action must indirectly prove diuretic, by exciting the function of absorption.

Order 4. Bitter Acríd Diuretics.—To this order belong Squills, Cołchicum, and Common Broom. These agents, in an over-dose, readily occasion vomiting. They owe their activity to an acrid principle, which probably operates through the circulation, on the renal vessels as a local stimulant or irritant, and in this way proves diuretic. According to my own observations, Common Broom less frequently fails to prove diuretic than most other agents of this class.

Order 5. Oleaginous Acríd Diuretics.—To this order belong Juniper, Tarentine, Copaiva, and Cajuputi. The volatile oil probably operates through the blood on the kidneys, as a topical stimulant. Cantharidin, the active principle of Cantharis vesicatoria, is of the nature of volatile oil, and operates in the same way.

Order 6. Acíd Diuretics.—The diluted Acids frequently prove diuretic.

Order 7. Alcoholic and Etherial Diuretics.—Dilute Spirit and Nitric Ether are diuretics.

Modus Operandi.—I have referred to the modus operandi of diuretics in speaking of the Orders; and, in a former part of this work, I have given a list of the substances which have been detected either unchanged, or more or less changed, in the urine.

Sub-class 4. Erринês.—Erринês.

Definition.—Erринês (from ἐρ, in and ἕρ, the nose) are medicines which produce an increased discharge of nasal mucus. Substances which excite sneezing are denominated sternutatories (sternutatoria) or ptarmics (from πταίπει, I sneeze).

Physiological Effects.—All the substances employed as errhines, or sternutatories, are applied to the nose. The liquefacients, when administered by the stomach, augment the secretion of the pituitary membrane as well as of all other secreting organs; and I have several times remarked the increased discharge of mucus from the nose of patients under the influence of Iodide of Potassium, and have detected the smell of Iodine in their handkerchiefs, so that I believe the particles of this substance are thrown off by the mucous membrane of the nose, as well as by other secreting organs.

Most foreign matters when applied to the pituitary membrane promote its secretion, and frequently also occasion sneezing. The latter is a reflex action of the true spinal system; the excitor or incident nerve, by which the impression is conveyed to the medulla oblongata, is the nasal branch of the trigeminal nerve. Sugar and the Labiate plants, when reduced to powder, operate as very mild
errhines. Euphorbium, Veratrum, and more especially the alkalii Veratria, are the most powerful of the order. Tobacco is intermediate. Absorption readily takes place from the pituitary membrane, and I have several times experienced the constitutional effects of Tobacco (such as nausea, giddiness, depression of the muscular power, and disorder of the mental functions), from the use of the moist sniffs (Rappées). The continued employment of snuff injures the sense of smell and alters the tone of the voice. In syphilitic affections of the nose, and where there is a disposition to nasal polypus, the frequent use of errhines may perhaps be injurious. Errhines have been principally employed to relieve chronic affections of the eyes, face, and brain; for example, chronic ophthalmia, amaurosis, headache, &c. They can only be useful on the principle of counter-irritation.

Schwilgué enumerates the following purposes for which sneezing is excited: to excite respiration when this function is suspended; to promote the expulsion of foreign bodies accidentally introduced into the air-passage; to occasion a general shock at the commencement of dangerous diseases which we wish at once to suppress; to augment the secretion of nasal mucus, and of tears; to favour the excretion of mucus collected in the nasal sinuses; to rouse the action of the encephalon, of the senses, of the uterus, &c.; and to stop a convulsive or spasmodic state of the respiratory apparatus.

We should not, however, forget that the concussion occasioned by sneezing is not always free from dangerous results, especially in phthisic habits, and persons disposed to apoplexy, or affected with hernia, prolapsus of the uterus, &c.

The Errhines may be arranged in the following groups:

Order 1. Mechanically-irritating Errhines. — To this order Sugar and other inert substances belong.

Order 2. The Labiate or Aromatic Errhines. — Sage, Marjoram, Lavender, and other Labiate plants, form mild sniffs when reduced to powder. They are seldom used singly or alone.

Order 3. Cerebro-spinant Errhines. — To this order belongs Tobacco, which constitutes the basis of ordinary snuff.

Order 4. Acrif Errhines. — Euphorbium, Veratrum, and Asarum, belong to this order.

Order 5. Inorganic Errhines. — Common Salt, Sal Ammoniac, and Sub-sulphate of Mercury, belong to this group.

Sub-class 5. Sialogoga.—Sialagogues.

Definition. — Medicines used to augment the salivary discharge are denominated sialogogues (from σιάλον, the saliva; and ἀγω, I convey or drive out).

Physiological Effects. — Sialogogues are of two kinds: some act topically, others by specific influence over the salivary organs.
EXpectorants.

This, therefore, is the foundation for arranging them in two groups of orders.

Order 1. Local Sialogogues.—These are sialogogues which are applied to the mouth. When used in a soft or solid state they are called masticatories (masticatoria, from mastico, to eat or chew). They act on the mucous follicles of the mouth and the salivary glands. Most solid or soft bodies, when chewed, increase the flow of saliva; thus Wax and Mastic produce this effect. Acrids, however, as Horse-radish, Mezereon, Pellitory of Spain, and Ginger, possess this property in an eminent degree.

In almost all parts of the world masticatories are more or less used. In the East Indies Betel-nuts (the seeds of Areca Catechu) are chewed, with Quicklime and the Betel-leaf (the leaf Piper Betel). The Indians have a notion that these substances fasten the teeth, clean the gums, and cool the mouth. In this country the masticatory commonly employed by sailors is Tobacco.

As the saliva is generally swallowed, masticatories do not confine their action to the mouth, but excite likewise the stomach. Peron was convinced that he preserved his health, during a long and difficult voyage, by the habitual use of Betel; while his companions, who did not use it, died mostly of dysentery. For habitual use, and as mere sialogogues, mucilaginous and emollient masticatories might be resorted to, but we find that acrids of various kinds have always been preferred. Masticatories, as therapeutic agents, have been principally used either as topical applications, in affections of the gums, tongue, tonsils, salivary glands, &c., or as counter-irritants in complaints of neighbouring organs, as in car-sache, rheumatism of the pericranium, affections of the nose, &c. The stronger masticatories, as Mustard and Horse-radish, excite an increased discharge of nasal mucus and tears, as well as of saliva and mucus of the mouth.

Order 2. Specific or Remote Sialogogues.—Several substances have had the reputation of producing salivation or ptysialism by internal use. Of these, the preparations of Mercury are the only ones on which much reliance can be placed, and even they sometimes disappoint us. The preparations of Gold, of Acimony, and of Iodine, occasionally have this effect. The continued use of the Hydrocyanic or Nitric Acid has, in several instances, produced salivation. Is poisoning by Foxglove the same has been observed. Lastly, nauseants increase the secretion of saliva. Mercurials are given in certain diseases to excite ptysialism, and in some cases it is necessary to keep up this effect for several weeks. It is not supposed that the salivation is the cause of the benefit derived, but it is produced in order that we may be satisfied that the constitution is sufficiently influenced by the medicine.

Sub-class 6. Expectorantia.—Expectorants.

Definition.—Medicines which promote evacuations from the bronchi, trachea, and larynx, are denominated expectorants (from expecto, I expectorate).

Physiological Effects.—In the healthy state, the liquids secreted are exhaled by the acridian membrane are got rid of by evaporation and absorption. But when from any circumstance the balance between the two processes of production and removal is destroyed, and an accumulation of mucus takes place, nature endeavours to get rid of it by coughing. Hence some have applied the term expectorant to irritating substances (as Chlorine gas, the vapour of Acetic or of Benzoic acid, &c.), which, when inhaled, produces coughing, as well as an augmentation of secretion. “We provoke cough,” says

1 Ainslie’s Materia Medica.
Schwilgué, "to favour the expulsion of foreign bodies introduced from without into the aërian tube, and especially of liquids; we have recourse to it to favour the expectoration of mucus, of membraniform concretions, and of pus, which have accumulated in the aërian passages, whenever the local irritation is not sufficiently great."

It has been thought by some, that the mucus secreted may be too tough and viscid to admit of its being easily brought up by coughing, and the term expectorant has been applied to those medicines which have been supposed to render it thinner and less viscid. But Mr. Moore has justly observed, thick phlegm is sometimes more easily expectorated than thin: and if this were not the case, we have no specific means of rendering the phlegm either thicker or thinner. Liquids, however, are the agents most likely to effect it. Frequent the term expectorant is applied to substances supposed to increase or promote the secretion of bronchial mucus, and in pharmacologia works a long list of medicines, thought to have this effect, is usually given. Most of the agents employed with this view act relatively—that is, they obviate the causes which checked the healthy secretion. Some are topical agents, as various Gases and Vapours. There are others, however, which, when taken internally, are supposed to affect the aërian membrane in a specific manner, and are beneficially employed in chronic catarrhs. Such are the Balsams, the Oleo-resins, the Fœtid Gums, Squills, &c. Many of the substances which give relief in chronic pulmonary complaints, do not promote, but check the secretion of bronchial mucus: as the Sulphate of Zinc,—which Begin adds the Balsams. Yet these agents are usually classed with expectorants; and Dr. Paris makes one class of expectorants to consist of "medicines which diminish the inordinate flow of fluid into the lungs, and render the expectoration of the remainder more easy." In fact, it appears to me that a large majority of the agents used under the name of expectorants, in bronchial and pulmonary affections, are substances which modify the vital activity of the aërian membrane by an alterative influence, and that expectoration is by no means an essential effect of their operation. This appears to be particularly the case with Antimonials, Senega, and Ipecacuanha. Of all classes of the Materia Medica, none are more uncertain in their action than expectorants.

The following is a provisional arrangement of the substances most commonly used as expectorants:

Order 1. Vapours or Gases used as Topical Expectorants. Chlorine and Ammoniacal Gases; the Vapours of Iodine, of Water, of the Volatile Oils, of Tar, of Benzoic and Acetic Acids; and the Smoke of Tobacco and Stramonium.

Order 2. Stimulating, Resinous Expectorants.—This order includes the Fœtid Gums, the Oleo-resins, and the Balsams.

* Traité de Thérapie, t. ii. p. 561.
* Pharmacologia.
EMETICS.

ORDER 3. NAUSEATING EXPECTORANTS, as Emetic Tartar, Ipecacuanha, Squills, Garlic, and Senega.

MODUS OPERANDI.—Several of the so-called expectorants become absorbed, and are recognisable by their odour in the breath; as some of the Oleo-resins, Garlic, and Asafetida. It is probable, therefore, that their influence over the bronchial membrane is by a topical action. Emetina and Emetic Tartar have, according to Magendie and Orfila, a specific influence over the lungs, and the lungs of animals killed by these substances are said to present traces of inflammation.

SUB-CLASS 7. EMETICA.—EMETICS.

(Vomitoria.)

DEFINITION.—Medicinal agents used for the purpose of provoking vomiting are called emetics (from ἐπίνω, I vomit), or vomits.

PHYSIOLOGICAL EFFECTS.—Usually within twenty or thirty minutes after taking an emetic, a general feeling of uneasiness and nausea comes on. The pulse becomes small, feeble, and irregular; the face and lips grow pale; a distressing sensation of relaxation, faintness, and coldness of the whole system is experienced; the saliva flows copiously from the mouth; the eyes lose their lustre; and the whole countenance appears dejected. These symptoms, which constitute the first stage of vomiting, continue for a variable period, and are followed by the ejection of the contents of the stomach. As soon as actual vomiting commences, the general phenomena are altered: the pulse becomes frequent and full, the temperature of the body increases, and a sweat breaks out on the face and other parts. During the act of vomiting, in consequence of the pressure made on the abdominal aorta, and the interruption to the circulation through the lungs, from the impeded respiration, the blood returns with difficulty from the head, the face swells and becomes coloured, the conjunctiva is turgid and red, the jugular veins are gorged, and tears burst from the eyes. The violent straining is often attended with pain in the head and eyes, and with the involuntary expulsion of the urine and feces. The matters vomited vary according to circumstances: they may consist of the alimentary substances, bile, &c. contained in the stomach and duodenum previous to the exhibition of the emetic; of the fluids collected by the action of the emetic; and, lastly, of the emetic itself. Sometimes strep of blood are observed, which usually come from the pharynx. The number of vomitings, and the ease with which they are effected, are liable to considerable variation, arising from the state of the digestive organs, the temperament of the patient, the state of the cerebral functions, &c. When the vomiting has entirely ceased, the patient feels languid, oppressed, and drowsy, and the pulse becomes weak and slow: the exhaustion is sometimes so great as to be attended
with fatal consequences. A case of this kind is alluded to by D. Paris, in which an emetic was imprudently given to a patient in the last stage of phthisis, with the intention of dislodging the pus with which the lungs were embarrassed; syncope was produced, from which the patient never recovered. Among other occasional ill consequences of vomiting may be mentioned comatose affections, uterine or pulmonary hemorrhages, hernia, abortion, suffocation, prolapse of the uterus, rupture of the abdominal muscles, &c. These effects are produced by the violent muscular exertions which attend the act of vomiting. They suggest cautions as to the use of emetics. Thus, in apoplexy, and some other cerebral affections, or when tendency thereto exists; in pregnancy, especially when miscarriage is threatened; in prolapsus uteri, hernia, aneurism, &c. the danger be apprehended from emetics is obvious. The concussion which the excite sometimes dislodges gall-stones.

The intensity and duration of the different stages of vomiting have no necessary relation to each other. Thus the Sulphates of Zinc and Copper excite speedy vomiting, with but little nausea; —and are therefore, preferred as emetics in narcotic poisoning. Tobacco and Tartarized Antimony, on the other hand, produce great nausea and depression of system. Hence, when the depressing effects of emetics are required, as in inflammatory and other diseases, we employ the last-mentioned emetic.

The irritation produced by the exhibition of emetics gives rise to an increased secretion from the mucous follicles of the stomach and duodenum; as is shewn by the thick, filamentous, and viscid matter frequently ejected. We infer, also, that the action of the exhalant must be increased, inasmuch as persons who have taken only a few spoonfuls of emetic liquids sometimes bring up a very considerable quantity of fluid. Darwin mentions a man who vomited six pints of liquid, although he had only swallowed one. Bile is frequently thrown up, either alone or mixed with other fluids; but we must infer from this that it had existed in the stomach previous to the exhibition of the emetic, for bile is not ordinarily rejected in the first efforts, but only in the subsequent vomitings; and the quantity increases in proportion to the length of time the vomiting continues. Emetics promote the secretion of bile, and probably of the pancreatic juice also. We presume that they likewise augment absorption during the stage of nausea, previously to the act of vomiting and when the force of the circulation is reduced.

The number of medicinal substances employed as emetics being but few, little benefit can attend any attempt to classify them. There are, however, two modes of arranging them: either into *vegetable emetics* and *mineral emetics*; or into, first, those which seem to possess a specific power of exciting vomiting (as *Emetic Tartar*), since they induce it, not only when contained in the stomach, but also when thrown into the veins or otherwise introduced into the cir-
CATHARTICS.

— Specific emetics),— and secondly, those (as Mustard) which create vomiting only when taken into the stomach (topical emetics)." Modus Operandi.— Vomiting is a reflex spinal act. It may be excited by touching the fauces, velum pendulum palati, &c. In this case the excitor nerve is the trigeminal, the branches of which are distributed to these parts. Tickling the back part of the pharynx excites an act of deglutition. Irritation of the stomach, and upper part of the intestines, also produces vomiting. In this case, the pneumogastric and splanchnic nerves act simultaneously, according to Müller, transmitting the irritation. Emetic Tartar causes vomiting, both when taken into the stomach, and when injected into the veins. As its operation is probably alike in both cases, it becomes a question whether, when introduced into the stomach, it must be first taken up into the circulation before it can cause an act of vomiting;—or, when injected into the veins, it acts on the parts engaged in the act of vomiting through the medium of their blood-vessels? I believe the latter is the more probable explanation; because, in the first place, we know that ordinary gastric irritation, where absorption is out of the question, will excite vomiting;—and, secondly, because Müller has found, that lacerating with a needle the splanchnicus of the left side, in the rabbit, will produce contraction of the abdominal muscles. If this opinion be correct, emetics, when introduced into the stomach, affect the medulla oblongata through the excitor nerves (the pneumogastric), and the contraction of the muscles necessary to the act of vomiting, is effected by the reflex nerves (the spinal nerves to produce the respiratory efforts, and, according to Dr. Hall, the pneumogastric to close the larynx, and open the cardia). When, however, the emetic is introduced into the circulation, it is doubtful "whether its more important action is upon the organs from which the nervous energy for the movements of vomiting are derived, or upon the organs of motion themselves."

The mechanism of the act of vomiting is too exclusively a physiological subject to permit any observations on it in this place. I must refer to the works of Müller and Dr. M. Hall for information concerning it.

SUB-CLASS 8. CATHARTICA.—CATHARTICS.

(Purgatives).

Definition.— Medicines which produce alvine evacuations are denominated Cathartics (from καθάρισμα, I purge).

Physiological Effects.— Cathartics cause alvine evacuations by increasing the peristaltic motion of the intestines and by pro-

1 For an account of the uses of emetics consult Dr. Fothergill's Inaugural Dissertation, "De Emeticum Usus in Morbis Tractantibus." Edinb. 1736. — An English translation of this is published in his Medical Works, by J. C. Lettoum, M.D. Lond. 1784.

2 Dr. Marshall Hall, On the Diseases and Deformations of the Nervous System, p. 103. A feather, introduced into the throat to excite vomiting, has, by being pushed too far down, been actually swallowed, without causing vomiting.

3 Psychology, by Bailey; vol. 1, p. 500.

4 Müller, op. supr. cit. p. 510.
moting secretions from the mucous lining. The milder purgatives, however, operate principally by their influence on the muscular coat of the intestines; while the stronger ones stimulate the mucous follicles and exhalants, and give rise to liquid evacuations. These are denominated *Hydragogues* (from *υδρόν*, water; and *ἀγω*, I drive off). Some of them create nausea, faintness, occasionally vomiting, colicky pains, abdominal tenderness, and tenesmus. The more violent ones, if given in an over-dose, produce inflammation of the alimentary canal, characterised by violent vomiting and purging, abdominal pain and tenderness, cold extremities, and sinking pulse. These are denominated *Drastics* (from *δραμε`, I am active*). Emollient or demulcent drinks (as barley water, gruel, and broth) are taken to favour their safe operation. As the intestinal surface consists of about 1400 square inches, from the whole of which secretion and exhalation are going on, it is obvious that purging offers a very powerful means of diminishing the quantity of the fluids of the body; and accordingly we find that some cathartics, especially *Elaterium*, cause very copious watery discharges; and their employment is followed, as might be expected, with thirst and augmented absorption from the serous cavities, so that they sometimes reduce or even remove dropsical swellings. The more violent purgatives promote the discharge of bile and pancreatic liquor, by the irritation they produce at the termination of the ducts which pour these secretions into the alimentary canal.

A distinction is usually made in practice between *cooling* and *warm* purgatives. By the former are commonly meant saline purgatives, which, while they cause purging, without having any tendency to excite inflammation, are supposed to have a refrigerant influence over the system, and are adapted for febrile and inflammatory cases. By the latter are meant the more violent cathartics, which are presumed either to quicken the pulse, or at least to excite the abdominal vascular system, and, therefore, are considered to be less fitted for febrile cases.

Cathartics may be conveniently arranged in five groups or orders, as follows:—

Order I. Laxatives or Lenitives.—This group contains the *mild cathartics*, such as Manna, Cassia pulp, Tamarinds, Prunes, Honey, Bitartrate of Potash, and the fixed Oils (as Castor, Almond, and Olive oils). These very gently evacuate the contents of the intestinal canal, and usually without causing any obvious irritation, or affecting the general system. Manna, however, is apt to occasion flatulence and griping. Laxatives are employed in any cases where we wish to evacuate the bowels with the least possible irritation, as in children and pregnant women; in persons afflicted with inflammation of any of the abdominal or pelvic viscera, with hernia, prolapsus of the womb or rectum, piles, or stricture of the rectum; and after surgical operations about the abdomen and pelvis.

* The deaths from the use of Morison’s Pills are referrible to this. The active ingredient of medicines is gamboge (see Lond. Med. Gaz. vol. xiv. p. 613 and 759; vol. xvii. p. 357; 415, and vol. xviii. p. 73 and 287; vol. xix. p. 976.
* This measurement has been calculated from the statements as to the length and diameter of the Intestines in Meckel’s Manuel d’Anatomie générale, descriptive et pathologique. Traduit par J. A. Jourdan et G. Brechet. Paris, 1825.
* An anonymous writer, in the London Medical Gazette, vol. iv. p. 349, contends that Aloes is not a warm purgative, though usually considered to be so.
ORDER 2. Saline, Antiphlogistic, or Cooling Cathartics.—This order is composed of the saline purgatives, such as the Sulphates of Soda, Potash, and Magnesia, &c. They increase the peristaltic motion of the alimentary canal, and augment the effusion of fluids by the exhalants of the mucous surface, thereby giving rise to watery stools. They do not appear to possess the power of inflaming the intestinal tube, nor of heating the general system. They are adapted for febrile disorders, inflammatory affections, plethoric conditions, &c.

ORDER 3. Milder Acid Cathartics.—This order includes Senna, Rhubarb, and Aloes. These are more active substances than any of the preceding. They are acids and stimulants, but their local action is not sufficiently violent to cause inflammation. Senna is employed where we want an active, though not very acid or irritant, purgative. Rhubarb is administered in relaxed and debilitated conditions of the alimentary canal, on account of its tonic properties. Aloes is used in torpid conditions of the large intestines, and in affections of the head. It is usually considered objectionable in piles and diseases of the rectum.

ORDER 4. Drastic Cathartics.—This group comprehends the strong acid purgatives; such as Jalap, Scammony, Black Hellebore, Gamboge, Croton oil, Colocynth, and Eaterium. These, when swallowed in large doses, act as acid poisons. They are employed as purgatives in torpid conditions of the bowels; as hydragogues in dropscial affections; and as counter-irritants in affections of the brain. They are objectionable remedies in inflammatory and irritable conditions of the alimentary canal.

ORDER 5. Mercurial Cathartics.—The principal of these are the Hydrargyrum cum Creta, the Pilula Hydragryri, and Calomel. We employ them as ulcerative purgatives, and to promote the hepatic functions. As they are uncertain in their operation, they are usually combined with, or followed by, other purgatives.

Modus Operandi.—The more powerful cathartics are acids or local irritants. Some of them (e.g. Gamboge) operate almost solely in this way; for they do not excite purging except when they are introduced into the alimentary canal, and they easily excite vomiting when swallowed. But most of the drastics exert, in addition, a specific influence over the alimentary canal, so that they excite purging when injected into the veins, or when applied either to the serous membranes or cellular tissue. Senna, Castor and Croton oils, Black Hellebore, Colocynth, and Eaterium, operate in this way. This circumstance, therefore, favours the notion that they act, in part at least, by absorption.

That the purgative principles of some cathartics are absorbed, is quite certain. Gamboge, Rhubarb, Sulphate of Potash, and Oil of Turpentine, have been detected in the blood. Senna, Rhubarb, and Jalap, communicate purgative qualities to the milk. The colouring matters of Cassia pulp, Rhubarb, Senna, and Gamboge, have been recognised in the urine.

Some cathartics act also as diuretics,—as Bitartrate of Potash and Gamboge. Dr. Christison observed, that where diuretics have been given for some time without effect, he has frequently seen their action brought on "by a single dose of some hydragogue cathartic,—such as Gamboge." The resinous particles, in their passage out of

1 On Granular Degeneration of the Kidneys, p. 150. Edinburgh, 1839.
the system through the renal vessels, probably acted as topical stimulants.

Cathartics probably act, in part at least, by a reflex action of the ganglionic system. Müller* observes, that galvanising the splanchnic nerve or the coeliac ganglion, gives rise to a generally increased activity of the peristaltic movements, while division neither of the pneumo-gastric nor of the sympathetic nerve, puts a stop to them. This appears to show that the splanchnic nerve is concerned in propagating the irritation set up by cathartics. The tenesmus occasioned by some cathartics is a reflex action of the true spinal system.

Different parts of the alimentary canal are unequally affected by different cathartics. Thus, Aloes is remarkable for its action on the large intestine; moreover, many of the drastic cathartics,—as Gamboge, Colocynth, Savin, and Black Hellebore,—create more irritation in the large, than in the small, intestines; and Orfila² mentions, that in animals killed by these substances, he found the stomach and rectum inflamed, while the small intestines were healthy. In some cases, perhaps, this may be ascribed to the rapidity with which these agents pass through the small intestines, and on their longer continuance in the stomach and rectum; but the same appearance has been noticed when these cathartics have been applied to the cellular texture of the thigh.

According to Liebig³, concentrated saline solutions have a physical, as well as a medicinal, action. They extract water from the coats of the stomach, and thereby create thirst. Part of the solution, thus becoming diluted, is absorbed; but the greater portion enters the intestines, dilutes the solid matters, and thus acts as a purgative.

Sub-class 9. Emmenagoga.—Emmenagogues.

Definition.—Medicines which excite or promote the catamenial discharge are termed emmenagogues (from ἐμμήνω, the menstrual discharge, and ἀγος, I drive away).

Physiological Effects.—As the suppression or retention of this secretion may be occasioned by very different circumstances, no one agent can be expected to prove emmenagogue in all, or even in many, cases. Deficient menstruation is rarely, perhaps, an idiopathic disease, but usually a morbid symptom merely; and, therefore, those agents which remove it must be relative,—that is, must have reference to the disease which produces it. Thus when deficient menstruation is connected with a deficiency of power in the system, tonics and stimulants are the best remedies. Again, in plethoric habits, blood-letting, and other debilitating agents, are most likely to be serviceable.

But the term emmenagogue is usually employed, in a more limite"
sense; namely, to indicate those substances which are supposed to assess a specific power of affecting the uterus, and thereby of promoting the catamenial discharge. There are, however, few bodies to which this definition can be strictly applied. Indeed, two reasons have forced some pharmacological writers to doubt the existence of any medicines which can be properly termed specific emmenagogues, namely, the uncertainty of all the means so named, and the uterus not being an organ intended for the excretion of foreign matters.

The substances usually regarded as specific emmenagogues are, in the most part, medicines which, when taken in large doses, act as drastic purgatives. Such are Savin, Black Hellebore, Aloes, Gamboge, &c. They excite the pelvic circulation, give rise to a sensation bearing down of the womb, especially in females disposed to prolapse uteri, increase uterine hemorrhage, or the menstrual discharge, when given during these conditions, and when administered in the early stages of chlorosis or amenorrhea, sometimes bring on the catamenia. Savin is decidedly the most emmenagogue of all the orsetlie just mentioned. The most effective mode of obtaining its uterine influence is by exhibiting its oil.

Substances that irritate the urinary organs also evince a stimulant influence over the uterus. I have known abortion produced by Cantharides given as an emmenagogue.

Rue is a reputed and popular emmenagogue. It possesses cerebrotonic properties, and has on several occasions produced miscarriage.

Madder was a favourite emmenagogue with the late Dr. Home, who declared it to be the strongest and safest known. The Feticium and Castoreum have also been supposed to possess a similar property. The Chalybeates are exceedingly valuable remedies in uterine obstructions, attended with an anæmic condition of the system. Mercureials, by their liquefying properties, promote the secretion of the uterus in common with that of other organs.

Ergot of Rye possesses an unequivocal influence over the uterus. But it rather promotes uterine contractions than the menstrual function; though it has, on many occasions, been successfully employed in amenorrhea.

Sub-class 10. Cholagogus.—Cholagogues.

(Xolotics or Bilitics, Nuttall.)

Definition.—Medicines which promote the discharge of bile into the alimentary canal are denominated Cholagogues (from χολα, bile, and ἀγω, I drive off).

Physiological Effects.—It is probable that most, if not all, drastic purgatives increase the secretion and excretion both of bile and pancreatic juice, by irritating the opening of the ductus cholecysticus in the duodenum, just as certain substances, taken into the mouth, provoke an increased discharge of saliva by irritating the
mouths of the salivary ducts. Graaf says, that if a purgative be administered to a dog, and when it is beginning to operate, the abdomen be laid open, the bile and pancreatic juice will be observed flowing into the duodenum.

The term chologogue, however, has been more particularly applied to substances which have been supposed to have a specific influence in promoting the secretion or excretion of bile. Mercury, Aloes, and Rhubarb, have been considered to possess this property. The Alkalis are believed, by some, to render the biliary secretion more copious and thinner.

CLASS 7. ECHOLICA.—ECHOLICS, OR CONTRACTORS OF THE UTERUS.

(Abortiva; Ambloctica; Acceleratores Partús.)

Definition.— Medicines which excite uterine contractions, and thereby promote the expulsion of the contents of the uterus, are called echolics (from ἐκβάλων, a medicine which expels the fetus).

Physiological Effects.—Some medicines excite the vascular system of the uterus, as Savin, and the other Drastic Purgatives. These promote the menstrual discharge, and are, therefore, denominated emmenagogues. But there is another class of agents which excite muscular contractions of the uterus, and, therefore, are adapted for expelling substances (as the fetus, hydatids, clots of blood, &c.), contained in the uterine cavity. These are the Echolics. The only unequivocal agent of this class is Ergot, which appears to operate on the uterus by a reflex action, and will be fully noticed hereafter. Probably the ergot of all grasses acts in the same way. A similar property has been ascribed to Borax.

CLASS 8. ACIDA.—ACIDS.

(Antalkalina.)

Definition.— Acid medicines which, by repeated use, produce a chemical change in the fluids, have been formed into a separate class, under the name of Acids.

Physiological Effects.— The Mineral Acids, when concentrated, decompose the organic tissues (see p. 104). Swallowed in this state they are corrosive poisons. When sufficiently diluted they cease to be corrosive, though they still exert a chemical influence. Thus, when applied to the skin, they harden the cuticle by uniting with its albumen; and when applied to the mucous surface they produce astriiction, and a slight whitening of the part (from their chemical influence). The diluted Mineral and Vegetable Acids, when swallowed in moderate doses, at first allay thirst, sharpen the appetite, and promote digestion. They check preternatural heat, reduce th
deeply injure the assimilative processes, and a kind of scorbutic
ty is established.
As are used as caustics, as refrigerants, as tonics, as diuretics,
alkalines, as antilithics, and to check sweat and pruriginous

CLASS 9. ALKALINA.—ALKALINE MEDICINES.

(Antacida).

DEFINITION.—Alkaline medicines, which by repeated use produce
mechanical change in the fluids, have been formed into a distinct
under the name of Alkalina.

PHYSIOLOGICAL EFFECTS.—The alkalis in a concentrated form are
ful caustics, and when swallowed act as corrosive poisons.
their solvent action on the organic tissues, they have a soften-
fluence even in the dilute form, and, in consequence, are
ceous to the touch. When taken into the stomach, in the
state, they destroy the acid condition of the alimentary canal,
ightly augment secretion. They become absorbed, act as
es, and at the same time alter the quality of the urine, to which
communicate an alkaline reaction. By repeated use they ope-
liquefacients. Their long-continued employment gives rise
t disorder of the assimilative organs, and a condition ana-
to that of scurvy is induced. In such cases it is said
the blood drawn from a vein does not coagulate on cooling.
are used as escharotics, as antacids, as resolvents, as anti-
tics, as diuretics, and as antilithics.

SUBLIPTICS; ANTILITHICS.—Medicinal agents which effect the solution or
ration of urinary calculi within the body, are denominated Lithontriptics
os, a stone, and τρίπτω, I rub or wear out, or destroy). The long-contin-
readily dissolve in hydrochloric and nitric acids,—while alkaline solutions are solvents for uric acid. But the introduction, by injection, into the bladder of either acid or alkaline solutions, sufficiently strong to exert much chemical influence over calculi, would be attended with dangerous irritation of the vesical coats. And, if we exhibit them by the mouth, they undergo important changes in passing through the system, so that by the time they reach the bladder their chemical influence, as solvents, is in a great measure, if not wholly, destroyed. Yet it cannot be denied that at times they have appeared to give considerable relief, and to act as real lithotritys. But Dr. Prout asserts that urine, when in a perfectly healthy condition, is one of the most universal as well as powerful solvents we possess for urinary deposits; and as it contains no free and uncombined alkaline or acid ingredient, he concludes that lithotritys "are to be sought for among a class of harmless and unirritating compounds, the elements of which are so associated as to act at the same time with respect to calculous ingredients, both as alkalis and acids." At present no substance of this kind is known, but the solutions of the supercarbonated alkalis, containing a great excess of carbonic acid, approach the nearest to them; and the mineral waters of Vichy, which have long been celebrated in calculous affections, are natural solutions of this kind. The operation of these waters is not confined apparently to their solvent effects; for they possess also a disintegrating power; that is, they disturb "the attraction, both cohesive and adhesive, by which the molecules of calculi are held together, so as to render them brittle and easily broken into fragments."

CLASS 10. TOPICA.—TOPICAL REMEDIES.

DEFINITION.—External remedies, which are used on account of their topical influence, have been formed into a distinct class, under the name of topica.

PHYSIOLOGICAL EFFECTS.—This class is a very heterogeneous one, and contains substances which possess a very dissimilar mode of operation. On this, as well as on other grounds, objections may, with great propriety, be made to its admission in a physiological arrangement; and the only apology I can offer for it is that of convenience.

Topical remedies may be conveniently arranged in six orders, as follows:

ORDER 1. CAUSTICA. CAUTERIA POTENTIALIA.—Topical agents, which disorganise by a chemical action, are called caustics (from caio, I burn). The stronger ones, as Potassa fusa, are called escharotics, or erodents; the milder ones, as Sulphate of Copper, catheretics, or cauterns. The general action of these has been already noticed. Some of the substances used as caustics (as Arsenious Acid) become absorbed, and produce constitutional symptoms.

The substances used by surgeons as caustics may be arranged in suborders thus:

SUBORDER 1. CONCENTRATED NON-METALLIC ACIDS.—As Sulphuric, Nitric, Hydrochloric, Phosphoric, and Acetic Acids.

SUBORDER 2. ALKALIS.—Potassa fusa, Liquor Ammonia, and Quicklime.

TOPOICAL REMEDIES.

CHAPTER 3. METALLIC COMPOUNDS.—A considerable number of these are

1. Oxides; as Binoxide of Mercury and Arsenious Acid.
2. Chlorides; as the Sesquichloride of Antimony, Chloride of Zinc, and Bichloride of Mercury.
3. Oxysalts; as Nitrate of Silver, Sulphate and Acetate of Copper.

caustics are employed for various purposes, the principal of which the following:—To remove excrescences or morbid growths of any kinds, such as warts, condylomata, some kinds of polypi, and granulations; to decompose the virus of rabies, and the venom of the viper and other poisonous serpents; to artificial ulcers; as issues; to open abscesses; for the cure of sydenhamian ulcers they have been applied to the scrotum, so as to penetrate through the tunica vaginalis; to change the condition of irritated and other surfaces; lastly, caustics are applied to strictures of the urethra.

CHAPTER 2. TOPICAL STIMULANTS.—These are remedies employed to augment the vital activity of the parts to which they are applied. If they produce irritation or inflammation, they are called IRRITANTS. If they be organic substances, and cause local irritation, pendently of any known chemical agency, they are denominated DES.

CHAPTER 1. CUTANEOUS STIMULANTS. Rubefacients, Vesicants, and Suppurants.—These are agents which, when applied to the skin, cause redness, and sometimes vesication and suppuration. The milder ones, such as Friction and Fomentations, stimulate the skin temporarily, without producing actual inflammation. The stronger ones, such as Mustard and Cantharides, excite inflammation. Those that cause the exhalation of a thin serous fluid through the cuticle, are called vesicants or epiphanes: Mustard, Euphorbium, Croton, Acetic Acid, Ammonia, and Cantharides, are of this kind; while Fox Emetic, and some other substances, which produce a secretion of pus, are designated Suppurants. The medicines of this class are employed as counter-irritants in various diseases. Their MODUS MEDENDI has been before investigated.

CHAPTER 2. ULCER STIMULANTS.—Surgeons employ a variety of topical stimulants to wounds and ulcers, for the purpose of augmenting or altering the vital activity of the part. Those which promote healthy suppuration are Digestives (Digestia seu Digestica), as the Ceratum Resinos. Those that are supposed to promote cicatrization are denominated Epulotics (Epuloticus, I cicatrizare), or Cicatrizantia, as Ceratum Calaminum. Under the name of Detergents (Detergentia) are included substances which cleanse the ulcers, &c., and comprehend various kinds of agents; some of which, however, are topical stimulants.

CHAPTER 3. ASTRINGENTS AND DESICCANTS.—Agents which, by affinity for fibrine and albumen, constrict fibres and coagulate albuminous liquids, are denominated Astringents. When employed to check hemorrhage, they are called Styptics. The vegetable astrin-
gents when used in a dilute form,—such as Sulphate of Copper,
Nitrate of Silver, Chloride of Zinc, Sulphate of Iron, Acetate of Lead,
Alum, &c. In a concentrated state, the same agents are caustics.
Some substances, when applied to secreting and exhalting surfaces,
check secretion and exhalation, and cause dryness of the parts, but
have scarcely any corrugating power on the solids,—as the Oxide of
Zinc. These may be termed Desiccants.

Order 4. Benumbers.—Certain cerebro-spinants are employed
as topical anodynes in neuralgia. For example, Aconite, Belladonna, and Opium.

Order 5. Antiseptics and Disinfectants. Anti-putrescents.—Agents which prevent or are opposed to putrefaction,
are called Antiseptics (from ἀντί, against, and σῦρος, putrid). Those
which destroy miasma, are denominated Disinfectants (from δισ,
which signifies separation, and ἑκτεῖνομαι).

Putrefaction, properly so called, is a process peculiar to dead
organic matter; and means which check or prevent it, act by a
physical or chemical agency, and are the true antiseptics. They
constitute what Guerent* denominates physical antiseptics. Warmth,
air, and water, are the most powerful agents in promoting putrefaction;
and their exclusion, therefore, are among the most effective antiseptic
means. Thus, Cold, a Vacuum, and Desiccation, are good conserva-
tors of dead organic matters. Alcohol, Syrup, Fats, and Volatile
Oils, are antiseptics: all act by excluding air, and some of them
(e. g. Alcohol) likewise by abstracting water from the organic matter.
Another class of antiseptics are chemical agents, which form with
the organic matters new compounds less susceptible of decay. Saline
and metallic solutions, and chlorine, act in this way.

Certain diseases were formerly denominated putrid, and were sup-
posed to depend on a putrescent or decomposed condition of the solids
and fluids, characterized by the loose texture of the crassamentum,
petechiae, and an offensive condition of the excretions. Remedies
which relieved this state were called antiseptics. Guerent denomi-
nates them physiological antiseptics. But the alterations which are
oberved in the characters of the solids and of the blood in the above
maladies, have no apparent analogy with those which attend the
putrefaction of dead animal matters; and accordingly modern
pathologists have rejected the doctrine of putrescency of the fluids.
Liebig* has endeavoured to revive the old notion; but, though his
reasoning is ingenious, it is to me any thing but satisfactory, as I have
before (p. 106) remarked. The subject is foreign to the objects of
this work, and moreover is too extensive to be further discussed here;
but I may remark, in conclusion, that if the effects of the poisons of
small pox, plague, syphilis, and decomposing organic matters on the
human frame, be denominated fermentation or putrefaction, the mean-

* See page 175.
* Dictionary de Médecine, art. Antiseptique.
* Organic Chemistry in its Application to Agriculture and Physiology. Edited by Lyon Playfair.
Ph. D. London, 1846.
ing of these terms must undergo very considerable alteration and
extension.

Disinfectants, I have already stated, are agents which destroy
miasmata (both odorous and inodorous). Their action is chemical.
Chlorine, the Hypochlorites, and Nitrous and Nitric Acids, act either
by oxidizing or dehydrogenizing miasmatic matters. The late Dr.
Henry* has apparently shown, that infectious matter of certain dis-

cases (as scarlatina) is either dissipated or destroyed by a temperature
not below 200° F.; and he, therefore, suggested, that infected clothing,
&c. may be disinfected on this principle, for he found that neither the
texture nor colour of piece goods and other articles of cloathing
were injured by a temperature of 250° F. Quicklime absorbs carbonic
acid and sulphuretted hydrogen gases, and perhaps other noxious
matters. It is, therefore, occasionally useful as a disinfectant; and
is employed in the form of wash for the walls of buildings. Ventila-
tion is the most important disinfecting process. To disguise unplea-
sant odours, fumigations with the Balsamic Resins, Camphor, Cas-
carilla, and Brown Paper, are sometimes resorted to.

ORDER 6. Cosmetics.—Agents used for the purpose of preserving
or restoring the beauty, are denominated Cosmetics (cosmetica, from
cosmeo, I adorn).

The preparation of these substances is usually left to chemists, perfumers, and
hairdressers; but the principles on which they are employed come under the
consideration of the medical practitioner.

Cosmetics are employed to improve the appearance of the skin,
the hair, and the teeth. Hence we make a three-fold division of
them:

a. CUTANEOUS COSMETICS.—Cosmetics are applied to the skin, to soften or
harden the cuticle, and to improve the colour and clearness of the complexion.
Alkaline, Oleaginous, and Saponaceous substances, and Soft Water, cleanse
and soften the skin. The Alkali acts by its solvent power on the cuticle; Oil
has a mechanical influence. Almond and Spanish Soaps, Milk of Roses, and
Cold Cream, are the favourite softeners of the skin. Almond Powder is used for a similar purpose.

Diluted Acids, most Saline substances (as Alum) and Alcohol, harden the
skin. The acids act by combining with the albumen of the cuticle, and the
salts operate, probably, in the same way. The hardening influence of alcohol is
connected with its power of coagulating albumen. Hard water mudurates by the
carthy salts which it holds in solution.

A solution of Bichloride of Mercury in Bitter Almond Emulsion (about gr. j.
ad flix.) has long been a favourite face-wash: it constituites Gowland’s lotion.
Bichloride of Mercury, it is well known, unites with albumen, and hardens
animal tissues. Bitter Almonds are mentioned by Celsus as remedies for
ephelides (freckles). Withering* recommends, as one of the safest and best
cosmetics, an infusion of Horse-radish in cold milk.

Face-paints are used to give an artificial colour to the skin: Carmine to com-
municate a red, and starch-powder a white tint, can produce no injurious effect

* Chlorine and the Hypochlorites are the most effective agents for destroying sulphuretted hydro-
gas, which, according to Professor Daniell, is the miasmatic matter of the western coast of Africa.
(See p. 83; also, London Medical Gazette, July 1841.)
* Ibid. vi. cap. 5.
* In a Description of British Plants, vol. iii. p. 754, 7th ed. Lond. 1830.
on the constitution; but the white metallic compounds—viz. Trisnitate of Bismuth, Carbonate of Lead, and White Precipitated Mercury—are dangerous, as they are liable to become absorbed. Trisnitate of Bismuth, probably the least injurious of the three compounds just mentioned, has caused spasmodic trembling of the muscles of the face, ending in paralysis.

\[\beta\] Hair Cosmetics.—Cosmetics are applied to the hair to render it smooth and glossy, and disposed to curl,—to stain it,—to promote its growth,—and sometimes to destroy it.

An excellent pomatum for rendering the hair smooth and glossy, is composed of Olive oil or Almond oil 3ij., and Spermaceti 3ij. It may be variously scented.

Various substances have, at different times, been recommended for preventing the fall, and promoting the growth, of the hair; but the efficacy of most of them is doubtful. As alopecia, or baldness, arises from various and different causes, it is evident that no one agent can, under all circumstances, prove successful. When the cause is not obvious, the part should be shaved (if any hair be present), and topical stimulants applied, to augment vascular activity. A solution of some Volatile Oil (Rosemary or Thyme), in Rectified Spirit, used as an emollient, has, at times, appeared to me to be serviceable. Dupuytren employed an ointment composed of ten parts of Tincture of Cantharides (prepare by digesting one part of cantharides in ten parts of rectified spirit), and ninety parts of Hog's-lard.

Depilatories are used to remove superfluous hairs. Lime and Orpiment (Sulphur of Arsenicum) are the constituents of most of them. Plenck's pasta epilatoria consists of one part Orpiment, twelve parts Quicklime, and ten parts Starch, made into soft paste with water. The hair being previously close, the paste is applied, and, as soon as the mass is dry, the part is to be washed with water. As orpiment is a dangerous application, especially when the skin is abraded, depilatories are sometimes formed without it. Rayer gives the following formula for one:-Lime, 3ij; Carbonate of Potash, 3ij; Charcoal powder, 3ij.

Hair Dyes have been in use from the most remote periods of antiquity. Medea is said to have been acquainted with the art of dying the hair black. Paulus Aegineta gives several compositions for effecting the same purpose. Various powders, pastes, and liquids, are sold in the shops as hair dyes. Some (as Orpia's Hair Dye) are mixtures or compounds of powdered Litharge (oxide of lead) and Lime, in about equal weights, or a little excess of the first is used. The mixture is made into a paste with hot water or milk, and applied to the hair for four or five hours, the part being covered (with oil-skim, or, in the absence of this, I have known a cabbage-leaf used), to keep the mixture moist. The water causes the Oxide of Lead to unite with the Lime, forming a plumbo-lime. The lime is useful by removing the fatty matter, while the oxide of lead, reacting on the sulphur contained in the hair, forms a black sulphuret of lead. Others (as Spencer's Hair Dye) consist of a solution of Nitrate of Silver which, however, is objectionable, since it is apt to stain the skin. Hair stained with this salt blackens by exposure to the light, partly by the reduction of the silver, and partly by the formation of a black sulphuret of silver. When an immediate effect is required, a solution of Hydrosulphuret of Ammonia is applied to the hair after the Nitrate of Silver, by which the black sulphuret of silver is instantly formed. Hewlett's Hair Dye is of this kind. Other formulas for hair dyes have been published. Paulus Aegineta mentions the bark of Green Walnuts. A leaden comb is frequently used for a similar purpose. The lead uniting with the sulphur of the hair, forms the black sulphuret. Dyed hair, especially that stained with nitrate of silver, is dry and crisp. The detection of

* Vogt, Pharmakodynamik, Bd. i. S. 288. 2nd Aufl.
* Phænixus, Händbuch der Arzneiverordnungskunde, 2nd Th. S. 73. 3rd Aug. 1840.
stained hair is sometimes an object of medico-legal research. Lead may be recognized in hair by boiling the latter in nitric acid, and applying the tests for lead to the nitric solution. To detect silver, the hair must be treated with chlorine, to form chloride of silver, which is soluble in ammonia. From the ammoniacal solution the chloride may be precipitated by nitric acid, and its nature ascertained by the usual means.

\[\gamma \] **Teeth Cosmetics.**—Cosmetics are applied to the teeth to cleanse them, improve their colour, and destroy unpleasant odour.

Dentifrices are usually powders. Tooth powders require to have a certain degree of hardness or grittiness, to enable them to remove the foreign matters adherent to the teeth, but not sufficient to injure the enamel. Pumice powder is rather too gritty for frequent use. Employed occasionally (say once in six or eight weeks) it is very serviceable. Though generally repudiated as a dentifrice, I find it is commonly used by dentists for cleaning teeth. Charcoal and Cuttlefish bone powder are good detergents. Chalk is somewhat too soft. Ratanh, Cinchona, and Catechu, are useful astringents. Myrrh is employed partly for its odour. All insoluble powders, however, are more or less objectionable, since they are apt to accumulate in the space formed by the fold of the gum and the neck of the tooth, and thus present a coloured circle. Many tooth-powders are coloured red with Bole Armeniac, to render this circle invisible. The soluble substances which may be used as tooth-powders are Sulphate of Potash, Phosphate of Soda, Bitartrate of Potash, and Common Salt.

Disinfecting and decolorizing tooth-powders, washes, and lozenges, owe their efficacy to Chloride of Lime, and are used to destroy the unpleasant odour of the breath, and restore the white colour of the teeth when stained by tobacco, &c. Thus, one part of Chloride of Lime may be added to twenty or thirty parts of Chalk, and used as a decolorizing tooth-powder. A disinfecting mouth-wash is prepared by digesting three drachms of Chloride of Lime in two ounces of Distilled Water; and, to the filtered solution, adding two ounces of Spirit, to which some scent (as Otto of Roses) has been added.

\[\text{2 Journal de Chimie Médicale, t. iii. p. 494; and t. iv. p. 28.} \]
Part Second.

PHARMACOLOGIA SPECIALIS.—SPECIAL PHARMACOLOGY.

Special Pharmacology treats of medicines individually. The
I shall, for the most part, arrange in Natural-Historical Order.

Natural bodies are divided into two groups, called Kingdoms; the
Inorganised and the Organised. The latter is subdivided into two
Sub-Kingdoms, the Vegetable and the Animal.

Formerly naturalists admitted three kingdoms; the Mineral, the Vegetable,
and the Animal. But the impossibility of so characterising the two latter as
distinguish them from one another, has led later writers to unite them in
one kingdom.

Brogniart¹ makes three divisions of bodies,—the Inorganic, the Organic, and
the Organised.

I. INORGANISED KINGDOM.

Class I. Non-Metallic Substances.

(Metalloids.—Berzelius.)

Order I. OXYGEN, AND ITS AQUEOUS SOLUTION.

OXYGEN'TUM.—OXYGEN.

History, Synonymes, and Etymology.—Oxygen gas was dis-
covered, on the 1st of August, 1774, by Dr. Priestley k, who denom-
nated it *dephlogisticated air*. In the following year, Scheeke at-
discovered it, without knowing what Priestley had done, and he called it empyreal air. Condorcet termed it vital air. Lavoisier called
oxygen, (from οξυς, acid; and γενειν, to engender or produce).

Natural History.—Oxygen is found in both kingdoms of nature.

1. In the inorganised kingdom.—Oxygen is, of all substances, that which
found in the largest quantity in nature, for it constitutes at least three-fourths
the known terraqueous globe. Thus, water, which covers about three-fourths
the surface of the earth, contains eight-ninths of its weight of oxygen; and the
solid crust of our globe probably consists of at least one-third part, by weight,
this principle; for silice, carbonate of lime, and alumina, the three most abun-
dant constituents of the earth's strata, contain nearly half their weight of
oxygen. Mr. De la Beche¹ calculates that silica alone constitutes *forty-five
per cent. of the mineral crust of our globe.* Of the atmosphere, oxygen con

¹ Tableau de la Distribution Méthodique des Espèces Minérales. Paris, 1832.
OXYGEN.

stines twenty or twenty-one per cent. by volume, or about twenty-three per cent. by weight, to which must be added eight-ninths, by weight, of the atmospheric aqueous vapour.

2. IN THE ORGANISED KINGDOM.—Oxygen is an essential constituent of all living bodies. Vegetables, in the sun's rays, absorb carbonic acid, decompose it, retain the carbon, and emit the oxygen. Hence they have been supposed to be the purifiers of the atmosphere.

PREPARATION.—There are several methods of procuring this gas, but I shall notice three only:

1. By heating Chlorate of Potash in a green glass retort.—This method yields pure oxygen gas. (From 100 grains of the chlorate we may expect to obtain nearly 100 cubic inches of the gas.—Brande.) One equivalent or 124 parts of chlorate of potash yield six equivalents or 48 parts of oxygen, and one equivalent or 76 parts of chloride of potassium.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Chlorate of Potash 124</td>
<td>1 eq. Chloric Acid 76</td>
<td>6 eq. Oxygen 48</td>
</tr>
<tr>
<td></td>
<td>1 eq. Chlorine... 36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 eq. Potash ... 48</td>
<td>1 eq. Potassium 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>124</td>
</tr>
</tbody>
</table>

2. By heating Binoxide of Manganese in an iron bottle.—This is the cheapest method; and, for ordinary purposes, it yields Oxygen gas sufficiently pure. To remove any carbonic acid, the gas is to be mixed with lime-water or a solution of caustic potash. One pound of the commercial binoxide usually yields from 30 to 40 pints of gas; but, from fine samples, 40 to 50 pints may be procured. Two equivalents or 88 parts of pure binoxide yield one equivalent or 8 parts of oxygen, and two equivalents or 80 parts of the sesquioxide of manganese.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Binoxide Manganese = 88</td>
<td>1 eq. Oxygen.......... 8</td>
</tr>
<tr>
<td></td>
<td>12 eq. Sesquioxide Manganese. 80</td>
</tr>
</tbody>
</table>

3. By heating Binoxide of Manganese with about its own weight of Oil of Vitriol in a glass retort.—The quantity of acid to be employed should be sufficient to form, with the binoxide, a mixture having the consistence of cream. This method is convenient when an iron bottle cannot be procured, or when a small quantity of gas is wanted at a very short notice; but it is not economical. One equivalent or 44 parts of the binoxide yield one equivalent or 8 parts of oxygen, and one equivalent or 36 parts of the protoxide of manganese: the latter substance forms, with an equivalent or 40 parts of anhydrous sulphuric acid, one equivalent or 76 parts of sulphate of the protoxide of manganese.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Binox. Manganese 44</td>
<td>1 eq. Oxygen8</td>
<td>1 eq. Oxygen ...8</td>
</tr>
<tr>
<td></td>
<td>1 eq. Protox. Mang. ...36</td>
<td></td>
</tr>
<tr>
<td>1 eq. Sulphuric Acid40</td>
<td>1 eq. Sulphur, Protox. Mang. 76</td>
<td></td>
</tr>
</tbody>
</table>

PROPERTIES.—It is elastic, colourless, odourless, tasteless, incom-
bustible, but a powerful supporter of combustion. According to
Dr. Thomson, 100 cubic inches of this gas weigh, at the temperature
of 60° F., and when the barometer stands at 30 inches, 34.60
grains: hence its specific gravity is 1.111; 100 cubic
inches of air being taken to weigh 31.446 grs.—(According
to Berzelius and Dulong, the sp. gr. is 1.1026.) Its
atomic weight is 8; its atomic volume 0.5; hydrogen being in both
cases unity.

Characteristics.—If a taper or match be plunged into this gas after
the flame has been blown out, but while the wick or charcoal is yet
glowing, the flame is instantly reproduced. The only gas likely to
be confounded with oxygen in this respect is the protoxide of nitrogen,
from which oxygen is distinguished by exploding it with hydrogen.
A mixture of one volume oxygen and two volumes hydrogen yields,
by explosion, water only; whereas a mixture of one volume of the
protoxide of nitrogen with one volume hydrogen yields water and
one volume of nitrogen. Moreover, a taper burnt in a jar of oxygen
gas yields no brown vapour.

Physiological Effects. 1. On Vegetables.—Oxygen gas is
essential to the germination of seeds, and to the existence and
growth of plants. Edwards says that seeds in germinating decom-
pose water to obtain oxygen. In the shade, vegetables absorb it
from the atmosphere, and evolve an equal volume of carbonic acid;
while, in the solar rays, the reverse changes take place; carbonic acid
being absorbed and oxygen expired. The vigorous growth of plants
in inclosed cases, as originally proposed and practised by my friend
Mr. N. B. Ward, does not invalidate the above statements; since
the cases are never completely air-tight, but allow the ingress and
egress of air consequent on changes of temperature. The quantity
of oxygen required for the growth of some plants, however, appears
to be much smaller than was previously supposed.

The effects of pure oxygen gas on germination and vegetation have
been examined by Theod. de Saussure. He found that the period
of germination is the same in oxygen gas as in atmospheric air,
but that seeds evolve more carbonic acid in the former than in
the latter. Plants do not thrive so well in an atmosphere
of oxygen gas in the shade as in one of common air; they give out
more carbonic acid, which is always injurious to vegetation in the
shade. When exposed in oxygen gas to the direct rays of the sun,
they augment in weight about as much as in atmospheric air.

β. On Animals generally.—It is usually asserted that all animals
require the influence of oxygen, or rather of air, to enable them to
exist: but this assertion cannot be proved in the case of some of the
lower animals. Thus intestinal worms seem to dispense with respi-

m Athenæum, Feb. 23, 1839.
 n Companion to the Botanical Magazine, for May, 1836.
 p See pp. 11 and 12.
 q See p. 33, op. cit.
TOPICAL REMEDIES.

Some animals, which respire, have no organs especially devoted to this function; in these the cutaneous surface effects respiration; as in the *Polypifera*. In the *Infusoria* the respiratory organs are delicate cilia. Many animals have branchiae, or gills, for respiration, as some *Mollusca*, some *Annelida*, and Fishes. Leeches respire by subcutaneous sacs, which open externally. The respiratory organs of Insects are ramifying tracheae. Lastly, the higher classes of animals, as the Mammals, respire by means of lungs. Whenever respiration is effected a portion of oxygen disappears, while a quantity of carbonic acid, nearly equal in volume to the oxygen consumed, is produced.

The continued respiration of oxygen gas is injurious, and even fatal to animal life: this has been observed by all experimenters. Animals live longer in a given volume of oxygen than in the same quantity of atmospheric air, but the continued employment of it causes death. Mr. Broughton confined rabbits, guinea-pigs, and sparrows, in glass jars containing oxygen, and inverted over water. At first they suffered no inconvenience, but in about an hour their breathing became hurried, and the circulation accelerated. This state of excitement was followed by one of debility; the respirations became feeble, and were more slowly performed; loss of sensibility and of the power of voluntary motion supervened, till the only remaining visible action was a slight one of the diaphragm, occurring at distant intervals. On opening the body, the blood (both venous and arterial) was found to be of a bright scarlet hue; it was thin, and rapidly coagulated. The gas in which animals had thus been confined till they died, retained its power of rekindling a blown-out taper, and of sustaining, or a time, the life of another animal introduced into it; and Mr. Broughton hence deduced the inference that it does not contain so great an excess of carbonic acid as the gas left when animals have perished by confinement in atmospheric air, and he considered the train of symptoms induced by the respiration of pure oxygen gas as analogous to those which follow the absorption of certain poisons into the system*.

* Injected into the pleura, oxygen gas is very quickly absorbed, without producing inflammation. Cautiously injected into the veins of dogs, it has no sensible effect on the system†.

γ. On Man.—If pure oxygen be inspired a few times it does not produce any remarkable phenomena; though some have ascribed various effects to it, such as agreeable lightness in the chest, exhilaration, increased frequency of pulse, a sensation of warmth in the chest, gentle perspiration, and an inflammatory state of the system. But several of these results arise probably from mental influence, others from the mode of inhaling the gas, and perhaps some might depend on the employment of impure oxygen.

Uses.—Soon after the discovery of oxygen, the most exaggerated notions prevailed as to the remedial powers of this agent. Various

* Müller's Physiology, by Raly, vol. 1, p. 265.
* Nysten, Recherches de Physiologie, p. 60. Paris, 1811.
diseases (scorbutus, for example) were thought to be dependent on a deficiency of it in the system; and it was, in consequence, submitted to a considerable number of trials, with, as it was at first asserted, remarkable success. But Chaptal and Fourcroy declared that it was injurious in phthisis. In England it was tried by Beddoes and Hill. The latter states that he found it beneficial in asthma, debility, ulcers, gangrene, white swelling, and scrofulous diseases of the bones. The beneficial results obtained by the use of acids (especially nitric acid), of the oxides of mercury, chlorate of potash, vegetable food, &c. were referred to the oxygen which these substances contained, and which they were supposed to communicate to the system. These notions are now exploded.

In asphyxia arising from a deficiency of atmospheric air, or from breathing noxious vapours, the inhalation of oxygen gas has been said to be, and probably is, useful. On the same principle, it may be employed during an attack of spasmodic asthma, when there is danger of suffocation; but it is at best only a palliative, and has no power of preventing the occurrence of other attacks. Chaussier has recommended its use in children apparently still-born; I have known it used without benefit. To combat the asphyxia of malignant cholera, inhalations of oxygen were tried in Russia, Poland, Prussia, and France, but without success. On the whole, then, I believe oxygen to be almost useless as a remedy.

Aqua Oxygenii. Oxygen Water.—At the mean pressure and temperature of the atmosphere, 100 vols. of water dissolve, according to Dalton and Henry, 3.7 vols. of oxygen gas; according to Saussure, 6.5 vols. By pressure in a proper machine, water may be charged with a much larger quantity. This solution has been termed oxygenated water, but is a very different substance to the peroxide of hydrogen, which has also been known by this appellation. Neither is it to be confounded with Searle's oxygenous aerated water, which is an aqueous solution of the protoxide of nitrogen. It has been used to the extent of one or two bottlefuls daily, as a slight excitant. It is said to increase the appetite and promote the secretions; and to be serviceable in spasm of the stomach, amenorrhoea, hysteria, atonic dropy, &c.

8 Ibid. t. iv. p. 83.
9 *Considerations on the Medicinal Use of Contaminous Aire, and on the Manner of obtaining them in Large Quantities.* By T. Beddoes and James Watt. Bristol, 1794-95.
11 For further details respecting these opinions, see the *Dictionnaire Universel de Matière Molle et de Thérapeutique Générale*, par F. V. Mérat and E. J. De Lenc, t. v. p. 136.
13 Mérat and De Lenc, op. supra cit. t. v. p. 141.
14 It is remarkable that Electricity and Oxygen, two agents of vast influence in nature, should possess but slight remedial power.
16 Ibid.
I.—CHLORINE, AND ITS COMBINATIONS WITH OXYGEN.

CHLORIN'TUM.—CHLORINE.

ETYMY, SYNONYMES, AND ETYMOLOGY.—This gas was discovered by C. F. JANET in 1774, who termed it *dephlogisticated muriatic acid.* Davy, in 1785, named it *oxygenated muriatic acid.* Sir H. Davy named the element *chlorine* (from χλωρον, green), on account of its colour.

HISTORICAL.—It is found in both kingdoms of nature.

IN THE INORGANISED KINGDOM it exists principally in combination with her dissolved in the water of the ocean or forming deposits of rock salt also occurs in combination with magnesium, calcium, lead, silver, hydrochloric acid is met with in the neighbourhood of volcanoes, and produced by the decomposition of some chloride.

IN THE ORGANISED KINGDOM it is found, in combination, in both animals and plants. Sprengel says, maritime plants exhale chlorine, principally in the free state, exists, according to Dr. all stomach of animals during the process of digestion.

RATION.—There are several methods of procuring chlorine

Adding Diluted Sulphuric Acid to a mixture of Common Binoxide of Manganese.—This is the cheapest and most thod of preparing it. Mix intimately three parts of dried salt with one part of the binoxide of manganese, and introduce into a retort. Then add as much sulphuric acid, mixed with its own weight of water, as will form a mixture of cream. (Brande directs 8 salt, 3 manganese, acid;—Thenard, 1 salt, 1 manganese, 2 acid, and 2;—Graham, 8 salt, 6 manganese, and dilute acid as much as 13 parts of oil of vitriol.)

By application of a gentle heat, the gas is copiously evolved, be collected over either warm or cold water.

This process two equivalents or 80 parts of sulphuric acid react equivalent or 44 parts of the binoxide, and on one equivalent of chlorine of sodium, and yield one equivalent or 36 parts of chlorine, one equivalent or 76 parts of the sulphate of the protoxide, and one equivalent or 72 parts of the sulphate of soda.

<table>
<thead>
<tr>
<th>ELEMENTS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>60 + 1 eq. Chlorine 36</td>
<td>1 eq. Chlorine 36</td>
</tr>
<tr>
<td>1 eq. Sodium 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>44 + 1 eq. Oxygen 8</td>
<td>1 eq. Soda 32</td>
</tr>
<tr>
<td>1 eq. Protoxide Mang. 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid</td>
<td>80 + 1 eq. Sulphuric Acid 40</td>
<td>1 eq. Sulphate Soda 72</td>
</tr>
<tr>
<td>1 eq. Sulphuric Acid 40</td>
<td>1 eq. Protoanhydride 76</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>184</td>
<td>184</td>
</tr>
</tbody>
</table>

See, Physiol. F. o. 1. p. 220.

For further information respecting the commercial mode of preparing chlorine, see Hypochlorite.
2. By heating a mixture of equal weights of common Hydrochloric Acid and Binoxide of Manganese in a glass retort over a lamp.

In this process two equivalents or 74 parts of hydrochloric acid act on one equivalent or 44 parts of the binoxide, and yield one equivalent or 36 parts of chlorine, two equivalents or 18 parts of water, and one equivalent or 64 parts of protochloride of manganese.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Hydrochl. Acid</td>
<td>1 eq. Chlorine 36</td>
<td>1 eq. Chlorine 118</td>
</tr>
<tr>
<td>1 eq. Binox. Mang.</td>
<td>2 eq. Oxygen 16</td>
<td>2 eq. Water 118</td>
</tr>
</tbody>
</table>

3. By the action of Hydrochloric Acid on Chloride [Hypochlorite] of Lime.—This method may be resorted to when binoxide of manganese cannot be procured. The products of the reaction of the ingredients are, chlorine, water, and chloride of calcium.

PROPERTIES.—Chlorine, at ordinary temperatures and pressures, is a gaseous substance, having a yellowish-green colour, a pungent, suffocating odour, and an astringent taste. 100 cubic inches weigh according to Dr. Thomson, 77.8615 grs.; and its sp. gr., therefore 2.5 [2.47, Berzelius]. Its equivalent by weight is 36° [35.47 E 1835; 35.42 Turner] by volume 1; hydrogen being unity.

It is not combustible, but is a supporter of combustion. Arsine and powdered antimony take fire spontaneously when introduced into it; and a taper burns in it, with the evolution of a red light and much smoke. When water is present it destroys vegetable colours, organic odours, and inorganic matters.

By a pressure of 4 atmospheres, at the temperature of 60° F., chlorine is a yellow liquid, having a sp. gr. of 1.33 (water being 1).

Characteristics.—The colour, odour, and bleaching property of chlorine readily distinguish it from other gases. It forms a white, curdy precipitate (chloride of silver) with the nitrate of silver; it precipitates blackens by exposure to light, from the escape of a little chlorine, and the formation of a subchloride of silver; it is insoluble in nitric acid, cold or boiling; readily dissolves in liquid ammonia when heated in a glass tube fuses, and, on cooling, concretes in a grey, semi-transparent mass (horn silver, or luna cornea); and, lastly, when heated with potash, it yields metallic silver, and a chlorate of potassium. An aqueous solution of chlorine dissolves leaf-gold. Soluble chlorides react, as free chlorine, on the solution of nitric silver. They evolve hydrochloric acid (which also reacts on the action of silver) when heated with liquid sulphuric acid. If a warmed solution of a chloride, coloured blue by sulphate of indigo, be permitted to the action of a galvanic battery, the chlorine is evolved.

See Mr. R. Phillips's experiments in the Philosophical Transactions, for 1829.
Wetzel, in Landgrebe's Versuch über das Licht, p. 53, 1834.
anode or positive pole, and destroys the colour of the sulphate of silver in its immediate neighbourhood.

The chlorates when heated evolve oxygen, and are converted into chlorides. When mixed with strong sulphuric acid they become orange-red, and give out chlorous acid. They do not precipitate the salts of potash.

physiological effects. a. on vegetables.—The germination of seeds has been said to be promoted by watering them with a weak solution of chlorine; but the statement is, probably, erroneous.

b. on animals generally.—Nysten injected a small quantity of chlorine gas into the jugular vein of a dog, and the only effect was a rapid dilating of the blood vessels to the extent of becoming maroon. A larger quantity occasioned difficult respiration, apparently great agony, and death in three minutes. The body was cut open four minutes afterwards: the blood was fluid and venous in the auricles and ventricles, which contained neither gas nor coagula. Another occasion he threw this gas into the lungs, and thereby produced inflammation of this membrane, and death. From these experiments, Nysten concludes that it is a local irritant, but has no specific effect on any part of the system.

c. on man.—Chlorine gas acts as a local irritant. Mr. Wallace has ascertained that diluted with air, or aqueous vapour, of 116° F., and applied to the skin, it produces peculiar sensations, similar to those produced by the bite of insects: this effect is accompanied by copious perspiration, and a determination of blood to the skin, sometimes attended with an eruption of minute papules, or even ulcers. Applied to the skin in a pure form, its action is similar, but more energetic.

If an attempt be made to inspire undiluted chlorine gas, it produces spasm of the glottis. If the gas be mixed with air, it enters the bronchial ramifications, causes a sensation of tightness and irritation, and violent cough. Twice I have suffered most severely from the accidental inhalation of it; and each time it gave me the sensation of constriction of the air-tubes, such as might be produced by a spasmodic condition of the muscular fibres of the bronchial tubes. The attack usually goes off in increased secretion from the mucous membrane. When diluted with a large quantity of air, chlorine may be inhaled without exciting cough: it occasions a sensation of warmth in the respiratory passages, and promotes expectoration.

The irritating effects of chlorine are less powerful on those accustomed to inhale it; as I have repeatedly seen in patients who were

*De Candolle, Physiologic Vegetale, t. ii. p. 632.

Wallen, p. 140.

Researches respecting the Medical Powers of Chlorine, particularly in Diseases of the Liver.

4. 1852.
using the gas, and which is also proved by the following statement made by Dr. Christison:—“I have been told (says he), by a chemical manufacturer at Belfast, that his workmen can work with impunity in an atmosphere of chlorine, where he himself cannot remain above a few minutes.”

The constitutional or remote effect caused by inhalations of chlorine, is increased frequency of the pulse and of respiration. This effect may be in part owing to the augmented muscular effort of the patient. Mr. Wallace states, that the application of chlorine to the skin also occasions soreness of the mouth, fauces, and oesophagus, increased vascularity, and even minute ulcerations of these parts, and an alteration in the quantity and quality of the salivary and biliary secretions. He thinks that it has a tranquillising, at the same time exciting, power, with respect to the nervous system; a property which would appear, from the observations of Professor Albers, that the topical action of chlorine is stimulating, yet the remote effect is anti-phylogistic; for it diminished the frequency of the heart, calmed excitement, and produced effects which may be termed anti-phylogistic. Dr. Christison tells us, that at the Belfast manufactory alluded to, the chief consequences of exposure to an atmosphere of chlorine, are acidity and other stomach complaints, and that the men generally correct by taking chalk. Absorption of the gas is an effect observed in the manufactories at Glasgow, Manchester and Belfast.

When applied to the skin or bronchial membrane, chlorine probably becomes absorbed; for Mr. Wallace found that it acquired bleaching properties under its use.

USES. — a. As a fumigating agent, disinfectant, and antiseptic, chlorine, I believe, stands unrivalled. Hallé, in 1785, appears to have been the first person who employed it as a disinfectant; he are greatly indebted to Guyton-Mordeil for the zeal and energy manifested in his attempts to introduce it into use. For destroying miasma of noxious effluvia, and putrid odours, it is the most efficient agent known; and is, therefore, well adapted for disinfecting ships, hospitals, dissecting-rooms, and all other places, which requires purification. The best method of fumigating a building is that adopted by Dr. Faraday, at the General Penitentiary at Milbank. One part of common salt was intimately mixed with one part of the black or binoxide of manganese; then placed in a shallow earthen pan, and two parts of oil of vitriol, previously mixed with two parts by measure of water, poured over it, and the whole stirred with a stick. Chlorine continued to be liberated from this mixture for four days. The quantities of the ingredients used were 700 lbs. of common salt, 700 lbs. of binoxide of manganese, and 1400 lbs. of sulphuric acid. The disinfecting power of

1 Treatise on Poisons, p. 736.
3 An Experimental Essay on the relative Physiological and Medicinal Properties of Its Compounds. By C. Cogswell, A.B., M.D. Edinb. 1837, p. 82.
is supposed to depend on its affinity for hydrogen, by which it effects the decomposition of water or aqueous vapour, with the hydrogen of which it unites, while the nascent oxygen oxidizes the organic matter; or it may act merely by abstracting hydrogen from the putrid miasma. Chlorine fumigations should be plentifully employed on board of ships off the Western coast of Africa, to prevent the deleterious effects of the miasm, which, according to Professor Daniell, is sulphuretted hydrogen.

\[\text{As an antidote in poisoning by hydrocyanic acid, sulphuretted hydrogen, or hydrosulphate of ammonia, chlorine gas is a very valuable agent. I believe, however, that chloride of lime will be found a more convenient, safe, and opportune substance. The beneficial influence of chlorine in the treatment of animals asphyxiated by sulphuretted hydrogen, doubtless arises in part at least from its chemical properties; for when mixed with sulphuretted hydrogen, it forms chloride of sulphur and hydrochloric acid. The best method of applying the remedy is to diffuse a little chlorine in the air, and then to effect artificial respiration.}\]

\[\text{Inhaled in chronic pulmonary diseases it is sometimes a useful remedy. I have carefully watched its effects in phthisis and chronic bronchitis; and the result of my observation is, that chlorine is rarely serviceable. Frequently, after the first and second inhalations, the patients fancy their breathing much relieved, but the amendment is seldom permanent. I need hardly say it has no pretensions to the cure of tubercular phthisis, but it may be useful as a palliative (sometimes diminishing the sweating); and I can readily believe that occasionally in ulceration of the lungs it may be, as Albers\(^{\text{a}}\) declares, of essential service. This would agree with the effects observed in surgical practice, of solutions of chlorine and of the hypochlorites on old ulcers.}\]

\[\text{I have before described the mode of administering the gas.\(^{\text{b}}\)}\]

\[\text{Either the aqueous solution of chlorine, or a small portion of the chloride of lime, may be placed into the inhaling bottle; if the latter be not sufficiently strong, a few drops of muriatic acid are to be added, to develop free chlorine.}\]

\[\text{In diseases of the liver, not attended with active inflammation, Mr. Wallace has successfully employed gaseous chlorine, either in the pure state or diluted with air or aqueous vapour. The benefit of chlorine in these cases has been confirmed by others. The temperature of the bath, and the time the patient ought to remain in it, will vary in different instances; but Mr. Wallace thinks, that, in the greater number, 150° F. will be found to answer best, and the proper time about half an hour. The benefit obtained is in part referrible to the heat employed, in part to the irritant effect of the chlorine on skin, and (according to Mr. Wallace), in part to the specific}\]

\(^{\text{a}}\) See p. 63.—Also Lond. Edinb. and Dub. Philosophical Magazine, for July 1841; and Lond. Med.

\(^{\text{b}}\) See p. 51.
influence of chlorine on the liver. Ziese, an apothecary at Alton, has also employed chlorine baths in these cases with advantage.

Antidotes.—The inhalation of ammoniacal gas, of the vapour of warm water, of the spirit of wine, or of ether, has been recommended to relieve the effects of chlorine. I tried them all when suffering myself, but without the least apparent benefit. In a case related by Kastner, and which is reported in Wibmer's work, sulphuretted hydrogen gave great relief. If this agent be employed, it must be done cautiously, as it is itself a powerful poison.

Aqua Chlorinii, Ph. Duh. Chlorinei Aqua, Ph. Ed. — Solu Chlorinii; Chlorine Water; Aqua Oxymuriatica; Liquor Chlorid Oxymuriatic Acid. — This is readily prepared by passing chlorine gas (prepared as above directed) through water placed in Woulfe's bottle. The gas may be generated in a clean Florence flask, to which a curved tube is adapted by means of a cork. The receiving vessel holding the water, may be, in the absence of a double-necked bottle, a six- or eight-ounce phial; or a wide-mouthed bottle closed by a cork having two perforations, through one of which passes a glass tube open at the top, and dipping into the water beneath; while through the other passes the end of the tube conveying the gas from the flask into the water.

In the Dublin Pharmacopoeia the proportions of ingredients used are, Dii Murirate of Soda, 100 parts; Oxide of Manganese, 30 parts; Sulphuric Acid, 87 parts; Water, 124 parts. The gas is to be gradually evolved from this mixture contained in a retort, and transmitted through 200 parts of Distilled Water.

In the Edinburgh Pharmacopoeia the process is somewhat different. Muri of Soda, 60 grs., and Red Oxide of Lead, 350 grs., are to be triturated together, then put into three times of Water, contained in a bottle with a glass stopper; afterwards the Acid added, and the mixture agitated until all the Red Oxide becomes white. The insoluble matter is to be allowed to subside before using the liquid. In this process, Chlorine and Sulphate of Soda are formed in solution, a White Sulphate of the Proximate of Lead is precipitated. The sodium of the common salt is oxidized by the nascent oxygen evolved by the red lead, in consequence of the action of the sulphuric acid on it. This process has been employed to obviate the necessity of having to pass the gas through water, the apparatus for which operation might not be at hand.

In the Pharmacopoeia Nosocomii Middlesexensis, Lond. 1841, is the following formula for a solution of chlorine:—B. Potassae Chloratis $\frac{3}{3}$. Acidus Hydrochlorici, Aque destillatae, $\frac{2}{3}$, $\frac{3}{3}$, Misce. B. Hydro Solutumis $\frac{2}{3}$, Aque destillatae $\frac{3}{3}$, Misce.—This solution contains besides chlorine, some chlorid potassii.

Properties.—At the temperature of 60° F. and when the mercury in the barometer is standing at 30 inches, water takes in about twice its bulk of chlorine gas (Gay-Lussac). The solution has a greenish yellow colour, the strong and peculiar odour of the gas, and an astringent taste. Its sp. gr. is 1·003. It bleaches vegetable colours—as tincture of litmus, turmeric, &c. By exposure to light, the water is decomposed, the oxygen is evolved, while the hydrogen unites with the chlorine to form muriatic acid. Hence the

For a sketch of the apparatus used, see Lnnedul, vol. i. 6a 1531-32, p. 339.

solution should be kept in bottles excluded from the light. Prepared according to the Edinburgh Pharmacopoeia, the liquid holds in solution a little sulphate of soda, and deposits a white insoluble sulphate of lead.

Characteristics.—Its odour, its action on a solution of nitrate of silver (as before described for chlorine gas), its power of dissolving leaf-gold, and its bleaching properties, readily distinguish this solution. It destroys the blue colour of iodide of starch and of sulphate of indigo. A piece of silver plunged into it is immediately blackened.

Physiological Effects.—In a concentrated form, the aqueous solution of chlorine acts as a corrosive poison. Somewhat diluted it ceases to be a caustic, but is a powerful local irritant. Administered in proper doses, and sufficiently diluted, it operates as a tonic and stimulant. The continued use of it causes salivation. Applied to dead organic matter it operates as an antiseptic and disinfectant.

Uses.—Chlorine water has been employed in medicine both as an external and internal remedy.

α. Externally.—It has been used, in the concentrated form, as a caustic application to wounds caused by rabid animals; diluted, it has been employed as a wash in skin diseases (itch and porrigio); as a gargle in putrid sore-throat; as a local bath in liver diseases; and as an application to cancerous and other ulcers attended with a fetid discharge. In the latter cases I have repeatedly employed it with advantage, though I give the preference to a solution of the chloride [hypochlorite] of soda.

β. Internally.—It has been administered in those diseases denominated putrid; for example, in the worst forms of typhus, in scarlet fever, and in malignant sore throat. It has also been employed in venereal maladies, and in diseases of the liver.

Dose.—The dose of this solution varies with the degree of concentration. I have frequently allowed patients to drink, ad libitum, water, to which some of this solution has been added. If made according to the directions of the Dublin Pharmacopoeia, the dose is from one to two drachms, properly diluted.

Antidotes.—According to Devergie*, the antidote for poisoning by a solution of chlorine is albumen. The white of egg, mixed with water or milk (the caseum of which is as effective as the albumen of the egg), is to be given in large quantities. The compound, which albumen forms with chlorine, has little or no action on the animal economy, and may be readily expelled from the stomach. In the absence of eggs or milk, flour might be exhibited; or, if this cannot be procured, magnesia or chalk. The gastro-enteritic symptoms are, of course, to be combated in the usual way.

Compounds of Chlorine and Oxygen.

None of these are used in medicine. The concentrated aqueous solutions of all of them are oxidizing agents, and act on the organic tissues as caustics.

Their remote effects are probably similar to the acids generally and chlorine. Hypochlorous (Cl. + O) and Chlorous (Cl. + 4 O) Acids are bleaching agents: to the first, the substances called Chloride of Lime and Chloride of Soda owe their disinfecting properties. Chloric Acid (Cl. + 5 O) has great analogy with nitric acid; combined with potash it constitutes Chlorate of Potash. Perchloric Acid (Cl. + 7 O) is an excellent test for potash.

Order III.—Iodine, and its combinations with oxygen and chlorine.

Iodin'tum, L. D.—Iodine.

(Iodinum, E.)

General History.—Iodine was discovered in 1811 by M. Courtois, a saltpetre manufacturer at Paris. It was first described by Clemen in 1818, but was afterwards more fully investigated by Davy and Gay-Lussac. It was named iodine, from *iōdēν*, *violet-coloured*; on account of the colour of its vapour.

Natural History.—It exists in both kingdoms of nature.

a. In the inorganised kingdom.—Vuquelin met with iodide of silver in a mineral brought from Mexico, and Mentzel found iodine in an ore of zinc which contained cadmium. It has also been met with in an ore of lead†. It is said to have been found in coals*. In sea-water it has likewise been discovered, where it probably exists as an iodide of sodium or of magnesium. Many mineral waters contain it. It was detected by Mr. Copeland* in the carbonated chalybeate of Bonnington. About one grain of iodine was found by Dr. Daubeney* in ten gallons of the water of Robin's Well at Leamington, in Warwickshire. In the old well at Cheltenham the quantity was not more than one grain in sixty gallons. In a brine-spring at Nantwich, in Cheshire, there was about a grain of iodine in twelve gallons. In the sulphuric water of Castel Nuovo d'Asti, iodine was discovered by Cantu. In some of the mineral waters of Germany, Bavaria, and South America, it has also been detected*. Facts found it in the rock-salt of the Tyrol‡.

b. In the organised kingdom.—Of Animals containing iodine I may mention the genera *Spongia*, *Gorgonia*, *Doris*, *Venus*, &c.: likewise *Sepia*, the envelope of the eggs of which contain it. An insect has been found near Ascoli in Italy, which Savi has described under the name of *Julius fredericissimus*, containing iodine. The animal emits, when disturbed, a yellow fluid strongly smelling of iodine, and which immediately strikes the characteristic violet colour with starch*. Recently iodine has been detected in the oil of the cod's liver*. A very considerable number of Vegetables, particularly those belonging to the family Alge, yield it. The following are some instances: *Fucus vesiculosus*,

1 Since the publication of the first edition of this work, I have met with S. E. Sarphati's *Conspectus de Indio*, Lugdun., 1838, which contains the most extensive list of natural bodies containing iodine, of any work with which I am acquainted.

2 *Journ. de Pharmacie*, tom. xxiii. for 1837, p. 29.

3 *Leeds, and Rother Philosoph. Mag. for Nov. 1839.*

4 *Edinburgh New Philosophical Journal*, vol. i. p. 159.

7 Gmelin, *Handbuch der Chemie*, Bd. i. S. 330.

8 *Duck, Die Preussische Pharmakopoeie*, Bd. i. S. 383. Leipzig, 1829; and *British and Foreign Medical Review for January*, 1838, p. 163.

Iodine.

Laminaria digitata (fig. 47, d); Halidrys siliquosa; Chorda Filum; Gelidium cartilagineum; fucus vesiculosus; Fucus serratus; Laminaria digitata.

Fig. 47.

a. Fucus vesiculosus.

b. F. nodosus.

c. F. serratus.

d. Laminaria digitata.

Porphyra umbilicalis; Padina pavonia; Gigartinia Helminthocorton, and some of the marine Conferae.

"The following table, drawn up by Mr. Whitelaw, a manufacturer in Glasgow, from his own experiments, shows the proportion of iodine contained in some of the most common Algae on our sea coasts:—

<table>
<thead>
<tr>
<th>Iodine</th>
<th>Ratios of Iodine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminaria digitata</td>
<td>100</td>
</tr>
<tr>
<td>Laminaria bulbosa</td>
<td>65</td>
</tr>
<tr>
<td>Laminaria saccharina</td>
<td>35</td>
</tr>
<tr>
<td>Fucus serratus</td>
<td>20</td>
</tr>
<tr>
<td>Fucus bulbosus</td>
<td>15</td>
</tr>
</tbody>
</table>

The quantities of chloride of potassium in those Algae follow nearly the same ratio. Professor Graham states that, according to Mr. Whitelaw, the long elastic stems of the Rhodomenia palmata afford most of the iodine contained in alp. It has been found in several species of phanogamous plants, as Zostera marina, and, more recently, in two growing in Mexico; namely, a species of riga, and one of Salzola."

Preparation.—British Iodine is exclusively manufactured at Glasgow, from the Kelp of the west coast of Ireland and the western sands of Scotland.

The kelp is broken into pieces and lixiviated in water, to which it yields about half its weight of salts. The solution is concentrated by evaporation, and thereby deposits soda salts (common salt, carbonate and sulphate of soda), and on cooling also lets fall crystals of chloride of potassium. The mother liquor (called iodine ley) is dense, dark-coloured, and contains the iodine, in the form, it is believed, of iodide of sodium. Sulphuric acid is added, to render the liquor sour, by which carbonic acid, sulphuretted hydrogen, and sulphurous acid gases are evolved, and sulphur is deposited. The workmen set fire to the sulphuretted hydrogen as it escapes, to

* Journal de Pharmacie, t. xxii. p. 31.
obviate its bad effects. The acid ley is then introduced into
still (fig. 48, a), and heated to 140° F., when binoxide of manganese is added. A leaden head having two stoppers (b & c), is then
and luted with pipeclay, and the neck of the head is fitted a
spherical glass condenser (made of two mouths opposite
each other, and inserted the one into the other. Iodine is evolved, and
lected in the condensers. The process is watched by occasion
moving the stopper c, and a part of sulphuric acid or mangam
made by b, if deemed necessary.

THEORY OF THE PROCESS

The following is the mutual reaction of sulphuric acid, binoxide of
manganese, and iodide of sodium:—two equivalents or 80 parts of
sulphuric acid, react on one equivalent or 44 parts of binoxide of
manganese, and on one equivalent or 150 parts of iodide of sodium
and yield one equivalent or 126 parts of iodine, one equivalent
parts of sulphate of soda, and one equivalent or 76 parts of
phosphate of the protoxide of manganese.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Iodide of Sodium</td>
<td>130</td>
<td>1 eq. Iodine... 126</td>
</tr>
<tr>
<td>1 eq. Binoxide Manganese</td>
<td>44</td>
<td>1 eq. Sodium... 24</td>
</tr>
<tr>
<td>2 eq. Sulphuric Acid</td>
<td>80</td>
<td>1 eq. Oxygen... 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 eq. Protox. Mang. 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 eq. Sulphuric Acid 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 eq. Sulphuric Acid 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 eq. Protox. Mang. 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 eq. Sulphate 274</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 eq. Protox. Mang. 36</td>
</tr>
</tbody>
</table>

The evolution of iodine in the preceding process may be also accounted
another way. By the mutual reaction of sulphuric acid, binoxide of manganese and a chloride (as of sodium or potassium), there is set free chloride gas, reating on iodide of sodium, would liberate iodine, and form chlori.

Or, the hydriodic acid set free from a solution of iodide of sodium by aqueous sodium hydroxide, may be decomposed by the nascent chlorine.

PROPERTIES.—Iodine is a crystallizable solid, its primary form being a rhombic octahedron*. It is usually met with in minute, friable scales, having a greyish black colour, a metallic lustre, an acid hot taste, and a disagreeable odour somewhat similar to that of chlorine. It fuses at about 225° F., and at 347° is volatile; though the vapour rises along with that of water at 212°.

* For further details, consult Graham's Elements of Chemistry, vol. i. p. 384.—S. Thomson, in the Athenaeum, for 1846, p. 772.
* Buchner's Repertorium für die Pharmacie, 2do Beiter, Band. xx. S. 43. Nürnberg, 18
iodine is of a beautiful violet colour, and a great specific gravity; namely, 8.716, according to Dumas. Iodine requires 7000 times its weight of water to dissolve it, but alcohol and ether are much better solvents for it. Its atomic weight is about 126 [126.57, Berzelius; 126.3, Turner]; its atomic volume is 1.

Characteristics.—In the free state iodine is distinguished from most other bodies by the violet colour of its vapour, and by its forming blue compound (iodide of starch) with starch. So delicate is this test, that, according to Stromeyer, water which does not contain more than one four-hundred-and-fifty thousandth of its weight of iodine, acquires a perceptibly blue tinge on the addition of starch. This blue colour is destroyed by heat, and, therefore, in testing for iodine the liquids employed should be cold; an excess of alkali also destroys it. Forming two salts, an iodate and an iodide, but by supersaturating the acid the colour is restored.

Iodine as well as the mineral acids (sulphuric, nitric, and hydrochloric) produce a blue colour with narcotin (see Opium).

When iodine is in combination with oxygen, starch will not recognise it. For example, if a little starch be added to a solution of iodic acid, no change of colour is observed; but if some deoxidizing substance be now employed (such as sulphurous acid or morphia) the blue colour is immediately produced. The dates give out oxygen when heated, and are converted into iodides. They dehydrate when thrown on red-hot coals. The soluble iodates produce, with a solution of the nitrate of silver, a white precipitate (iodate of silver) soluble in ammonia. If the iodine be combined with a base (as with potassium, or sodium) forming an iodide, chlorine or sulphuric or nitric acid must be employed to unite with the base; and the iodine being then set free, will react on the starch. This is the mode of proceeding to detect iodine in the urine of a patient; or the mere addition of starch will not suffice. Nitric or sulphuric acid or chlorine must be employed to remove the base with which the iodine is combined. Excess of chlorine will unite with the disengaged iodine.

The soluble iodides produce, with a solution of nitrate of silver, a yellowish precipitate (iodide of silver) very slightly soluble only in ammonia. They precipitate the salts of lead yellow (iodide of lead), and bichloride of mercury azet (biniiodide of mercury).

Adulteration.—The iodine of commerce is always adulterated with variable proportions of water. An ounce, if very moist, may contain a drachm, or perhaps even a drachm and a half, of water. This fraud is detected by compressing the iodine between folds of blotting-paper. In this moist state it is “unfit for making pharmaceutical preparations of fixed and uniform strength,” and the Edinburgh College gives the following directions for purifying it:—

> “It must be dried by being placed in a shallow basin of earthenware in a small confined space of air, with ten or twelve times its weight of fresh-burnt lime, till it scarcely adheres to the inside of a dry bottle.”

Various other substances, such as coal, plumbago, binoxide of manganese, sand, and charcoal, are also said to have been employed for the purpose of adulterating iodine; but in no samples of iodine which I have examined, have I ever found any of these substances. Pure iodine is completely soluble in alcohol, and evaporates, when heated, without leaving any residuum. Any matter insoluble in al-
coehol, or even vaporizable by heat, is an adulteration. The Edinburgh College gives the following criteria of its goodness:

“Entirely vaporizable: thirty-nine grains, with nine grains of quicklime, three ounces of water, when heated short of ebullition, slowly form a per solution, which is yellowish or brownish, if the iodine be pure, but colours there be above two per cent. of water or other impurity.”

Physiological Effects. a. On Vegetables.—Cantu states the seeds placed in pure sand and moistened with a solution of iodine germinate more readily than seeds sown in the usual way. Voss, however, asserts that iodine, so far from promoting, actually checks or stops germination.

β. On Animals generically.—On horses, dogs, and rabbits, it operates as an irritant and caustic poison, though not of a very energetic kind. Magendie threw a drachm of the tincture of iodine into the veins of a dog without causing any obvious effects. Dr. Cogswell has repeated this experiment: the animal was slightly affected only. The last mentioned writer found that two drachms of the tincture caused death. But something must be ascribed to the alcohol employed. Orfila applied 72 grains of solid iodine to a wound on the back of a dog: local inflammation, but no other inconvenience, resulted. One or two drachms administered by the stomach caused vomiting, and when this was prevented by tying the esophagus, ulceration of the alimentary canal and death took place. Mr. D. gave iodine, in very large doses, to a horse for three weeks, but the only symptom which could be referred to its influence was an usual disregard for water. The average daily allowance was 1 drachm, administered in quantities ascending from a drachm up to two ounces. Dr. Cogswell gave 73 grains of iodine to a dog in three days. Five days after the cessation of the iodine the dog was killed; the urine contained a highly appreciable quantity of iodine and a trace, and but a trace, of iodine was found in the blood, brain, and stomach.

γ. On Man.—The local action of iodine is that of an irritant. Applied to the skin it stains the cuticle orange-yellow, causes itching, redness, and desquamation. If the vapour of it, mixed with air, is inhaled, it excites cough and heat in the air-passages. On a secret surface its alcohonic solution acts as a desiccant. Swallowed in large doses it irritates the stomach, as will be presently mentioned.

The effects produced by the internal administration of iodine are those of a liquefacient and resolvent. They may be considered under the two heads, of those arising from the use of small,—those produced by large doses.

De Candolle, Physiologie Vegetale, tom. 3me, p. 1327.
1 Formulaire.
2 Experimental Essay on Iodine, p. 31, 1837.
3 TissicologieGenerale.
6 See p. 194.
In small, medicinal doses, we sometimes obtain the palliation, and the removal of disease, without any perceptible alteration in functions of the body. Thus, in a case of chronic mammary

which fell under my observation, iodine was taken daily for

months, without giving rise to any perceptible functional

change, except that the patient was unusually thin during this

period. Sometimes it increases the appetite, an effect noticed both

by Jörg and by Lugol, from which circumstance it has been

attributed a tonic. But the long-continued use of it, in large

has, occasionally, brought on a slow or chronic kind of gastro-

itis; an effect which, I believe, to be rare, and only met with

the remedy has been incautiously administered.

Irritable subjects, and those disposed to dyspepsia, it occasions

sickness, heat of stomach, and loss of appetite, especially

its use has been continued for some days: the bowels are often-

slightly relaxed, or at least they are not unusually constipated.

than one-third of the patients treated by Lugol experienced a

diuretic effect; and when the dejections were numerous, colics

pretty frequent. Gendrin and Manson, however, observed

an expectorating effect from the use of iodine.

The action of iodine on the organs of secretion is, for the most

part, that of a stimulant; that is, the quantity of fluid secreted is

increased, though this effect is not constantly observed. Jörg's

friends, found, in their experiments on themselves, that small

of iodine increased the secretion of nasal mucus, of saliva, and

urine, and they inferred that the similar effect was produced on

the gastric, pancreatic, and biliary secretions. "Iodine," says Lugol,

powerful diuretic. All the patients using it have informed me that

they pass urine copiously." Cointet, however, expressly says that it

not increase the quantity of urine. In some cases, in which I care-

watched its results, I did not find any diuretic effect. Iodine fre-

pently acts as an emmenagogue. Cointet, Sablaires, Brera, Ma-

cre, and many others, agree on this point; but Dr. Manson does

believe that it possesses any emmenagogue powers, further than

stimulant and tonic to the whole body. In one patient it

ioned so much sickness and disorder of stomach, that the

urinary discharge was suppressed altogether. On several occasions

has caused salivation and soreness of mouth. In the cases

treated by Lugol, the patients were males. In the Medical Gazette,

1836, two instances are mentioned, one by Mr. Winslow (p. 480),

other by Dr. Ely (p. 480). Other cases are referred to

2 Essays, translated by Dr. O'Shaughnessy.

4 Dict. de Mat. Méd. t. 3me, p. 629.

5 Medical Researches on Iodine.

6 Material zu einer Arzneimittel. Leipzig, 1824.

7 Essays, p. 19.

8 Journ. générale de Méd. tom. 27.

9 Quoted by Bayle in his Bibliothèque de Thérapeutique, tom. 1, p. 129.

0 Formulaire.

1 Medical Researches on the Effects of Iodine. London, 1825.
in Dr. Cogswell’s work. This effect, however, I believe to be De Carro (quoted by Bayle *) denies that iodine causes salivation; says it augments expectoration. Lastly, diaphoresis is some promoted by iodine.

Two most remarkable effects which have been produced by it are, absorption of the mammae and wasting of the testicles. One of these (absorption of the mammae), three cases are reported in Hufeland's Journal, one of which may be here mentioned. A healthy girl, twenty years of age, took the tincture of iodine during a period of six months, for a bronchocele, of which she became cured; but the breasts were observed to diminish in size, and notwithstanding she ceased to take the remedy, the wasting continued, so that at the end of two years not a vestige of the mammae remained.

Sometimes the breasts waste, though the bronchocele is undiminished. Reichenaü * relates the case of a female, aged twenty-six, whose breasts began to sink after she had employed iodine for four months, and within four weeks they almost wholly disappeared; yet the goitre remained unaffected. With regard to the other effect (wasting of the testicle) I suspect it to be very rare. I have seen it administered in some hundreds of cases, and never met with one in which atrophy either of the breast or testicle occurred. Magner also never saw these effects, though they are frequent in Switzerland.

A disordered condition of the cerebro-spinal system has in some instances been caused by iodine. Thus, slight headache and paresis are not unfrequently brought on. Lugol tells us that, by the use of ioduretted baths, headache, drowsiness, intoxication, and stupor, are produced. Analogous symptoms were observed in one of Dr. Manson’s cases; and in one there were convulsive movements.

A specific effect on the skin is sometimes produced by it in besides the diaphoresis before alluded to. Thus Dr. C. Vogel * gives an account of a lady, twenty-eight years of age, of a yellow complexion, who, from the internal employment of the tincture of iodine, became suddenly brown, besides suffering with other morbid symptoms. After some days the skin had the appearance of having been smoked! Mr. Stedman * says that in some scrofulous patients it improves the condition of the hair and scalp. Red hair is said to have assumed a chestnut-brown colour under the long-continued external use of iodine b.

The rapid emaciation said to have been occasionally produced by iodine, as well as the beneficial influence of this substance in consumptive diseases, and the disappearance of visceral and gland enlargements under its use, have given rise to an opinion that it stimulates the lymphatic vessels and glands c. Manson, how

* Bayle, op. cit. p. 162.
* Rust, Magasin, Bd. 11, p. 156.
* Clausel, Revue Médicale, Nov. 1834, p. 50.
* See p. 196.
that it exerts no peculiar or specific influence over the ab-
system, which only participates in the general effects produced
whole body. And Lugol asserts, that instead of produc-
ion, it encourages growth and increase of size.

There can be no doubt that the continued use of iodine must have
fect over the general nutrition of the body, and by modifying
ons previously performed by the various organs and systems,
at one time cause the embonpoint described by Lugol, and at
ay have the reverse effect: in one case it may promote the
of the absorbents, and occasion the removal of tumours of
able size, in another check ulceration (a process which
y, in the 19th vol. of the Medico-Chirurgical Transactions,
be one of absorption, but considers to be one of degenera-
organization) and cause the healing of ulcers.

have ascribed to iodine an aphrodisiac operation. Kolley
arian at Breslau, who took it for a bronchocele, says it had the
effect on him.

me instances, the continued use of iodine has given rise to a
red state of system, which has been designated iodism. The
ms (termed by Dr. Coindet, iodic) are violent vomiting and
, with fever; great thirst; palpitation; rapid and extreme
; cramps, and small and frequent pulse, occasionally with
; and terminating in death. This condition, however, must
be rare occurrence; for it is now hardly ever met with, not-
ning the frequency and the freedom with which iodine is
ed. But it has been noticed by Coindet, Gardner, Zink, and others. The daily experience of almost every practitioner
that the dangers resulting from the use of iodine have been
aggerated, and we can hardly help suspecting that many
ns, which have been ascribed to the injurious operation of this
ought to have been referred to other causes; occasionally,
they depended on gastro-enteritis. In some cases, the re-
ct activity of iodine may have arisen from some idiosyncrasy
part of the patient. Dr. Coindet attributes the iodic symptoms
uration of the system with iodine—an explanation, to a cer-
et, borne out by the results of an experiment made by Dr.
, and which I have before mentioned: I allude, now, to the
ion of iodine in the tissues of an animal five days after he had
aking this substance.

In very large doses iodine has acted as an irritant poison. In
stance, recorded by Zink, the symptoms were restlessness,
heat, palpitations, very frequent pulse, violent priapism, co-
arræa, excessive thirst, trembling, emaciation, and occasional
. The patient died after six weeks' illness. On another
occasion, this physician had the opportunity of examining the body after death. In some parts the bowels were highly inflamed; in others they exhibited an approach to sphacelation. The liver was very large, and of a pale rose colour.

Such cases, however, are very rare. In many instances, which might be referred to, enormous quantities of iodine have been taken with very slight effects only, or perhaps with no marks of gastric irritation. Thus, Dr. Kennedy¹ of Glasgow, exhibited within eighty days, 953 grains of iodine in the form of tincture: the daily dose was at first two grains, but ultimately amounted to eighteen grains. The health of the girl appeared to be unaffected by it. It should here be mentioned, that the presence of bread, potatoes, sago, arrow-root, tapioca, or other amylaceous matters, in the stomach, will much diminish the local action of iodine, by forming an iodide of starch, which, as will hereafter be mentioned, is a very mild preparation.²

Modus Operandi.—That iodine becomes absorbed, when employed either externally or internally, we have indisputable evidence, by its detection, not only in the blood, but in the secretions. Cantor¹ has discovered it in the urine, sweat, saliva, milk, and blood. In all cases it is found in the state of iodide, or hydriodate; from which circumstance he concludes that its influence on the body is chemical, and consists in the abstraction of hydrogen. Bennerscheidt³ examined the serum of the blood of a patient who had employed for some time iodine ointment; but he could not detect any trace of iodine in it. In the crassamentum, however, he obtained evidence of its existence, by the blue tint communicated to starch. It may be readily detected in the urine of patients who have been using iodine, by adding a cold solution of starch and a few drops of nitric acid, when the blue iodide of starch is produced.

Uses.—As a remedial agent iodine is principally valuable for its resolvent influence in chronic visceral and glandular enlargements, indurations, thickening of membranes (as of the periosteum), and in tumours. In comparing its therapeutical power with that of mercury, we observe in the first place that it is not adapted for febrile and acute inflammatory complaints, in several of which mercury proves a most valuable agent. Indeed the existence of inflammatory fever is a contraindication for the employment of iodine. Secondly, iodine is especially adapted for scrofulous,—mercury for syphilitic, maladies; and it is well known that in the former class of diseases, mercurials are for the most part injurious. Thirdly, the influence of iodine over the secreting organs is much less constant and powerful than that of mercury;—so that in retention or suppression of the secretions, mercury is for the most part greatly superior to iodine. Fourthly, iodine evinces a specific influence over the diseases of certain organs (e. g. the thyroid body), which mercury does not.—These

¹ Dr. Cogswell’s Essay.
² See the experiments of Dr. Buchanan, presently to be noticed.
³ *Journ. de Chimie Méd.*
⁴ *Bull. tom. iv. p. 329.*
are some only of the peculiarities which distinguish the therapeutical action of iodine from that of mercury.

1. In bronchocele.—Of all the remedies yet proposed for bronchocele, this has been by far the most successful. Indeed, judging only from the numerous cases cured by it, and which have been published, we should almost infer that it was a sovereign remedy. However, of those who have written on the use of iodine in this complaint, some only have published a numerical list of their successful and unsuccessful cases. Bayle* has given a summary of those published by Coster, Imenger, Baup, and Manson, from which it appears, that of 364 cases treated by iodine, 274 were cured. Dr. Copland⁰ observes that, of several cases of the disease which have come before him since the introduction of this remedy into practice, “there has not been one which has not either been cured or remarkably relieved by it.” I much regret, however, that my own experience does not accord with this statement. I have several times seen iodine, given in conjunction with iodide of potassium, fail in curing bronchocele; and I know others whose experience has been similar. Dr. Bardsley⁴ cured only nine, and relieved six, out of thirty cases, with iodide of potassium. To what circumstance, then, ought we to attribute this variable result? Dr. Copland thinks that, where it fails, it has been given “in too large and irritating doses, or in an improper form; and without due attention having been paid to certain morbid and constitutional relations of the disease during the treatment.”

But, in two or three of the instances before mentioned, I believe the failure did not arise from any of the circumstances alluded to by Dr. Copland, and I am disposed to refer it to some peculiar condition of the tumour, or of the constitution. When we consider that the terms bronchocele, goitre, and Derbyshire neck, are applied to very different conditions of the thyroid gland, and that the causes which produce them are involved in great obscurity, and may, therefore, be, and indeed probably are, as diversified as the conditions they give rise to, we can easily imagine, that while iodine is serviceable in some, it may be useless, or even injurious, in others. Sometimes the bronchocele consists in hypertrophy of the substance of the thyroid gland,—that is, this organ is enlarged, but has a healthy structure. In others, the tumefaction of the gland has taken place suddenly, and may even disappear as suddenly; from which it has been inferred, that the enlargement depends on an accumulation of blood in the vessels, and an effusion of serum into its tissue. Coindet mentions a goitre which was developed excessively during the first pregnancy of a young female: twelve hours after her accouchement it had entirely disappeared. The same author also relates the circumstance of a regiment composed of young recruits, who were almost every man attacked with considerable enlargement of the thyroid gland, shortly after their arrival at Geneva, where they all

* Bibliothèque de Thérapeutique, tom. 1", p. 309.
⁰ Dict. of Pract. Med.
⁴ Hospital Facts and Observations, p. 121.
drank water out of the same pump. On their quarters being changed
the gland soon regained its natural size in every instance. A third
class of bronchoceles consists in an enlargement of the thyroid gland
from the development of certain fluid or solid substances in its inte-
rior, and which may be contained in cells, or be infiltrated through
its substance. These accidental productions may be serous, honey-
like, gelatinous, fibrous, cartilaginous, or osseous. Lastly, at time
the enlarged gland has acquired a scirrhous condition. Now it is
impossible that all these different conditions can be cured with equal
facility by iodine; those having solid deposits are, of course, not
difficult to get rid of.

Kolley, who was himself cured of a large goitre of ten years' stand-
ing, says, that for the iodine to be useful, the bronchocele should no
be of too long standing, nor painful to the touch; the swelling con-
tinue to the thyroid gland, and not of a scirrhous or carcinomatous na-
nor containing any stony or other analogous concretions; and that
the general health be not disordered by any febrile or inflammatory
symptoms, or any gastric, hepatic, or intestinal irritation. If the
swelling be tender to the touch, and have other marks of inflamma-
tion, let the usual local antiphlogistic measures precede the employ-
ment of iodine. When this agent is employed we may administer it
both externally and internally. The most effectual method of em-
ploying iodine externally is that called endermic, already described,
namely to apply an ioduretted ointment (usually containing iodide
of potassium) to the cutis vera, the epidermis being previously re-
moved by a blister. But the epidermic, or introtropic method, is
more usually followed—that is, the ioduretted ointment is rubbed
into the affected part, without the epidermis being previously re-
moved, or the undiluted tincture is repeatedly applied to the part
by a camel's-hair pencil, while iodine is at the same time admi-
nistered internally.

With respect to the internal use of this substance, some think that
the success depends on the use of small doses largely diluted; while
others consider that as large a quantity of the remedy should be
administered as the stomach and general system can bear.

β. Scrofula is another disease for which iodine has been exten-
sively used. Dr. Coindet was, I believe, the first to direct public
attention to this remedy in the disease in question. Subsequently
Baup, Ginelle, Kolley, Sablairoles, Benaben, Callaway, and others
published cases illustrative of its beneficial effects. Dr. Manson
deserves the credit of having first tried it on an extensive scale. He
in treated upwards of eighty cases of scrofula and scrofulous ophthal-
ma by the internal exhibition of iodine, sometimes combined with its ex-
ternal employment; and in a large proportion of cases, where the use
of the medicine was persevered in, the disease was either cured or
ameliorated, the general health being also improved. Three

* See Bayle's Bibliothèque de Thérap. torn. i.
Iodine has been eminently successful when employed as a
agent in chronic diseases of various organs, especially those ac-
tied with induration and enlargement. By some inexplicable
cause, it sometimes not only puts a stop to the further progress of
some other cause, I know not, but most practitioners will, I
admit, that they cannot obtain, by the use of iodine, the same
results which Lugol is said to have met with, though the
cases this agent has been found a most useful

Iodine.

on the effects of iodine in scrofula have been subsequently
renewed by Lugol, physician to the Hospital St.-Louis, serving to
the opinions already entertained of its efficacy. From the
moir it appears, that in seventeen months—namely, from
1827, to December 1828—109 scrofulous patients were
by iodine only; and that of these 36 were completely cured,
relieved; in 4 cases the treatment was ineffectual, and 39 cases
under treatment at the time of the report made by Serres,
lie, and Dumery, to the Académie Royale des Sciences. In
trative cases we find glandular swellings, scrofulous ophthal-
oses, ulcers, and diseases of the bones, were beneficially
by it. Lugol employs iodine internally and externally: for
administration, he prefers iodine dissolved in water by means
of potassium, given either in the form of drops, or largely
under the form of what he calls ioduretted mineral water,
or to be described. His external treatment is of two kinds;
the purpose of obtaining local effects only, the other for pro-
stitutional or general effects. His local external treatment
is, in employing ointments or solutions of iodine: the ointments
are either with iodine and iodide of potassium, or with the
ide of mercury; the solutions are of iodine and iodide of
am in water; and according to their strength are denominated
rubefacient, or stimulant: the rubefacient solution is em-
in making cataplasms and local baths. His external general
ment consists in the employment of ioduretted baths. In the
nt of cutaneous scrofula I have seen the most beneficial
from the application of the tincture of iodine by means of a
hair pencil. It dries up the discharge and promotes cica-

successful results obtained by Lugol in the treatment of this
cannot, I think, in many instances, be referred to iodine
Many of the patients were kept several months (some as
a year) under treatment in the hospital, where every atten-
s paid to the improvement of their general health by warm-
g, good diet, the use of vapour and sulphureous baths, &c.;
which of themselves are sufficient to ameliorate, if not cure,
the scrofulous conditions before alluded to. Whether it be
absence of these supplementary means of diet and regimen,
the number of cases this agent has been found a most useful
controlling and modifying influence over the blood-vessels of the affected part, and is in the true sense of the word an *alterative*.

In chronic inflammation, induration, and enlargement of the liver, after antiphlogistic measures have been adopted, the two most important and probable means of relief are iodine and mercury, which may be used either separately or conjointly. If the disease admit of a cure, these are the agents most likely to effect it. Iodine, indeed, has been supposed to possess some specific power of influencing the liver, not only from its efficacy in alleviating or curing certain diseases of this organ, but also from the effects of an over-dose. In one case, pain and induration of the liver were brought on; and in another, which terminated fatally, this organ was found to be enlarged, and of a pale rose colour.

Several cases of enlarged *spleens* relieved, or cured, by iodine have been published.

In chronic diseases of the *uterus*, accompanied with induration and enlargement, iodine has been most successfully employed. In 1828, a remarkable instance was published by Dr. Thetford. The uterus was of osseous hardness, and of so considerable a size as nearly to fill the whole of the pelvis; yet in six weeks the disease had given way to the use of iodine, and the catamenia were restored. In the *Guy’s Hospital Reports*, No. I. 1836, is an account, by Dr. Ashwell, of seven cases of “hard tumours” of the uterus successfully treated by the use of iodine, in conjunction with occasional depletion, and regulated and mild diet. Besides the internal use of iodine, this substance was employed in the form of ointment (composed of iodine gr. xv. iodide potassium Ψj. spermaceti oint. Siss.), of which a portion (about the size of a nutmeg) was introduced into the vagina, and rubbed into the affected cervix for ten or twelve minutes every night. It may be applied by the finger, or by a camel’s-hair pencil, or sponge mounted on a slender piece of cane. The average time in which resolution of the induration is accomplished varies, according to Dr. Ashwell, from eight to sixteen weeks. “In hard tumours of the walls or cavity of the uterus, resolution, or disappearance, is scarcely to be expected; but “hard tumours of the cervix, and indurated puckering of the edges of the os (conditions which most frequently terminate in ulceration) may be melted down and cured by the iodine.”

In *ovarian* tumours iodine has been found serviceable. In the *chronic mammary tumour*, described by Sir A. Cooper, I have seen it give great relief—alleviating pain, and keeping the disease in check. In *indurated enlargements of the parotid, prostate, and lymphatic glands*, several successful cases of its use have been published.

As an *emmenagogue* iodine has been recommended by Coindet, Brera, Sablairoles, Magendie, and others. The last-mentioned writer

* See some remarks on the operation of resolvents at p. 196.
* Christian, Treatise on *Poisons*, pp. 180-1.
* Trans. of the King and Queen’s College of Phys. Ireland, vol. v.
* For some remarks, by Sir B. Brodie, on the use of iodine in morbid growths, see Dr. Seymour’s *Illustrations of some of the Principal Diseases of the Ovaria*. Lond. 1830.—Also, *London Medical Gazette*, vol. v. p. 799.
tells us that on one occasion he gave it to a young lady, whose propriety of conduct he had no reason to doubt, and that she miscarried after using it for three weeks. I have known it given for a bronchocole during pregnancy without having the least obvious influence over the uterus.

1. In gonorrhoea and leucorrhoea it has been employed with success after the inflammatory symptoms have subsided.

2. Inhalation of iodine vapour has been used in phthisis and chronic bronchitis. In the first of these diseases it has been recommended by Berton, Sir James Murray, and Sir Charles Scudamore. I have repeatedly tried it in this as well as in other chronic pulmonary complaints, but never with the least benefit. The apparatus for inhaling it has been already described (see p. 152). The liquid employed is a solution of ioduretted iodide of potassium, to which Sir C. Scudamore adds the tincture of conium.

3. Chronic diseases of the nervous system, such as paralysis and chorea, have been successfully treated by iodine, by Dr. Manson.

4. In some forms of the venereal disease, iodine has been found a most serviceable remedy. Thus Richond (quoted by Bayle?) employed it, after the usual antiphlogistic measures, to remove buboes. De Salle cured chronic venereal affections of the testicles with it. Mr. Mayo has pointed out its efficacy in certain disorders which are the consequences of syphilis, such as emaciation of the frame, with ulcers of the skin; ulcerated throat; and inflammation of the bones or periosteum,—occurring in patients to whom mercury has been given.

5. In checking or controlling the ulcerative process, iodine is, according to Mr. Key, one of the most powerful remedies we possess. The most active phagedenic ulcers, that threaten the destruction of parts, are often found to yield in a surprising manner to the influence of this medicine, and to put on a healthy granulating appearance.”

6. Besides the diseases already mentioned, there are many others in which iodine has been used with considerable advantage: for example,—chronic skin diseases, as lepra, psoriasis, &c. ;—dropsies; in old non-united fractures, to promote the deposition of ossific matter; and in chronic rheumatism; but, in the latter disease, iodide of potassium is more frequently employed. As an antidote in poisoning by strychnia, brucia, and veratria, iodine has been recommended by M. Donné, because the compound formed by the union of these alkalis with iodine is less active than the alkalis themselves; as an injection for the cure of hydrocele, Velpeau has employed a mixture of the tincture of iodine with water, in the proportion of from one to two drachms of the tincture to an ounce of water: of this mixture

* Medico-Chirurg. Trans. vol. xix.
* Cogswell, Essay, p. 81.
* Ibid.
from one to four ounces are to be injected and immediately withdrawn; lastly, to check mercurial salivation iodine has been successfully used.

3. As a topical remedy iodine is exceedingly valuable in several classes of diseases. Mr. Davies, of Hertford, has drawn the attention of the profession to its employment in this way, and pointed out the great benefit attending it. In most cases the tincture is the preparation employed. The part affected is painted with this liquid by means of a camel’s-hair pencil. In some few cases only, where the skin is very delicate, will it be necessary to dilute the preparation. When it is required to remove the stain which its use gives rise to, a poultice or gruel should be applied. In lupus it proves highly beneficial. My attention was first drawn to its efficacy in this disease by my colleague, Mr. Luke. Under its employment the process of ulceration is generally stopped, and cicatrization takes place. The tincture should be applied not only to the ulcerated portion, but to the parts around. In eczema it also is an excellent application. In cutaneous scrofula likewise, as I have already remarked. In several other cutaneous diseases, such as lichen, prurigo, pityriasis, psoriasis, impetigo, porridge, eczema, and scabies, Dr. Kennedy has found its use beneficial. According to the testimony of Mr. Davies and an anonymous writer, it is a valuable application to cihlbains. In the treatment of diseases of the joints it is used with great advantage. In erysipelas, I have seen it highly beneficial. In phlegmonous inflammation, sloughing of the cellular membrane, inflammation of the absorptions, gout, carbuncle, whitlow, lacerated, contused, and punctured wounds, and burns and scalds, it is most highly spoken of by Mr. Davies. Its topical uses are, therefore, nearly as extensive as those of nitrate of silver. Moreover, it is used very much in the same classes of cases, and with the same views.

Administration. — Iodine is rarely administered alone, but generally in conjunction with iodide of potassium, to the account of which substance I must refer for formula for the combined exhibition of these substances.

In the administration of iodine, care should be taken to avoid gastric irritation. On this account we should avoid giving it on an empty stomach. Exhibited immediately after a meal, its topical action is considerably diminished. This is especially the case when amylaceous substances (as potatoes, bread-pudding, sago, tapioca, and arrow-root) have been taken, as the iodine forms with them an iodide of starch. Iodine has been given in the form of pills, in substance, in doses of about half a grain. But this mode of exhibition is objectionable, and is now never resorted to.

(Iodine 3ij. Rect. Spirit 3j. [by weight]. D.—The Edinburgh College orders Iodine 3j. Rect. Spirit 13xvj.) Principally valuable as a topical remedy. For this purpose it is applied as a paint by a

* Selections in Pathology and Surgery. Lond. 1839.
iodine in a solid state, and may thus irritate the stomach. The dose of it is \(\frac{3}{4} \) to \(\frac{1}{2} \) grains. Each drachm of the Dublin tincture contains five grains of iodine. The best mode of exhibiting it, to cover its flavour, is sherry wine. Where this is inadmissible, sugared water may be employed.

2. IODIDUM AMYLI; Iodide of Starch. — The following is Dr. Buchanan’s\(^k\) formula for preparing this substance:—“Rub 24 grs. of iodine with a little water, and gradually add one ounce of finely-powdered starch: dry by a gentle heat, and preserve the powder in a well-stoppered vessel.” In persons not labouring under any dyspeptic ailment or constitutional delicacy of habit, Dr. Buchanan commences with half an ounce for a dose, and increases this to an ounce three times a day,—equivalent to about 72 grains of iodine daily. It frequently caused costiveness, attended with griping pains of the bowels and pale-coloured evacuations. Sometimes, though rarely, it produced purging. The dose is 3ss. gradually and cautiously increased. I have found the colour of this preparation objected to by patients.

3. UNGUENTUM IODINI, D.; Iodine Ointment. (Iodine, \(\frac{9}{10} \); Prepared Hog’s Lard, \(\frac{9}{10} \).) — This ointment has a rich orange-brown colour; but by keeping it becomes pale on the surface, and hence should always be made when wanted. It is employed as a local application to scrofulous tumours, bronchocele, &c. If it prove too irritating, the quantity of lard should be augmented.

Antidotes.—In the event of poisoning by iodine, or its tincture, the first object is to evacuate the poison from the stomach. For this purpose, the vomitings are to be assisted by the copious use of tepid demulcent liquids—especially those containing amylaceous matter; as starch, wheat-flour, sago, or arrow-root, which should be boiled in water, and exhibited freely. The efficacy of these agents depends on their combining with the iodine, to form iodide of starch, which has very little local action. In their absence, other demulcents, such as milk, eggs beat up with water, or even tepid water merely, may be given to promote vomiting. Magnesia is also recommended. Opiates have been found useful. Of course the gastro-enteritis must be combated by the usual means.

COMPONDS OF IODINE WITH OXYGEN AND CHLORINE.

None of these are employed in medicine. Iodic Acid (\(I + O^4 \)) is used as a test for Morphia and Sulphurous Acid, both of which substances deoxidize iodic acid, and set iodine free.

ORDER IV.—BROMINE AND ITS COMBINATIONS
OXYGEN, CHLORINE, AND IODINE.

BROMIN'IU M, L.—BROMINE.

HISTORY AND ETYMOLOGY.—This substance was discovered by M. Balard, of Montpellier, in 1826. He at first termed it bromine (from brumia, brine), in allusion to the substance from which he procured it; but, at the suggestion of Gay-Lussac, he altered the name to that of bromine, or bromine, (from βρωμος, a stench, or smell) on account of its unpleasant odour.

NATURAL HISTORY.—It is found in both kingdoms of nature, never in the free state.

A. IN THE INORGANISED KINGDOM.—Hollander detected it in an ore of copper, and Cochler recognised it in Silesian cadmium. It exists in sea water and in many mineral waters, in combination with either magnesium or sodium, sometimes with both. Thus it has been found in the waters of the Mediterranean, the North Sea, the Frith of Forth, the Dead Sea, many of the springs of Europe and America (as those of Middlewich, Nantwich, Alnwick, and Shirley, in England), and in many other mineral springs of Europe and America (as the Pitsville spring at Cheltenham, the water of the Swiss mountains, especially rich in it. It has been justly observed by Dr. Davy, that the detection of bromine in brine-springs is a fact interesting in a geological point of view, as tending to identify the product of the ancient seas, in the minute particulars, with those of the present ocean.

B. IN THE ORGANISED KINGDOM.—Bromine has been found in the waters of the Mediterranean, and in the mother-waters of Kelp. It has likewise been detected in various marine animals. Thus in the Sea-Sponge (Spongia of Linnæus) in the stony concretion found in this animal, in the ashes of the Jantarina, one of the gasperopodium mollusca, and in cod's-liver oil.

PREPARATION.—Bromine was formerly prepared by a complex process, from bittern (the mother liquor of sea-water, from which chloride of sodium has been separated by crystallization). It is procured by a simpler method, from the mother-ley of the salt-pans near Kreuznach, in Germany. From thirty pounds of the concentrated ley, Liebig obtained twenty ounces of bromine. Other springs, that of Karshall contains, according to Dr. G. C. 66025 grs. of bromide of calcium, and 13672 grs. of bromide of magnesium, in sixteen ounces of the water. According to the authority, 100 parts of the mother ley of the Münster-an-bro spring contains 24.12 parts of bromide of calcium, and 0.45 parts of bromide of magnesium. Sixteen ounces of the mother ley of the Theodorshaffe spring contain 338.72 grs. of bromide of calcium, and 92.82 grs. of bromide of magnesium.

The process followed at Kreuznach, according to Dr. Mo
that recommended by Desfosses, but modified by Löwig. To about four quarts of the mother ley contained in a retort, are added one ounce of binoxide of manganese, and five or six ounces of commercial hydrochloric acid. On the application of the heat of a sand-bath, water and brome pass over into the receiver. When all the brome has passed over, the vapour is observed to be colourless, and to consist of aqueous vapour and hydrochloric acid.

The following is the theory of the process:—Two equivalents or 74 parts of hydrochloric acid react on one equivalent or 44 parts of binoxide of manganese, and yield one equivalent or 64 parts of protochloride of manganese, two equivalents or 18 parts of water, and one equivalent or 36 parts of chlorine: the latter, in its nascent state, reacts on one equivalent or 98 parts of bromide of calcium, and produces one equivalent or 56 parts of chloride of calcium, and one equivalent or 75 parts of free brome.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Bromide Calcium</td>
<td>98</td>
<td>1 eq. Bromine</td>
</tr>
<tr>
<td>2 eq. Hydrochloric Acid</td>
<td>74</td>
<td>1 eq. Chlorine</td>
</tr>
<tr>
<td>1 eq. Binoxide Manganese</td>
<td>44</td>
<td>2 eq. Oxygen</td>
</tr>
<tr>
<td>1 eq. Hydrogen</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

The mixture of binoxide of manganese and hydrochloric acid is rendered too dilute by the mother ley to produce, by their reaction, free chlorine, when no bromide is present with whose base it can combine. Hence, when all the brome has passed over, we find hydrochloric acid, and not chlorine, in the vapour which is passing over.

Properities.—At ordinary temperatures bromine is a dark-coloured, very volatile liquid, which, seen by reflected light, appears blackish red; but viewed in thin layers, by transmitted light, is hyacinth red. Its odour is strong and unpleasant, its taste acrid. Its sp. gr. is 2·966; water being 1. Its equivalent weight is 78 [78·39 Berzelius; 78·4 Turner]; by volume, in the gaseous form, 1. When exposed to a cold of —4°C. it is a yellowish brown, brittle crystalline solid. At ordinary temperatures liquid bromine evolves ruddy vapours (similar to those of nitrous acid), so that a few drops put into a small vessel immediately fills it with the vapour of bromine. At 1164°F. bromine boils. The vapour is not combustible: a lighted taper plunged into it is immediately extinguished, but before the flame goes out it becomes red at the upper and green at the lower part. Antimony or arsenicum fire when dropped into liquid bromine: when potassium or phosphorus is dropped in, a violent explosion takes place. Bromine is a nonconductor of electricity: it is a bleaching agent: it dissolves
very slightly only in water, more so in alcohol, and much more so in sulphuric ether. It communicates a fine orange colour to starch.

Characteristics.—Liquid bromine is recognised by its colour, its volatility, and the colour of its vapour. To these characters must be added its powerful action on antimony, arsenicum, and potassium before mentioned, its dissolving in ether, forming a hyacinth red liquid, and the orange colour which it communicates to starch. It causes a yellowish white precipitate (*bromide of silver*) with a solution of the nitrate of silver. In its external appearance it resembles the chloride of chromium and the chloride of iodine. I have known it confounded with tincture of iodine.

The soluble *bromides* cause white precipitates with the nitrate of silver, acetate of lead, and protonitrato of mercury. The precipitate are bromides of the respective metals. Bromide of silver is yellowish white, clotty, insoluble, or nearly so, in boiling nitric acid, and in weak solution of ammonia (by which it is distinguished from chloride of silver), but dissolves in a concentrated solution of this alkali. Heated with sulphuric acid it evolves vapours of bromine. If a few drops of a solution of chloride be added to a solution of a bromide and then a little sulphuric ether, we obtain an ethereal solution of bromine of a hyacinth red colour, which floats on the water.

The *bromates* when heated evolve oxygen, and become bromide. The bromates cause white precipitates (*metallic bromates*) with the nitrate of silver and the protosalt of mercury. Bromate of silver is not soluble in nitric acid, but dissolves readily in solution of ammonia. If a few drops of hydrochloric acid be added to a bromate, and the same ether, a yellow or red ethereal solution of bromine is obtained.

Physiological Effects.
α. *On Vegetables.*—I am unacquainted with any experiments made with bromine on plants.

β. *On Animals generally.*—The action of bromine on animals has been examined by Franz 1, by Barthez, by Butzke 2, and by Diefenbach 3. The animals experimented on were leeches, fishes, birds, horses, rabbits, and dogs. But, notwithstanding the numerous experiments which have been performed, nothing satisfactory has been made out with respect to its mode of operation, beyond the fact of its being a local irritant and caustic, and, therefore, when swallowed, giving rise to gastro-enteritis. Injected into the jugular vein it coagulates the blood, and causes immediate death, preceded by tetanic convulsions. No positive inferences can be drawn as to the specific influence of bromine on any organs of the body. Some of the symptoms (such as dilated pupil, insensibility, and convulsions) would seem to indicate a specific affection of the brain. Franz frequently observed inflammation of the liver.

γ. *On Man.*—Bromine stains the cuticle yellowish brown, and, by continued application, acts as an irritant. Its vapour is very irritating when inhaled, or applied to the mucous lining of the nose, or to the conjunctiva. Franz, by breathing the vapour, had violent cough, an

1 Quoted by Wibmer, *Die Wirkung der Arzneien.* Bd. 8. 1431; also in Journ. Chin. Méd. t. v. p. 34.
2 De Efficiens Bromi internum experimentalis illustrata. Ver. 1821.
HYDROGEN.

A feeling of suffocation, followed by headache. Butzke swallowed a drop and a half of bromine in half an ounce of water, and experienced heat in the mouth, oesophagus, and stomach, followed by colicky pains. Two drops occasioned nausea, hiccup, and increased secretion of mucus.

The constitutional effects resulting from the continued use of bromine have not been determined. They are probably analogous to those of iodine.

Hitherto no cases of poisoning with it in the human subject have been seen.

Uses.—It seems to possess the same therapeutical influence as iodine, and has been administered in bronchocele, in scrofula, in tumors, in amenorrhoea, and against hypertrophy of the ventricles. It is usually regarded as possessing more activity than iodine.

Administration.—It may be administered dissolved in water. An aqueous solution, composed of one part by weight of bromine and forty parts of water, may be given in doses of five or six drops properly diluted and flavoured with syrup. This solution has also been used as an external agent in lotions. (For other formulæ, see Bromide of Potassium.)

Antidotes.—The treatment of cases of poisoning by bromine should be the same as for poisoning by iodine. Barthez has recommended magnesia as an antidote.

COMPOUNDS OF BROMINE WITH OXYGEN, CHLORINE, AND IODINE.

None of these have been employed in medicine; nor have they hitherto been applied to any useful purposes in the arts.

ORDER V.—HYDROGEN, AND ITS COMPOUNDS WITH OXYGEN, CHLORINE, AND IODINE.

1. HYDROGENIUM.—HYDROGEN.

History and Synonyms.—Cavendish may be considered as the discoverer of hydrogen, though it must have been occasionally prepared, and some of its properties known, previously. He termed it inflammable air. Lavoisier called it hydrogen (from ὕδωρ, water, and ἄγεννα, I beget or produce), because it is the radicle or base of water.

Natural History.—It is found in both kingdoms of nature, but always in combination.

1. In the Inorganised Kingdom.—Next to oxygen, it may be regarded as the most important constituent of the terraqueous globe. It constitutes 11·1 per cent by weight of water, presently to be noticed. It is an essential constituent of some minerals (as coal and sal ammoniac), in which it does not exist as an element of water. Lastly, it is evolved from volcanoes, or from fissures in the earth, in combination with carbon, sulphur, chlorine or nitrogen, under the forms of light carburetted hydrogen, sulphuretted hydrogen, hydrochloric acid, and sal ammoniac.

2. In the Organised Kingdom.—Hydrogen is an essential constituent of all
organised beings (animals and vegetables), either combined with oxygen, to form water, or otherwise. Certain fungi exhale hydrogen gas both night and day.

Preparation.—Hydrogen is always procured by the decomposition of water, but this may be effected in three ways—by the action of electricity, of heat and iron, or of sulphuric acid and a metal (zinc or iron). The latter method only will require notice here.

Add some granulated zinc to a mixture of 1 part sulphuric acid and 5 or 6 parts of water by measure. One equivalent or 32 parts of zinc decompose one equivalent or 9 parts of water, and unite with one equivalent or 8 parts of oxygen, forming one equivalent or 40 parts of the oxide of zinc, while an equivalent or 1 part of hydrogen is evolved from the water. This equivalent of oxide of zinc combines with an equivalent or 40 parts of sulphuric acid, and forms one equivalent or 80 parts of the sulphate of zinc.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Water</td>
<td>9 (1 eq. Hydrogen 1, 1 eq. Oxygen 8)</td>
<td>1 eq. Hydrogen 1</td>
</tr>
<tr>
<td>1 eq. Zinc</td>
<td>32</td>
<td>1 eq. Oxide Zinc 40</td>
</tr>
<tr>
<td>1 eq. Sulphuric Acid</td>
<td>40</td>
<td>1 eq. Sulphate Zinc 80</td>
</tr>
</tbody>
</table>

It is remarkable that zinc alone does not decompose water, but sulphuric acid enables it to do so.

Properties.—Hydrogen is a colourless, tasteless, and, when pure, odourless gas. Its sp. gr. is 0.0694, so that it is 14.4 times lighter than atmospheric air. Its refractive power is very high. It is combustible, burning in atmospheric air or oxygen gas with a pale flame, and forming water. It is not a supporter of combustion.

It is a constituent of some powerful acids, as the hydrochloric, and of a strong base, ammonia. Its atomic weight or equivalent is 1. Its atomic volume is also 1.

Characteristics.—It is recognised by its combustibility, the pale colour of its flame, its not supporting combustion, and by its yielding when exploded with half its volume of oxygen, water only.

Physiological Effects.—a. On Vegetables.—Plants which are deprived of green or foliaceous parts, or which possess them in small quantity only, cannot vegetate in hydrogen gas: thus seeds will not germinate in this gas: but vegetables which are abundantly provided with these parts vegetate for an indefinite time in hydrogen. Applied to the roots of plants in the form of gas, it is injurious, but an aqueous solution of it seems to be inert. It has been said that when plants are made to vegetate in the dark, their etiolation is much diminished if hydrogen gas be mixed with the air around them; and in proof of this Humboldt has mentioned several green plants found in the Freyberg mines.

b. On Animals generally.—Injected into the jugular vein of a
due.
hydrogen produces immediate death, probably from its mechanical effects in obstructing the circulation and respiration\(^7\).

\(^7\) On Man. — It may be breathed several times without any injurious effects. Scheele made twenty inspirations without inconvenience. Pilatre de Rozier frequently repeated the same experiment, and to shew that his lungs contained very little atmospheric air, he applied his mouth to a tube, blew out the gas, and fired it, so that he appeared to breathe flame. If much atmospheric air had been present detonation must have taken place in his lungs\(^4\). If we speak while the chest is filled with hydrogen, a remarkable alteration is perceived in the tone of the voice, which becomes softer, shriller, and even squeaking. That this effect is, in part at least, if not wholly, physical, is shown by the fact that wind instruments (as the flute, pitchpipe, and organ) have their tones altered when played with this gas. The conclusion which has been drawn by several experimenters as to the effects of breathing hydrogen is, that this gas possesses no positively injurious properties, but acts merely by excluding oxygen.

Uses.—\(a\). In pulmonary consumption Dr. Beddoes recommended inhalations of a mixture of atmospheric air and hydrogen gas, on the ground that in this disease the system was hyperoxegenised. The inhalation was continued for about fifteen minutes, and repeated several times in the day\(^7\). Ingenhousz fancied that it had a soothing effect when applied to wounds and ulcers.

\(\beta\). In rheumatism and paralysis it has been used by Reuss as a resolvent.

\(\gamma\). A flame of hydrogen has been employed in Italy as a cauterj to stop caries of the teeth\(^7\).

\(\delta\). Hydrogen water (an aqueous solution, prepared by artificial pressure) has been employed in diabetes\(^5\).

2. \textit{A'QUA.}—WATER.

(Protoxide of Hydrogen.)

History.—The ancients regarded water as an elementary substance, and as a constituent of most other bodies. This opinion, apparently supported by numerous facts, was held until the middle of the last century, when the Hon. Mr. Cavendish proved that this liquid was a compound of oxygen and hydrogen. It is, however, only doing justice to Mr. Watt, to say, that he had previously inferred this to be the composition of water, but was deterred from publishing his opinion in consequence of some of Dr. Priestley’s experiments being, apparently, opposed to it\(^6\).

\(^7\) Nynten, Recknerian, p. 10.
\(^4\) Beddoes, New Method of treating Pulmonary Consumption, p. 44.
\(^7\) Op. supra, cix.
\(^7\) Diet. Méd. par Mérat et De Lense.
\(^6\) Ibid.
\(^7\) For further details respecting the history of the discovery of the composition of water, see Lord Brougham’s memoire on this subject, in Jameson’s Edinburgh New Philosophical Journal, vol. xxvii.
NATURAL HISTORY.—Water is found in both kingdoms of nature.

a. IN THE INORGANISED KINGDOM.—Water exists in the atmosphere; it forms seas, lakes, and rivers; it is mechanically disseminated among rocks; and, lastly, it constitutes an essential part of some minerals. In the atmosphere it is found in two states: as a vapour (which makes about one-seventieth by volume, or one one-hundredth by weight, of the atmosphere) it is supposed to be the cause of the blue colour to the sky; and, in a vesicular form, it constitutes the clouds. Terrestrial water forms about three-fourths of the surface of the terraqueous globe. The average depth of the ocean is calculated at between two or three miles. Now, as the height of dry land above the surface of the sea is less than two miles, it is evident, that if the present dry land were distributed over the bottom of the ocean, the surface of the globe would present a mass of water a mile in depth. Even on the supposition that the mean depth of the sea is not greater than the fourth part of a mile, the solid contents of the ocean would be 32,058,934 cubic miles. The quantity of water disseminated through rocks must be, in the aggregate, very considerable, although it is impossible to form any correct estimate of it. Water enters into the composition of many minerals, either as water of crystallization, or combined as a hydrate.

b. IN THE ORGANISED KINGDOM it is an essential constituent of vegetables and animals.

PROPERTIES.—Pure water has the following properties:—at ordinary temperatures it is a transparent liquid, usually described as being both odourless and colourless; but it is well known that the camel can scent water at a considerable distance; so that to this animal it is odorous;—and as regards its colour, we know that all large masses of water have a bluish-green colour, though this is usually ascribed to the presence of foreign matters. When submitted to a compressing force equal to 30,000 lbs. on the square inch, 16 volumes of this liquid are condensed into 18 volumes; so that it is elastic. A cubic inch of water, at 60° F., weighs 255.5 grains; so that this fluid is about 815 times heavier than atmospheric air: but being the standard to which the gravities of solids and liquids are referred, its specific weight is usually said to be 1. "A pint weighs at 62°, 8,750 grs., or 20 ozs. avoirdupois; or 1 lb. 6 ozs. 1 drachm 2½ scruples, or 10 grs. less than 18½ ozs. apothecaries’ weight." At a temperature of 30° it crystallizes, and in so doing expands. The fundamental form of crystallized water (ice) is the rhombohedron. Water evaporates at all temperatures, but at 212° boils, and is converted into steam, whose bulk is about 1700 times that of water, and whose sp. gr. is 0.0249 (that of hydrogen being 1). Water unites with both acids and bases, but without destroying their acid or basic properties. Thus the crystallized vegetable acids, tartaric, citric, and oxalic, are atomic combinations of water with what are termed dry acids. Potassa fusa and slacked lime may be instanced as compounds of water and basic substances: these are called hydrates. It is a chemical constituent of some crystallized salts; for example, alum, sulphate of soda, and sulphate of magnesia. Here it exists as water of crystallization. It rapidly absorbs some gases,—as fluorine of boron, ammonia, &c. It is neither combustible nor a supporter of combustion.

† For some remarks on the colour of the ocean, see Jameson’s Journal, vol. xxv.
‡ Mr. Phillips's Translation of the Pharmacopoeia, 4th ed. 1811.
WATER.

Characteristics.—In the liquid state it is recognized by being volatile, tasteless, odourless, neither acid nor alkaline, and not combustible nor a supporter of combustion: it is miscible with alcohol, but not with the fixed oils: if potassium be thrown on it in the open air, the metal takes fire. Lastly, water may be decomposed into oxygen and hydrogen by the galvanic agency. The most delicate test of aqueous vapour in any gas, is fluoride of boron (commonly called fluoboric acid gas), which produces white fumes with it.

Composition.—The composition of water is determined both by analysis and synthesis. If this liquid be submitted to the influence of a galvanic battery, it is decomposed into two gases; namely, one volume of oxygen, and two volumes of hydrogen. These gases, in the proportions just mentioned, may be made to recombine, and form water, by heat, electricity, or spongy platinum.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>1</td>
<td>11-11</td>
<td>11-1</td>
<td>Hydrogen gas</td>
<td>1</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>8</td>
<td>88-88</td>
<td>88-9</td>
<td>Oxygen gas</td>
<td>0.3</td>
</tr>
</tbody>
</table>

1... 1... 9... 100-00... 100-0 Aqueous vapour | 1... | 0.6340 |

Physiological Effects.—Considered in a dietetical point of view the effects of water on the system have been already considered. Moreover, as an agent for the communication or abstraction of heat from the body, it has been before noticed. Furthermore, the influence of atmospheric humidity in modifying the character of matter has likewise been briefly referred to.

Water moderately warm, and which neither cools nor heats the body, acts locally as an emollient, softening and relaxing the various tissues to which it is applied. When swallowed it allays thirst, comes absorbed, mixes with, and thereby attenuates, the blood, and promotes exhalation and secretion, especially of the watery fluids. Administered in large quantities it excites vomiting. The continued excessive use of water has an enfeebling effect on the system, both by the relaxing influence on the alimentary canal and by excessive secretion which it gives rise to.

Injected into the veins in moderate quantities, tepid water has no amnious effects; it quickens the pulse and respiration, and increases secretion and exhalation. Large quantities check absorption, and create difficulty of breathing and an apoplectic condition. Thrown with force into the carotid artery it kills by its mechanical effect on the brain.

Uses.—Besides the dietetical and thermotic purposes for which water is employed in medicine, and which have been already noticed, it serves as a diluent, humectant, emollient, evacuant, and, in pharmacy, as a solvent.

1 See p. 68.
3 See p. 22.
4 See p. 114.
Water or bland aqueous liquids are employed in some cases of poisoning. They serve to dilute the acrid and irritant poisons, the intensity of whose action on the stomach they lower. Moreover, the presence of aqueous fluids favours the expulsion of substances by vomiting.

In pretumnal dryness and rigidity of parts (e.g., of mucous surfaces, the skin, wounds, and ulcers), water and mild aqueous fluids are useful moisteners and emollients.

The copious use of water augments the quantity of fluid thrown out of the system by the cutaneous and pulmonic surfaces, and by the kidneys. If our object be to promote diaphoresis, external warmth should be conjoined with the internal use of diluents, whereas when we wish to excite the renal vessels the skin should be kept cool. In inflammatory affections of the urinary passages we advise the free employment of aqueous fluids, with the view of diluting the urine, and thereby of rendering it less acrid and irritating.

In Germany there are thirteen or fourteen establishments, formed within the last few years, for the cure of maladies by the use of water. This method of treatment is denominated Water-cure (Wassercur), Water-medicine (Wasserheilkunst), or Methodus Hydriatica.

The following is a sketch of the regimen usually adopted at these establishments:

At four, or half past four in the morning, perspiration is begun to be produced which is done by wrapping the patients, like babies, in swaddling clothes, or mummies, in large and thick blankets. Perspiration usually begins in an hour and is kept up by making the patients drink several glasses of cold water every half hour. In many cases, when the perspiration is at its height, pieces of cloth dipped in cold water, and previously well wrung, are dexterously introduced under the blankets, and applied to the most diseased parts; these parts as well as the clothes, grow hot, the perspiration soon begins afresh, and cause a sensation of burning in the part.

At the end of three hours the blankets and bed are soaked with perspiration the patients are then conducted into a neighbouring room, or to another story where they take their cold baths; and in doing this, they often pass through draughts of air without being inconvenienced. Before plunging into the cold bath, they wash their head and chest; and after staying in it two or three minutes, the patients take a few cups of milk with a little bread, and then walk out upon the mountains which border on the establishment, and drink cold water at the numerous springs which they meet upon their route. About nine or ten o'clock they take the douche, or else walk to the cascades which are in the forests or mountains, and expose themselves to the fall of the water that comes down from a height, and strikes the body with great force. Immediately after dressing, they again drink several glasses of water, and then walk in the open air.

This mode of treatment is recommended for old and young, male and females, and is followed both in summer and winter. It is regarded as a kind of universal remedy or panacea. Thus Oertel says it is good for affections of the eyes, ears, and teeth, for instance epilepsy, hydrophobia, erysipelas, quinsy, bronchial phthisis, inflammation of the brain, chest, or abdomen, faintings, disease.

1. London Medical Gazette, for Oct. 12, 1839, p. 111.
the liver and spleen, gout, stomach complaints, acute eruptions, hemorrhages, algine obstructions, &c. !!

What is called Water-dressing may be regarded as a modified and improved form of poultice. It consists in the application of two or three layers of soft lint dipped in water and applied to inflamed parts, wounds, and ulcers;—the whole being covered with oiled silk or Indian rubber, which should project beyond the margin of the lint, to retain the moisture and prevent evaporation. Dr. Macartney considers it to operate differently to a poultice: unlike the latter, he says, it prevents or diminishes the secretion of pus, checks the formation of exuberant granulations, and removes all pain. Moreover, the water is not apt to become sour, like a poultice, and does not injure the sound part.

Water is frequently employed in pharmacy for extracting the active principles of various medicinal agents. The solutions thus procured are termed by the French reformers of pharmaceutical nomenclature, hydroligues, or hydrolca, (from hydro, water). Those prepared by solution or mixture are termed hydrolis, and are divided by Cottereau into three classes; mineral (as lime water), vegetable (as almond emulsions, mucilage, infusions, decoctions, &c.), and animal (as broths). Those obtained by distillation are denominated hydrolats.

1. AQUA DESTILLATA, L.E. Aqua Distillata, D.—Distilled Water.—Obtained by distilling Common Water in a proper still. The first twentieth [fortieth, L.] part should be rejected: the last portions ought not to be distilled. The first distilled portion is to be rejected, as it may contain carbonic acid, and other volatile impurities. The latter portions are not to be distilled, to guard against empyreuma. The still in which the operation is conducted ought not to be employed for any other purpose, otherwise the water is apt to receive a faint smell, and taste of the last matters subjected to distillation. Distilled water remains unchanged on the addition of any of the following tests:—Solutions of the Caustic Alkalis, Lime, Oxalic Acid, the Barytic Salts, Acetate of Lead, Nitrate of Silver, and Sap. If turbidity, milkiness, or precipitate, be occasioned by any of these, we may infer the existence of some impurity in the water. But water which has been repeatedly distilled gives traces of acid and alkali when examined by the agency of voltaic electricity, which, therefore, is the most delicate test of the purity of water. Nitrate of Silver is the most sensible test of the presence of organic

For further details respecting the water-dressing, see, besides the work already quoted, *Mém. de l'Académie Royale de Médecine,* Fasc. 1, 1836; *Lancet,* vol. ii. for 1834-5, pp. 121, 277, and 484; vol. i. for 1833-4, p. 493.

[Pharmaceutical Nomenclature of M.M. Chereau and Henry, in Duncan’s Supplement to the Edinburgh New Dispensatory, p. 102.]

Tratté Élémentaire de Pharmacologie. Paris, 1835.
matter*: a solution of this salt in pure water, preserved in a well-stoppered bottle, undergoes no change of colour by exposure to light; but if any vegetable or animal matter be present, the metal is partially reduced, and the liquid acquires a dark or reddish tint.

2. AQUE MEDICATEÆ: Medicated Waters; Aqua Destillata, L.; Aqua Distillatae, D.; Distilled Waters, E.; Hydrolata, or Hydrolates.—(Obtained by submitting either fresh, salted, or dried vegetables, or their essential oils, to distillation with water; or by diffusing the essential oils through water by means of spirit, sugar, gum, or magnesia.) The medicated waters prepared by distillation from recent vegetables have a finer flavour than those obtained by the diffusion of the oil; but the latter are purer and more permanent. Rose and Elder Waters are prepared either from the fresh or pickled (salted) flowers. The medicated waters in most common use may be extemporaneously prepared

"by carefully triturating a drachm of any distilled Oil with a drachm of Carbonate of Magnesia, and afterwards with four pints of distilled water. Lastly, let the water be strained."—Ph. Lond.

The magnesia effects the minute division of the oil. Moreover, when the oils possess acid properties (as the old oils of pimento, cloves, and cinnamon), it probably serves to saturate them. Prepared in this way the medicated waters usually contain a minute portion of magnesia in solution: hence, by exposure to the air, they attract carbonic acid, and let fall flocculi of carbonate of magnesia. Moreover, the magnesia unfits them for the preparation of solutions of some of the metallic salts (e.g. bichloride of mercury and nitrate of silver) Sugar is frequently employed, instead of magnesia, to aid the diffusion of the oil through water. Or the oil may be dissolved in rectified spirit, and the solution thus prepared, mixed with water.

3. INFUSA, L. D. Infusions, E.—These are aqueous solutions of vegetable substances obtained without the aid of ebullition. They are prepared by digesting soft water (cold or hot, according to circumstances) on the substance sliced, bruised, or reduced to coarse powder, in a glazed earthenware or porcelain vessel, fitted with a cover. Polished metallic vessels retain the heat better, but are objectionable on account of their ready corrosion. Hard water is a less perfect solvent of organic matter than soft water, and, moreover, it becomes turbid (from the deposition of chalk) by keeping: hence it should not be employed in the preparation of infusions. Cold water is used when the active principle is very volatile; or when it is desirable to avoid the solution of any substance soluble in hot water. Thus, when the object is to extract the bitter principle from Calumba or Iceland Moss without taking up the starchy matter, cold water is preferred. In general, however, boiling water is used. Infusions are preferred to decoctions when the active principle is easily volatilisable by a boiling heat, as in the case of essential oil; on

readily undergoes some chemical change by ebullition, as in the case of senna.

4. DECOCTA, L. D. Decoctions, E.—These are prepared by boiling organic substances in water. They should be strained while hot; since, in some cases (e. g. cinchona), the liquid becomes turbid on cooling.

DIVISION.—Natural waters may most conveniently be arranged in three classes; viz. Common Water, Sea Water, and Mineral Waters.

a. AQUEE COMMUNES.—COMMON WATERS.

Under this head are comprehended those waters which are used for dressing food, and for other purposes of domestic economy. It includes the waters commonly known as rain, spring, river, well or pump, lake, and marsh waters.

4. AQUA PLUVIALIS: Aqua Pluvia; Aqua Imbrion; Rain Water.—This is the purest of all natural waters. Its composition, however, varies somewhat in different situations, owing to the foreign substances floating in the atmosphere, and with which it becomes contaminated. It contains air, carbonic acid, some traces of nitric acid, salts, and organic matter. The nitric acid is presumed to be formed by the combination of the oxygen and nitrogen of the air by the agency of electricity.

Liebig has shewn that rain water contains carbonate of ammonia, to which he ascribes its softness. Carbonate of lime is another constituent, as is also, according to Bergmann, chloride of calcium. Zimmermann found oxide of iron and chloride of potassium in rain; but Kastner could discover no trace of iron in it, though he found in snow, meteoric iron and nickel. Brandes detected various other inorganic substances, viz. chloride of sodium (in greatest quantity), chloride of magnesium, sulphate and carbonate of magnesia, and sulphate of lime. He likewise mentions oxide of manganese. The precipitation to which rain-water is subject, shews that some organic matter is present. The term pyrrhin (from πῦρ, red) has been applied by Zimmermann to an atmospheric organic substance which reddens solutions of silver. Whenever rain-water is collected near large towns, it should be boiled and strained before use. As it contains less saline impregnation than other kinds of natural waters, it is more apt to acquire metallic impregnation from leaden cisterns and water pipes.

Snow Water (Aqua ex nive; Aqua nivalis) is destitute of air and other gaseous matters found in rain; and hence fish cannot live in it. It has long been a popular, but erroneous opinion, that it was injurious to the health, and had a tendency to produce bronchocele. But this malady occurs at Sumatra, where

2 Organic Chemistry in its Application to Agriculture and Physiology; edited by Lyon Playfair, Ph. B. Lond. 1830.
3 See p. 90.
ice and snow are never seen; while, on the contrary, the disease is quite
known in Chili and Thibet, although the rivers of these countries are chiefly
supplied by the melting of the snow with which the mountains are covered.
Snow does not quench thirst; on the contrary, it augments it; and the natives
of the Arctic regions "prefer enduring the utmost extremity of this feel
rather than attempt to remove it by eating of snow." When melted, how-
it proves as efficacious as other kinds of water.

2. **AQUA FONTANA**; *Aqua, E.; Spring Water.*—This is rain water
which, having percolated through the earth, reappears at the sur-
some declivity. During its passage it almost always takes
some soluble matters, which of course vary according to the na-
of the soil. Its constituents are similar to those of well water.

"For pharmacetical use, spring water must be so far at least free of so-
matter as not to possess the quality of hardness, or contain above a 600
solid matter."—Ph. Ed.

3. **AQUA EX FLUMINE**; *Aqua Fluvialis; River Water.*—This
mixture of rain and spring water. When deprived of the ma-
which it frequently holds in suspension, its purity is usually
siderable. The following are the solid constituents of the water
the Thames and Colne, at different localities, according to the anal-
of Mr. R. Phillips—:

<table>
<thead>
<tr>
<th>QUANTITY OF WATER</th>
<th>THAMES WATER</th>
<th>COLNE WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Gallon = 10 lbs. Avoirdupois, at 62° F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or 7000 gms. Avoirdup.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonate of Lime</td>
<td>Grs. 16'000</td>
<td>Grs. 18'800</td>
</tr>
<tr>
<td>Sulphate of Lime</td>
<td>3'400</td>
<td>2'500</td>
</tr>
<tr>
<td>Chloride of Sodium</td>
<td>1'700</td>
<td>2'500</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Silica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonaceous matter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid matter held in solution</td>
<td>1'940</td>
<td>21'300</td>
</tr>
<tr>
<td>Mechanical Impurity</td>
<td>0'368</td>
<td>0'189</td>
</tr>
</tbody>
</table>

Total Solid matter | 19'768 | 21'485 |

No notice is taken in these analyses of the gaseous constituents (air and carbonic acid) of river water.

4. **AQUA EX PUTEO**; *Aqua Puteana; Well Water.*—This is water
obtained by sinking wells. As it is commonly raised by means of
pump, it is frequently called pump water. The constituents of
inary well water are similar to those of river water above mentioned,
but the earthy salts (especially the sulphate of lime) are ft

* Narrative of a Second Voyage in Search of a North-west Passage; and of a Residence in the Arctic Regions during the years 1825, 1826, 1831, 1832, and 1833, p. 366. London, 1835.
* Report from the Select Committee of the House of Lords, appointed to inquire into the supply of Water to the Metropolis, p. 91, 1840.—See also Dr. Bostock's analysis in the *Report of the missioners appointed to inquire into the state of the supply of Water in the Metropolis*, 1828.
in much larger quantity. It usually decomposes and curdles soap, and is then denominated hard water, to distinguish it from river and other waters, which are readily miscible with soap, and which are termed soft waters. The hardness of water depends on earthy salts, the most common of which is sulphate of lime. By the mutual action of this salt and soap, double decomposition is effected: the sulphuric acid unites with the alkali of the soap, setting free the fatty acids, which unite with the lime to form an insoluble earthy soap.Hard water is a less perfect solvent of organic matter than soft water; hence, in the preparation of infusions and decoctions, and for many economical purposes, as for tea-making and brewing, it is inferior to soft water; and, for the same reason, it is improper as a drink in dyspeptic affections. Moreover, it proves injurious in urinary deposits. The unfavourable effects of hard waters on the animal system are especially manifested in horses. "Hard water, drawn fresh from the well," observes Mr. Youatt, "will assuredly make the coat of a horse, unaccustomed to it, stare, and it will not unfrequently gripe and otherwise injure him. Instinct, or experience, has made even the horse himself conscious of this; for he will never drink hard water if he has access to soft: he will leave the most transparent and pure [?] water of the well for a river, although the water may be turbid, and even for the muddiest pool ."

Artesian Wells.—These are vertical, cylindrical borings in the earth, through which water rises, by hydrostatic pressure, either to the surface (spout- or overflowing wells), or to a height convenient for the operation of a pump. They have been denominated Artesian, from a notion that they were first made in the district of Artois, in France. It is probable, however, that they were known to the ancients, for a notice of them is said to occur in Olympiodorus. Proposals have been made for supplying London with water by these wells; which would derive their water from the stratum of sand and plastic clay, placed between the London clay and the chalk basin. But it does not appear that a sufficient supply can be obtained in this way.

5. AQUA EX LACU; Lake Water.—This is a collection of rain, spring, and river water, usually contaminated with putrefying organic matter, the ill effects of which on the system I have before alluded to.

6. AQUA EX PALUDE; Marsh Water.—This is analogous to Lake water, except that it is altogether stagnant, and is more loaded with putrescent matter. The sulphates in sea and other waters are decomposed by putrefying vegetable matter, with the evolution of sulphu-
retted hydrogen; hence the intolerable stench from marshy and swampy grounds liable to occasional inundations from the sea. 5

Tests of the usual Impurities in Common Waters.—The following are the tests by which the presence of the ordinary constituents or impurities of common waters may be ascertained:—

1. Ebullition.—By boiling, Air and Carbonic Acid gas are expelled, while Carbonate of Lime (which has been held in solution by the carbonic acid) is deposited. The latter constitutes the fur or crust which lines tea-kettles and boilers.

2. Protosulphate of Iron.—If a crystal of this salt be introduced into a phial filled with the water to be examined, and the phial be well corked, a yellowish-brown precipitate (sesquisoxide of iron) will be deposited in a few days, if Oxygen gas be contained in the water.

3. Litmus.—Infusion of litmus or syrup of violets is reddened by a free Acid.

4. Lime Water.—This is a test for Carbonic Acid, with which it causes a white precipitate (carbonate of lime) if employed before the water is boiled.

5. Chloride of Barium.—A solution of this salt usually yields, with well-water, a white precipitate, insoluble in nitric acid. This indicates the presence of Sulphuric Acid (which, in common water, is combined with lime).

6. Oxalate of Ammonia.—If this salt yield a white precipitate, it indicates the presence of Lime (carbonate and sulphate).

7. Nitrate of Silver.—If this occasion a precipitate insoluble in nitric acid, the presence of Chlorine may be inferred.

8. Phosphatate of Soda.—If the lime contained in common water be removed by ebullition and oxalic acid, and to the strained and transparent water, Ammonia and Phosphate of Soda be added, any Magnesia present will, in the course of a few hours, be precipitated in the form of the white ammoniacal phosphate of magnesia.

9. Tincture of Galls.—This is used as a test for Iron, with solutions of which it forms an inky liquor (tanmate and gallate of iron). If the test produce this effect on the water before, but not after, boiling, the iron is in the state of Carbonate; if after as well as before, in that of Sulphate. Ferrocyanate of Potassium may be substituted for galls as a test for iron, with solutions of the sesquisalts of which it yields a blue precipitate, and with the protosalts a white precipitate, which becomes blue by exposure to the air.

10. Hydrosulphuric Acid (Sulphuretted Hydrogen).—This yields a dark (brown or black) precipitate (a metallic sulphuret) with water containing Iron or Lead in solution.

11. Evaporation and Ignition.—If the water be evaporated to dryness, and ignited in a glass tube, the presence of organic matter may be inferred by the odour and smoke evolved, as well as by the charring. Another mode of detecting organic matter is by adding nitrate of lead to the suspected water, and collecting and igniting the precipitate; when globules of metallic lead are obtained if organic matter be present. The putrefaction of water is another proof of the presence of this matter. Nitrate of silver has been before mentioned as a test.

β. Aqua Marina.—Sea Water.

(Aqua Maria.)

Under this head are included the waters of the ocean, and of the lakes, called inland seas, which possess a similar composition.
Dead Sea, however, differs exceedingly in its nature from sea water, and may properly be ranked amongst mineral waters.

The quantity of solid matter varies considerably in different seas, as the following statement from Pfaff proves:

<table>
<thead>
<tr>
<th>10,000 parts of Water of</th>
<th>Solid Constituents.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Mediterranean Sea....</td>
<td>410 grs.</td>
</tr>
<tr>
<td>English Channel...........</td>
<td>380 "</td>
</tr>
<tr>
<td>German Ocean..............</td>
<td></td>
</tr>
<tr>
<td>" At the Island of Föhr</td>
<td>345 "</td>
</tr>
<tr>
<td>" Norderney...............</td>
<td>342 "</td>
</tr>
<tr>
<td>" In the Frith of Forth</td>
<td>312 "</td>
</tr>
<tr>
<td>" At Ritzebüttel...........</td>
<td>312 "</td>
</tr>
<tr>
<td>Baltic Sea................</td>
<td></td>
</tr>
<tr>
<td>" At Apenrade, in Sleswick</td>
<td>216 "</td>
</tr>
<tr>
<td>" At Kiel, in Holstein...</td>
<td>200 "</td>
</tr>
<tr>
<td>" At Doberan, in Mecklenberg</td>
<td>168 "</td>
</tr>
<tr>
<td>" At Travemünde..........</td>
<td>167 "</td>
</tr>
<tr>
<td>" At Zoppot, in Mecklenberg</td>
<td>76 "</td>
</tr>
<tr>
<td>" At Carlshamm...........</td>
<td>66 "</td>
</tr>
</tbody>
</table>

We shall not be far from the truth if we assume that the average quantity of saline water is 8.5 per cent.; and the density about 1.0274.

The composition of sea water varies in different localities, as the following analyses¹ show:

<table>
<thead>
<tr>
<th>Sea Water.</th>
<th>Of the English Channel, (Schweitzer.)</th>
<th>Mediterranean. (Laurens.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grains.</td>
<td>Grains.</td>
</tr>
<tr>
<td>Water......</td>
<td>964.74372</td>
<td>959.26</td>
</tr>
<tr>
<td>Chloride of Sodium</td>
<td>27.05948</td>
<td>27.22</td>
</tr>
<tr>
<td>" Potassium</td>
<td>0.76552</td>
<td>0.01</td>
</tr>
<tr>
<td>" Magnesium</td>
<td>3.66638</td>
<td>6.14</td>
</tr>
<tr>
<td>Bromide of Magnesium</td>
<td>0.02929</td>
<td>7.02</td>
</tr>
<tr>
<td>Sulphate of Magnesia</td>
<td>2.28578</td>
<td>0.15</td>
</tr>
<tr>
<td>" Lime......</td>
<td>1.40062</td>
<td>0.20</td>
</tr>
<tr>
<td>" Carbonate of Lime</td>
<td>0.03301 and Magnesia</td>
<td>1000:0000</td>
</tr>
</tbody>
</table>

Iodine has been found in the Mediterranean by Balard.

Physiological Uses and Effects.—Sea water, taken internally, excites thirst, readily nauseates, and, in full doses, occasions vomiting and purging. The repeated use of it, in moderate doses, has been found beneficial, on account of its alterative and resolvent operation in scrofulous affections, especially glandular enlargements and masticaric diseases. Its topical action is more stimulant than common water. It is used as an embrocation in chronic diseases of the joints. Employed as a bath, it more speedily and certainly causes the reaction and glow; and, consequently, the sea-water bath may be used for a longer period, without causing exhaustion, than the common water bath. It is a popular opinion, which is perhaps well founded, that

patients are less likely to take cold after the use of salt water bath, than after the employment of common water.

From sea water is procured Sulphate of Magnesia.

BALNEUM MARIS FACTITIUM: Artificial Sea-Water Bath.—A solution of one part of common salt (Chloride of Sodium) in thirty parts of water is a cheap substitute for a sea-water bath. When, however, a more faithful imitation of sea water is desired, the following formula may be used:—Common Salt, 390 grs.; Crystallized Sulphate of Soda, 172 grs.; Crystallized Chloride of Calcium, 36 grs.; Crystallized Chloride of Magnesium, 144 grs.; Water, 1 wine quart. To these, 1 grain of Iodide of Potassium, and the like quantity of Bromide of Potassium, be added, the imitation will be still more faithful.

γ. AQUE MINERALES.—MINERAL WATERS.

HISTORY.—Mineral waters were known to mankind in remote periods of antiquity, and were employed, medicinally, as external and internal agents, for the prevention, alleviation, and cure of diseases. Homer speaks of tepid and cold springs. Asclepiades, or followers of Æsculapius, erected their temples in the neighbourhood of mineral and thermal waters. Hippocrates speaks of mineral waters, though he does not prescribe them for the curing of particular diseases. Pliny notices their medicinal properties.

NATURAL HISTORY.—The principal source of mineral waters is the earth, from which water is obtained in the form of snow, hail, and dew, and which after percolating a certain portion of the earth, and dissolving various substances in its passage, rises to the surface at the bottom of declivities (spring water), or is yielded by sinking pits or wells (well water). But springs are sometimes observed under circumstances which are inconsistent with the supposition of their atmospheric origin. “The boiling springs which emerge on the verge of perpetual snows, at an altitude of 13,000 feet above the level of the sea, as in the Himalayas, or be derived from the atmosphere, not to mention the peculiar nature of the Icelandic Geysers.” Other sources, therefore, have been sought for, and the writer just quoted enumerates three; viz., the focus of volcanic activity, the great mass of the ocean, or other sources of salt water and subterranean reservoirs.

Considered with reference to their temperature, mineral wa...
introduction to cold and hot. The hot or thermal waters are those
which possess a temperature more or less elevated above the mean
latitude or elevation at which they are found, and the changes
in this, if any, observe no regular periods coincident with the
changes of the seasons. Three causes have been assigned as the
source of the heat of mineral waters; viz. volcanic action, now in existence;
volcanic action, now extinguished, but
the effects of which still remain; and, a
central cause of heat, which increases as
we descend from the surface to the in-
terior of the earth.

The Geyser, or boiling springs, of Ice-
land, are evidently connected with volcanic
action. They are intermittent fountains,
which throw up boiling water and spray
to a great height into the air.

The origin of the saline and other con-
stituents is another interesting topic of
inquiry connected with the natural history
of mineral springs. As water in its
passage through the different strata of the
earth come in contact with various substances which are soluble
refer certain constituents of mineral waters to solution and
in merely: as chloride of sodium, carbonates of lime and
iodides and bromides of sodium and magnesium, iron,
and. Chemical action must, in some cases, be the source of
constituents. Thus sulphured hydrogen is probably pro-
duced by the action of water on some metallic sulphuret (es-
pecially tellurium): sulphurous and sulphuric acid, from the oxidation and
tion of sulphur, free or combined. The carbonic acid found
in effervescing or carbonated waters is referable to the decomposi-
tion of carbonate of lime, either by heat or by the action of sulphuric
acid. Hydrochloric acid is doubtless produced by the decomposition
of chloride or muriate (probably chloride of sodium or sal
ic). Carbonate of soda must also be considered as the pro-
duct of a chemical process; thus, that found in the natron lakes
is supposed to be formed by the action of chloride of sodium
mate of lime.

"The different orifices of the Karlsbad
discharge annually about 13,000 tons of carbonate of soda,
00 of the sulphate in the crystallized state;" but a "very
calculation is sufficient to shew, that the Donnersberg alone,
est of the Bohemian Mittelgebirge, a cone of clinkstone

op. cit.

3. op. cit. p. 332.
2,500 feet in elevation, contains soda enough to supply the Karlsbad waters alone for more than 30,000 years. 5

Division and Properties.—Mineral waters may be classified according to their temperature, their chemical composition, or their medicinal properties. But hitherto no satisfactory classification has been effected by any of these methods, nor perhaps can it be formed. The most convenient arrangement is that founded on chemical composition, and which consists in grouping mineral waters in four classes.

Class I. Chalybeate or Ferruginous Waters.

(Aquae ferruginosae seu martiales.)

These are mineral waters whose predominating or active principle is iron. Most mineral waters contain this metal, but the term chalybeate is not applied to them unless the quantity of iron be considerable in proportion to the other constituents. These waters have an inky or styptic taste, and become purplish black on the addition of tannic or gallic acid (or substances, as galls and tea, which contain one or both of these acids). Waters which contain the protosalts of iron yield, on the addition of ferrocyanide of potassium, a white precipitate, which becomes blue by exposure to the air. Those which contain the sesquisalts of iron give a blue precipitate with ferrocyanide of potassium, and become red on the addition of sulphocyanide of potassium.

Chalybeate waters are of two kinds, carbonated and sulphated.

Order I. Carbonated Chalybeate Waters.—These waters contain the carbonate of the protoxide of iron. By exposure to the air, or by boiling, they attract oxygen, evolve carbonic acid, and deposit the whole of the iron in the form of sesquioxide.

When the carbonate of iron is associated with a large quantity of carbonic acid, which renders the waters brisk, sparkling, and acidulous, they are designated highly carbonated or acidulo-carbonated chalybeates, or acidulo-ferruginous waters. The Spa and Pyrmont waters are of this kind. When, however, the quantity of carbonic acid is not large, and the waters do not sparkle in the glass, they are termed simply carbonated chalybeates, or, from the earthy and alkaline salts which they contain, saline carbonated chalybeates. The waters of Tunbridge Wells, Oddy's saline chalybeate at Harrowgate, and the Islington Spa near London, are of this kind.

Order 2. Sulphated Chalybeates.—These contain sulphate of iron. Neither exposure to the air nor boiling precipitates all the iron, and in this respect the sulphated chalybeates are distinguished from the carbonated ones. Some of them contain sulphate of alumina, and are designated aluminous sulphated chalybeates. Of these the Sand Rock Spring, in the Isle of Wight, the Strong Mollis Chalybeate, Vicar's Bridge Chalybeate, and the Passy waters, are examples. The waters of Buckowina, in Silesia, are of this kind; but they contain also chloride of iron. Those sulphated chalybeates which are devoid of sulphate of alumina, may be termed simply sulphated chalybeates.

The Chalybeate waters operate in a similar manner to the other ferruginous compounds hereafter to be noticed. They are stimulant, tonic, and astringent. By repeated use they cause blackening of the

MINERAL WATERS.

The acidulated carbonated chalybeates sit more easily on the stomach than other ferruginous agents, in consequence of the excess of the acid which they contain. The aluminous chalybeates are apt to occasion cardialgia, especially if taken in the undiluted state. The use of this class of waters is indicated in cases of jaundice; especially when accompanied with that condition of the system which is general in chronic anemia. They have long obtained a high celebrity for the relief of complaints peculiar to the female sex. Their employment is contra-indicated in plethoric, inflammatory, and febrile conditions of the system.

CLASS 2. SULPHUREOUS OR HEPATIC WATERS.

(Aqua Sulphureas seu Hepaticae.)

These waters are impregnated with hydrosulphuric acid (sulphated hydrogen); in consequence of which they have the odour of eggs, and cause black precipitates (metallic sulphurets) with the solutions of the salts of lead, silver, copper, bismuth, &c. Those waters which retain, after ebullition, their power of causing blackening precipitates, contain a sulphuret (hydrosulphuret) in solution, either of calcium or sodium. All the British sulphureous waters are impregnated with some variety of salt of the continental ones are thermal. The most celebrated sulphureous waters of England are those of Harrowgate; those of Scotland are Moffat and Ros drastically; of the continent, Enghein, Reims, Aix, Aix-la-Chapelle, and Baden.

G. GARDNER'S TABLE OF THE QUANTITY OF SULPHURETTED HYDROGEN IN SULPHUREOUS WATERS.

<table>
<thead>
<tr>
<th>Cubic inches of the Water of Gas</th>
<th>Cubic inches</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barèges in the Pyrenees, contains</td>
<td>20°0 Lüdemann,</td>
<td></td>
</tr>
<tr>
<td>Canet in ditto</td>
<td>30°0 Ditto,</td>
<td></td>
</tr>
<tr>
<td>St. Sauveur in ditto</td>
<td>16°6 Ditto,</td>
<td></td>
</tr>
<tr>
<td>Schirmbach in C. Aargau in Switz.</td>
<td>30°11 Peschier,</td>
<td></td>
</tr>
<tr>
<td>Aachen in the Lower Rhine</td>
<td>43°78 Monheim,</td>
<td></td>
</tr>
<tr>
<td>Warmbronn in Rilesia</td>
<td>17°17 Osann,</td>
<td></td>
</tr>
<tr>
<td>Landes in county of Göttin</td>
<td>14°88 Ditto,</td>
<td></td>
</tr>
<tr>
<td>Baden near Vienna</td>
<td>11°83 Ditto,</td>
<td></td>
</tr>
</tbody>
</table>

Harrowgate in England (old well) | 5°04 Scudamore, |
Moffat in Scotland | 7°55 Thomson, |
Strathpeffer in ditto (upper well) | 9°44 Ditto, |
Enghein in France | 1°09 Longchamps, |
Neunndorf in Hesse | 40°00 Osann, |
Winnls in Hanover | 61°31 Ditto, |
Elisen in Luppe | 27°81 Ditto, |
Meinberg in ditto | 30°91 Ditto, |
Weilbach in Nassau | 22°32 Ditto, |
Serra in Thuringia | 20°50 Ditto, |
Bocklet in Franconia | 17°17 Ditto, |
Döber in Mecklenburg | 18°20 Ditto, |
Bendheim in Germany | 15°43 Ditto, |
Sironbad in Hesse | 2°63 Rühner, |
Dinkhold in Nassau | 8°6 Kolb, |

Dr. A. Hunter's "Treatise on the Mineral Waters of Harrowgate." Lond. 1836.

Dr. Hunter has admitted the waters of Cheltenham into this list, in consequence of the extreme importance of the sulphureous impregnation. Other reasons, however, render it very doubtful if any of these springs represent their natural composition.—M. G.

G. Creve (Stifts Nussau, p. 577).—M. G.
The general operation of these waters is stimulant, and is adapted for chronic complaints. They are supposed to possess a specific power over the cutaneous and uterine systems. They are employed both as external and internal agents; in chronic skin diseases—lepra, psoriasis, scabies, pityriasis, herpes, &c.—in derangements of the uterine functions (amenorrhoea and chlorosis)—in old syphilitic cases—in chronic rheumatism and gout, and in other diseases, in which sulphur or its compounds have been found serviceable which will be noticed hereafter. On account of their stimulant effects, they are contra-indicated in all plethoric and inflamed conditions of the system, and their employment requires care, especially in weak and irritable constitutions.

CLASS 3. ACIDULOUS OR CARBONATED WATERS.
(Aqua Acidula.)

These waters owe their remarkable qualities to carbonic acid, which gives them an acidulous taste, a briskness, a sparkling property, and the power of reddening litmus slightly, but fugaciously, and of precipitating lime and baryta waters. When they have been exposed to the air for a short time, this gas escapes from them, and the waters lose their characteristic properties.

Most mineral and common waters contain a greater or less quantity of free carbonic acid. Ordinary spring or well waters do not contain more than three or four cubic inches of carbonic acid in 100 cubic inches of water. Dr. Henry found, in one experiment, 3.38 inches of gas. But the waters called acidulous or carbonated contain a much larger quantity. Those which have from 30 to 60 cubic inches of gas are considered rich; but the richest have from 100 to 200 or more inches of gas. Alibert states, that the waters of Sainte Taire contain 400 cubic inches in 100 of the water.

Most of the waters of this class contain carbonate or bicarbonate of soda: these are termed acidulo-alkaline. The Selters (often called Seltzer), Altewater, Saltzbrom, Reinerz, and Pyrmont waters, belong to this kind. Frequently they contain carbonate of the protoxides of iron also; they are then termed the acidulous carbonated chalky waters which have been already noticed.

The only acidulous or carbonated spring in Great Britain is that of Ilkeston, near Nottingham, and which has been described by Mr. A. F. A. Greeves, and by Dr. T. Thomson.

1 See some Observations on the Efficacy of Sulphureous Waters in Chronic Complaints, Armstrong, in his Practical Illustrations of the Scarlet Fever, 2d ed. Lond. 1818.
2 Thomson’s System Chem. vol. ii. p. 193, 6th edit.
3 Gairdner, op. cit. p. 30.
4 Nouveaux Elements de Therapeutique, tom. 2e, p. 517, 5e ed.
6 Account of the Medicinal Water of Ilkeston, 1833.
7 Cyclopaedia of Practical Medicine, art. Waters, Mineral.
Mineral Waters

Dr. M. Gairdner's Table of the Quantity of Carbonic Acid in Acidulous Waters

<table>
<thead>
<tr>
<th>Cubic Inches of Water of Gas</th>
<th>Temp.</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bath in England, contains</td>
<td>41/4</td>
<td>114° F.</td>
</tr>
<tr>
<td>Bristol in do.</td>
<td>132/4</td>
<td>74</td>
</tr>
<tr>
<td>Buxton in do.</td>
<td>02/449</td>
<td>82</td>
</tr>
<tr>
<td>St.-Nectaire in France</td>
<td>4001/4</td>
<td>75</td>
</tr>
<tr>
<td>Karlsbad in Bohemia</td>
<td>1101/4</td>
<td>65</td>
</tr>
<tr>
<td>Gurgitello in Ischia</td>
<td>891/414</td>
<td>122</td>
</tr>
<tr>
<td>Caractaca in Spain</td>
<td>101/470</td>
<td>66</td>
</tr>
<tr>
<td>Maschinka in the Caucasus</td>
<td>601/49</td>
<td>118</td>
</tr>
<tr>
<td>Eisenberg in do.</td>
<td>321/47</td>
<td>108</td>
</tr>
<tr>
<td>Peterquelle in do.</td>
<td>21/40</td>
<td>199</td>
</tr>
<tr>
<td>Schloffenbad in Nasso (Schachthrun)</td>
<td>51/40</td>
<td>87</td>
</tr>
<tr>
<td>Rms in do. (Krânchessquelle)</td>
<td>591/49</td>
<td>86</td>
</tr>
<tr>
<td>Ditto (at Wall of Lake)</td>
<td>431/41</td>
<td>123</td>
</tr>
<tr>
<td>Wiesbaden in do. (No. L.)</td>
<td>101/47</td>
<td>158</td>
</tr>
</tbody>
</table>

Tunbridge in England | 3486 | Scudamore. |
Harrowgate in do. (old sulphur well) | 4128 | Ditto. |
Cheltenham in do. (old well) | 1250 | Fothergill, 1788. |
Pitcairthly in Scotland | 3463 | Murray. |
Andaluca in France | 1009 | Berard. |
Englisch the Bains in do. | 3074 | Longchamps. |
Godesheim in Germany | 2391/4 | Witting. |
Cudows in county of Glatz | 2021/4 | Mogulla. |
Pyrmont in Germany | 1511/4 | Brandes. |
Königswart in Bohemia | 1391/4 | Wetzler. |
Schwalin in the Wetteran | 1301/4 | Würen. |
Boeklet in Franchea | 1131/4 | Vogelmann. |
Franzenbad in Bohemia | 881/467 | Trommadorff. |
Geiss in the Lahn | 1631/4 | Bischof. |
Fachingen in do. | 1341/4 | Ditto. |
Selters in Nasso (Niedder) | 1061/4 | Ditto. |
Tenn in Wurtemburg | 1091/4 | Trommadorff. |
Tarasp in Switzerland | 1091/4 | Capeller. |
Kissingen in Germany | 851/4 | Vogel. |
Billin in Bohemia | 741/49 | Kühner. |
Wiesbaden in Nasso | 741/49 | Hildebrandt. |
Spa in Germany | 741/445 | Reuss. |
Ballstown, State of New York | 3001/4 | Rube. |
Kießlodek in the Caucasus | 1511/4 | Memhein. |
Dinkhold in Nassa | 1431/4 | Hosack. |
Oberlahenstein in do. | 551/4 | Hermann. |
Mairenfeld in do. | 291/4 | Kolb. |
Soden in do. | 88 1/4 | Amburger. |
Cromberg in do. | 101/42 | Kastner. |
Montabaur in do. | 531/4 | Jacob. |
Bruchbad in do. (saltborn) | 581/4 | Bruckmann. |
Langenschanzbad (Weinbrunn) | 891/4 | Kastner. |
Maienbad in Bohemia (kreutbr.).| 1201/4 | Streue. |
Salschafler in do. | 261/4 | Ditto. |
Püllin in do. | 61/49 | Ditto. |

These acidulous waters which owe their medicinal activity principally to the carbonic acid which they contain, act chiefly on the digestive, renal, and nervous systems; but their effects are transient. They are cooling, refreshing, and exhilarating, and frequently relieve a sensation of fulness in the head, or even produce temporary intoxication. They are used in some disorders.
conditions of the digestive organs, especially when combined with hepatic derangement, in dropsical complaints, in uterine complaints, and in various other cases, which will be more fully noticed when treating of carbonic acid. When the acidulous waters of the protocarbonate of iron, their effects and uses are analogous to those of the ferruginous springs already noticed. The acidulous waters are useful in the lithic acid diathesis, in gout and rheumatism, &c. The acidulous or carbonated waters are objectionable, on account of their stimulating effects, in febrile, inflammatory, and asthmatic subjects.

CLASS 4. SALINE WATERS.

(Aqua Salina.)

These waters owe their medicinal activity to their saline constituents; for although they usually contain carbonic acid, and sometimes oxide of iron or hydrospurhuric acid, yet these substances are found in such small quantities as to contribute very slightly to the medicinal operation of the water.

Saline mineral waters may be conveniently divided into five according to the nature of the predominating ingredient.

Order 1. Purging saline waters. — The leading active ingredient of the waters of this order is either the sulphate of soda or the sulphate of magnesium, but the chlorides of calcium and magnesium, which are usually present, contribute to their medicinal efficacy. Those springs, in which the sulphate predominates, are called bitter—as those of Epsom, Scarbor, Seidlitz, Saidischütz, and Pullna. The springs of Cheltenham, Leamington, and Spital, contain sulphate of soda. In full doses the waters of this class are mild cathartics. In small and repeated doses they act as refrigerants and tonics. They are useful in diseased liver, dropsical complaints, habitual constipation, hemorrhoids, determination of blood to the head, &c. The springs of Marienbad, and Franzensbrunn, contain carbonate as well as sulphate of soda.

Order 2. Saline or Brine Waters. — The characteristic ingredient of these waters is chloride of sodium. Iodine or bromine, or both, have been recognised in some of them, and doubtless contribute somewhat to the medicinal effects. The most important brine springs of England are those of Middlewich and Nantwich in Cheshire; Shirley's well, in Staffordshire; and Droitwich, in Worcestershire. The springs of Ashby-de-la-Zouch, in Leicestershire, contain, besides chloride of sodium, a considerable quantity of chloride of calcium. Taken in large quantities, saline or brine waters are emetic and purgative. In small but constant doses they act as alteratives, and are supposed to stimulate the absorbent surfaces. They have been principally celebrated in glandular enlargements, especially those which are of a scrofulous nature. The waters of Wisbaden, Baden-Baden, and Bourbonne, are thermal saline waters. The water of the Dead Sea, arranged among saline mineral waters.

Order 3. Calcareous Waters. — Those saline mineral springs whose predominating constituent is either sulphate or carbonate of lime, or both, are designated calcareous waters. The Bath, Bristol, and Buxton thermal waters belong to this kind. When taken internally, their usual effects are stimulant (both

* See Dr. Short's *Natural, Experimental, and Medicinal History of the Mineral Waters of Cheshire, Lincolnshire, and Yorkshire, particularly of Scarborough*. Lond. 1794.
* See Dr. Scundmore on *Cheltenham Waters*, in his work on *Mineral Waters before quoted*. Macaboe's *Treatise on the Cheltenham Waters*. Lond.
* See Dr. Lamb's *Analysis, in the Manchester Memoir*. vol. v.—Also Dr. Scundmore's was quoted; and Dr. London's *Practical Dissertation on the Waters of Leamington Spa*. 1829.
circulation and the urinary and cutaneous secretions), alterative, and constipating; and are referrible, in part, to the temperature of the water, in part to the saline constituents. Employed as baths, they are probably not much superior to common water heated to the proper temperature; but they have been much celebrated in the cure of rheumatism, chronic skin diseases, &c. Bath water is generally employed, both as a bath and as an internal medicine, in various chronic diseases admitting of, or requiring, the use of a gentle but continued stimulus; as chloasma, hepatic affections, gout, rheumatism, leprosy, &c. Buxton water, taken internally, has been found serviceable in disordered conditions of the digestive organs, consequent on high indulgence and intemperance; in calculous complaints, and in gout: employed externally, it has been principally celebrated in rheumatism.

The water of Bristol Hot-well is taken in dyspeptic complaints and pulmonary consumption.

Order 4. Alkaline Waters.—The mineral waters denominated alkaline, contain carbonate or bicarbonate of soda as their characteristic ingredient. The springs of Teplitz, Ems, and Vichy, belong to this order. They pass insensibly into, and are, therefore, closely related to, the waters of the preceding classes. Thus, springs which contain carbonate of soda, with a considerable excess of carbonic acid (as those of Carlsbad and Selter), are denominated acidoalcaline, and have been already noticed among the acido-carbonated waters. Those in which carbonate of soda is associated with protocarbonate of iron and excess of carbonic acid, have been referred to under the head of acido-carbonated chalybeates. The only waters in this country which contain carbonate of soda, are those of Malvern, in Worcestershire; and Ilkesdon, in Derbyshire, near Nottingham; but the quantity in both cases is very small. The first, which is a very pure water, contains only 0·61 parts of the carbonate in 10,000 of the water, and the second 3·35 grains in an imperial pint. For external use, the alkaline waters are principally valuable on account of their detergent qualities. When taken internally, they act on the urinary organs. They may be employed in calculous complaints connected with lithic and diathesis, in gout, in dyspepsia, &c.

Order 5. Siliceous Waters.—Most mineral waters contain traces of siliceous body, and some contain it in such abundance that they have been denominated siliceous. Thus, in the boiling springs of Geyser and Reikum, in Iceland, it amounts to nearly one-half of all the solid constituents. In these waters the silica is associated with soda (silicate of soda), sulphate of soda, and chloride of sodium. I am unacquainted with their action on the body. It is probably similar to that of the alkaline waters.

For the following table of the composition of some of the most celebrated mineral waters, I am indebted to Dr. Gairdner's work:—

8 For an account of the Bath waters, see Whin Oliver, *A Practical Dissertation on Bath Waters*. Lond. 1716.
9 R. Sutherland, *Natural History, Analysis, and General Virtues of the Bath and Bristol Waters*. Lond. 1763.
13 Mr. Skey, *A Practical Treatise on the Bath Waters*. Lond. 1822.
14 In the Buxton Waters, see an anonymous *Treatise on the Nature and Virtues of Buxton Water*, Lond. 1761; Dr. G. Pearson's *Observations and Experiments in the Chemical History of the Triggy Springs of Buxton*, Lond. 1784; Dr. James Denman's *Observations on the Effects of Buxton Water*, Lond. 1793; Mr. W. H. Robertson's *Medical Property of Buxton Water*, Lond. 1797.
15 Sir C. Scalmore's work already quoted.
16 Consult Dr. Carrick's *Dissertation on the Chemical and Medical Properties of the Bristol Hot-well Water*. Bristol, 1797.
18 See p. 214.
19 See the *Internal Use of Waters of Carlsbad*. Lond. 1784.
21 Dr. Black's analysis, in the *Transactions of the Royal Soc. of Edin.* vol. iii; also, Faraday's, in *his Visit to Iceland.*
22 See *the Natural History, Origin, Composition, and Medicinal Effects of Mineral and Wild Springs*. Lond. 1832.
Fixed Constituents

Entering into the Composition of Some of the More Celebrated Mineral Springs.

Proportions in 10,000 Parts of Water.

Note.—In reducing the analyses contained in this Table to a uniform measure, in order to render them susceptible of direct comparison with each other, I have assumed the old English gallon as = 58,338 grains; the wine pint = 7305 gra.; the imperial gallon = 70,000 gra.; and the German 16-ounce measure = 7358 gra.

The different salts have been reduced to their elementary constituents by Wollaston's scale of chemical equivalents.

Thermal

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Acids (ppm)</th>
<th>Bases</th>
<th>Sum (ppm)</th>
<th>Authority and Date</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Carbonate</td>
<td>Sulphate</td>
<td>Magnesium</td>
<td>Silica</td>
<td></td>
</tr>
<tr>
<td>San Restituta</td>
<td>Ischia</td>
<td>0</td>
<td>10'90</td>
<td>20'05</td>
<td>3'30</td>
<td>0'40</td>
</tr>
<tr>
<td>Gurgitello</td>
<td>Ditto.</td>
<td>14'05</td>
<td>9'05</td>
<td>11'18</td>
<td>3'19</td>
<td>0'40</td>
</tr>
<tr>
<td>Wiesbaden</td>
<td>Nassau.</td>
<td>1'38</td>
<td>0'97</td>
<td>33'09</td>
<td>0'03</td>
<td>0'26</td>
</tr>
<tr>
<td>Carlsbad Sprudel</td>
<td>Bohemia</td>
<td>7'45</td>
<td>14'50</td>
<td>6'40</td>
<td>0'02</td>
<td>0'75</td>
</tr>
<tr>
<td>St. Nectaire</td>
<td>France.</td>
<td>15'13</td>
<td>9'07</td>
<td>13'00</td>
<td>0'14</td>
<td>1'00</td>
</tr>
<tr>
<td>Vichy</td>
<td>Ditto.</td>
<td>15'05</td>
<td>1'05</td>
<td>0'72</td>
<td>0'01</td>
<td>0</td>
</tr>
<tr>
<td>Ens (Kränchesquelle)</td>
<td>Nassau</td>
<td>20'32</td>
<td>0'76</td>
<td>2'33</td>
<td>14'47</td>
<td>2'65</td>
</tr>
<tr>
<td>Gmietenlo</td>
<td>Ischia</td>
<td>0</td>
<td>0'00</td>
<td>5'95</td>
<td>5'95</td>
<td>1'00</td>
</tr>
<tr>
<td>Bath (King's Bath)</td>
<td>England</td>
<td>2'38</td>
<td>8'71</td>
<td>0</td>
<td>2'79</td>
<td>5'20</td>
</tr>
<tr>
<td>Mont d'Or</td>
<td>England</td>
<td>2'36</td>
<td>9'36</td>
<td>2'03</td>
<td>4'74</td>
<td>9'00</td>
</tr>
<tr>
<td>Geyser</td>
<td>Iceland</td>
<td>0</td>
<td>0'11</td>
<td>1'32</td>
<td>2'74</td>
<td>0</td>
</tr>
<tr>
<td>Location</td>
<td>Country</td>
<td>Analyses</td>
<td>Composition</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leamington (Royal Pump)</td>
<td>England</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harrowgate (old sulphur well)</td>
<td>Scotland</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airthry (first spring)</td>
<td>Scotland</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheltenham (old well)</td>
<td>Scotland</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hartfell (luminous chalky)</td>
<td>England</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>England</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marienbad (Ferdinand'squelle)</td>
<td>Bohemia</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunkberg (north spring)</td>
<td>Scotland</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vals</td>
<td>France</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Böhl</td>
<td>Bohemia</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franzendorf (Franzensbrunn)</td>
<td>Dito</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fulda</td>
<td>Germany</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roisdorf</td>
<td>Prussia</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epsom</td>
<td>England</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selbers (Nieder)</td>
<td>Nassau</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fachingen</td>
<td>Dito</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seden</td>
<td>Dito</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moffat</td>
<td>Germany</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrmont</td>
<td>Germany</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marienfels</td>
<td>Nassau</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straßheffer (pump-room)</td>
<td>Scotland</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelinau</td>
<td>Scotland</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weißbach</td>
<td>Dito</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hartfell Spa</td>
<td>Scotland</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langenschwalbach (Weinbrunn)</td>
<td>Dito</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spa</td>
<td>Germany</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlsbad (Sauerling)</td>
<td>Bohemia</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunbridge</td>
<td>England</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matyera</td>
<td>Dito</td>
<td>0 29 50 71 90 57 89 12 00 4 95 1 09</td>
<td>Trace of iod. & brom. by Du Bouley.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For further details, respecting mineral waters in general reader is referred to the following works:—

Dr. D. Munro, *Treatise on Mineral Waters*. Lond. 1770.
Dr. W. Saunders, *Treatise on the Chemical History and Medical Powers of some of the most celebrated Mineral Waters*. Lond. 1800.

Mr. Lee, *An Account of the most frequented Watering Places on the Continent*. Lond. 1835.
Dr. A. H. Granville, *The Spas of Germany*. Lond. 1837. 2nd ed. 1838.
Dr. Lee, *Principal Baths of Germany*. 1840.
Dr. J. Johnson, *Pilgrimage to the Spas*. Lond. 1841.

ARTIFICIAL MINERAL WATERS.—In this country the demand for artificial mineral waters is exceedingly limited, and I do not think it necessary to enter into any details respecting their manufacture; but shall content myself with referring those interested in the matter to the works of Soubirian and Guibourt for full details.

3. ACIDUM HYDROCHLORICUM.—HYDROCHLORIC ACID

HISTORY AND SYNONYMES.—Liquid hydrochloric acid was probably known to Geber, the Arabian chemist, in the eighth century. The present mode of obtaining it was contrived by Glauber. Modern chemists term it chlorhydric acid. Scheele, in 1774, was the first person who entertained a correct notion of its composition. To Sir H. Davy we are principally indebted for the establishment of Scheele’s opinion.

NATURAL HISTORY.—It is found in both kingdoms of nature.

A. IN THE INORGANISED KINGDOM.—Hydrochloric acid is one of the gaseous products of volcanoes. Combined with ammonia, we find it in volcanic regions.

B. IN THE ORGANISED KINGDOM.—Free hydrochloric acid is an essential constituent of the gastric juice in the human subject. Hydrochlorate of am- (sal ammoniac) was first introduced to the world by Berzelius, in the urine. Chevreul states that it is a common constituent of the juice of *Iatis tinctoria*.

1. GASEOUS HYDROCHLORIC ACID.

PREPARATION.—Hydrochloric acid, in the gaseous state, is procured by the action of oil of vitriol on dried chloride of sodium. The ingredients should be introduced into a tubulated retort, the neck of which is lined with bibulous paper, and the gas collected over water. Or they may be placed in a clean and dry oil flask, and the gas conveyed, by means of a glass tube curved twice at right angles, into a proper receptacle, as a bottle, from which the gas expels air by its greater gravity.

* Nouveau Traité de Pharmacie, t. ii. 2nd ed. Paris, 1840.
* The manufacture of Soda and Magnesium Waters will be described hereafter.
this process, one equivalent or 60 parts of chloride of sodium on one equivalent or 49 parts of the protohydrate of sulphuric (strong oil of vitriol), and produce one equivalent or 37 parts of chlohydric acid (gas), and one equivalent or 72 parts of the sulphate of soda.

Properties.—It is a colourless invisible gas, fuming in the air, in consequence of its affinity for aqueous vapour. It is rapidly absorbed by water. Its specific gravity is, according to Dr. Thomson, 1·2847 (Berzelius). It has a pungent odour and acid taste. Under pressure (40 atmospheres) it becomes liquid. It is neither flammable nor a supporter of combustion. When added to a base (as, a metallic oxide), water and a chloride are the results. The specific gravity of hydrochloric acid is 37 [36·47 Berzelius; 36·42 Whit].

Characteristics.—Hydrochloric acid gas is known by its fuming in air, by its odour, by its reddening moistened litmus paper, by forming white fumes with the vapour of ammonia, and by its action on a solution of nitrate of silver, as will be mentioned when giving the liquid acid.

Composition.—The composition of this gas is determined both by analysis and synthesis. Thus, one volume of chlorine gas may be combined with one volume of hydrogen gas, by the aid of heat, or electricity, and the resulting compound is two volumes of hydrochloric acid gas. Potassium or zinc heated in this acid gas, as the chlorine and leaves a volume of hydrogen.

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Results</th>
<th>Volume</th>
<th>Sp. gr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>1</td>
<td>36</td>
<td>97·297</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>1</td>
<td>1</td>
<td>2·022</td>
</tr>
<tr>
<td>Hydrochloric Acid</td>
<td>1</td>
<td>37</td>
<td>100·000</td>
</tr>
</tbody>
</table>

Physiological Effects.

a. On Vegetables.—Mixed with 20,000 its volume of atmospheric air, this gas is said, by Drs. Chris- and Turner, to have proved fatal to plants, shrivelling and withering the leaves in twenty-four hours. But according to Messrs. Tsalson, it is not injurious to vegetables when mixed with 1500 its volume of air. Dr. Christison ascribes these different effects to Messrs. Rogerson having employed jars of too small size.

Christison's Treatise on Poisons.

London Medical Gazette, vol. x. p. 312.
We have good evidence of the poisonous operation of this gas on vegetables in the neighbourhood of those chemical manufactories in which carbonate of soda is procured from common salt. The fumes of the acid which issue from these works have proved so destructive to the surrounding vegetation, that in some instances the proprietors have subjected themselves to actions at law, and have been compelled either to pay damages, or to purchase the land in their immediate vicinity.

\(\beta \). On Animals this gas acts injuriously, even when mixed with 1500 times its volume of atmospheric air. Mice or birds introduced into the pure gas, struggle, gasp, and die within two or three minutes. Diluted with atmospheric air, the effects are of course milder, and in a ratio to the quantity of air present. In horses it excites cough and difficulty of breathing. When animals are confined in the dilute gas, in addition to the laborious and quickened respiration, convulsions occur before death. Messrs. Rogerson state, that “in a legal suit for a general nuisance, tried at the Kirkdale Sessions-house, Liverpool, it was proved that horses, cattle, and men in passing an alkali-works, were made, by inhaling this gas, to cough, and to have their breathing much affected. In the case of Whitehouse v. Stevenson, for a special nuisance, lately tried at the Staffordshire assizes, it was proved that the muriatic acid gas from a soap manufactory destroyed vegetation, and that passengers were seized with a violent sneezing, coughing, and occasional vomiting. One witness stated, that when he was driving a plough, and saw the fog, he was obliged to let the horses loose, when they would gallop away till they got clear of it.” It acts as an irritant on all the mucous membranes.

\(\gamma \). On Man this gas acts as an irritant poison, causing difficult respiration, cough, and sense of suffocation. In Mr. Rogerson’s case it caused also swelling and inflammation of the throat. Both in man and animals it has appeared to produce sleep.

The action of hydrochloric acid gas on the lungs is injurious in at least two ways: by excluding atmospheric air, it prevents the decarbonization of the blood; and, secondly, by its irritant, and perhaps also by its chemical properties, it alters the physical condition of the bronchial membrane. The first effect of attempting to inspire the pure gas seems to be a spasmodic closure of the glottis. Applied to the conjunctiva, it causes irritation and opacity.

Use.—It has been employed as a disinfectant, but is admitted by all hands to be much inferior to chlorine. The Messrs. Rogerson deny that it possesses any disinfecting property. It is perhaps equally difficult either to prove or disprove its powers in this respect. The experiments of Guyton-Morveau, in purifying the cathedral of Dijon, in 1773, are usually referred to in proof of its disinfecting property. If it possess powers of this kind, they are certainly inferior to chlorine, or the chlorides [hypochlorites] of lime or soda, but, in the absence of these, hydrochloric acid gas may be used. In neutralizing the vapour of ammonia it is certainly powerful.

Application.—In order to fumigate a room, building, or vessel
LIQUID HYDROCHLORIC ACID.

In this gas, pour some strong oil of vitriol over dried common salt, ced in a glass capsule or iron or earthen pot, heated by a charcoal or hot sand.

ANTIDOTE.—Inhaling the vapour of ammonia may be serviceable neutralizing hydrochloric acid gas. Symptoms of bronchial inflammation are of course to be treated in the usual way.

2. LIQUID HYDROCHLORIC ACID.

Acidum Hydrochloricum, L. Acidum Muraticum, E. D. Hydrochloric Acid, E. Muriatic or Marine Acid; Spiritus Salis, or Spirit of Salt.

PREPARATION.—This is obtained by submitting a mixture of Common Salt (chloride of sodium) and Oil of Vitriol to distillation in a proper apparatus, and condensing the Hydrochloric Acid gas which rises over in water contained in the receiver. Manufacturers of

Fig. 50.

![Apparatus for making Hydrochloric Acid.](image)

hydrochloric acid generally employ an iron or stoneware pot set in brickwork over a fire-place, with a stoneware head luted to it, and connected with a row of double-necked bottles, made of the same material, and furnished with stop-cocks of earthenware. The first bottle is supplied with a safety tube, dipping into a vessel of water (fig. 50).

The liquid obtained by this process is yellow, and constitutes commercial Muriatic Acid (Acidum Muriaticum venale; Hydrochloric Acid of Commerce, Ph. Ed.).

Since the manufacture of carbonate of soda from the sulphate of soda, and the consequent necessity of obtaining the latter salt in large quantities, another mode of making hydrochloric acid has been sometimes adopted. It consists in using a semi-cylindrical vessel for the retort: the upper or flat surface of which is made of stone, while the curved portion exposed to the fire is formed of iron. The chloride of sodium is introduced at one end, which is then closed by an iron plate, perforated to allow the introduction of the leg of a curved leaden funnel, through which strong sulphuric acid is poured. The funnel is then removed, and the aperture closed. Heat being applied, the hydrochloric acid gas is decomposed, and is conveyed by a pipe into a double-necked stoneware bottle, half filled with water, and connected with a row of similar bottles likewise containing water.

The British Pharmacopoeias give directions for making hydro-
chloric acid. The Edinburgh College directs the common salt to be previously purified—

"by dissolving it in boiling water; concentrating the solution; skimming off the crystals as they form on the surface; draining from them the adhering solution as much as possible; and, subsequently, washing them with cold water slightly."

The London College uses Chloride of Sodium dried, lbij.; Sulphuric Acid, $\frac{3}{8}x$; Distilled Water, $f_{\frac{3}{8}xxiv}$. The Edinburgh College employs equal weights of Purified Salt, Pure Sulphuric Acid, and Water. The Dublin College orders of Dried Muriate of Soda, 100 parts; Sulphuric Acid of commerce, 87 parts; and Water, 124 parts. The Chloride of Sodium is to be introduced into a glass retort, and the Sulphuric Acid mixed with part [$f_{\frac{3}{8}xi}$. L; one-third, E; one-half, D.] of the Water [and allowed to cool, E.] is then poured over the Salt; the remainder of the Water being placed in the receiver. Distillation is then to be effected, [by a sand-bath, L, or by a naked gas-flame, E] so that the gas may pass over into the water contained in the receiver, [which is to be kept cool by snow, or a stream of cold water, E]. The Acid thus procured is called, by the Edinburgh College, Acidum muriaticum purum.

The theory of the above process is precisely that already explained in the manufacture of hydrochloric acid gas (p. 275). The salt is dried, to expel any water which may be mechanically lodged between the plates of the crystal, and to obtain uniform weights.

The quantity of strong sulphuric acid ($\bar{S} + \bar{H}$) required to saturate 2 lbs. of common salt is $10\frac{1}{2}$ oz. so that the London College employs a slight excess only; whereas the Edinburgh College directs a much greater excess.

A pure muriatic acid is obtained in the manufacture of the liquid called spirit of tin. Tin is dissolved in commercial muriatic acid, and the solution submitted to heat in green glass retorts: pure muriatic acid distils over, and the residue in the retort constitutes spirit of tin.

Properties.—Pure liquid hydrochloric acid (acidum hydrochloricum purum) is colourless, evolves acid fumes in the air, and possesses the usual characteristics of a strong acid. It has the odour and taste of the gaseous acid. Its specific gravity varies with its degree of concentration. The London College fixes it at 1.16,—the Edinburgh College at 1.170. It is decomposed by some metals (e. g. zinc and iron), hydrogen being evolved, and a metallic chloride formed. It reacts on those oxyacids which contain five equivalents of oxygen each (e. g. nitric, chloric, iodic, and bromic acids): the oxygen of these acids unites with the hydrogen of the hydrochloric acid to form water. When it acts on a metallic oxide, water and a metallic chloride are produced.

Characteristics.—Hydrochloric acid yields, with nitrate of silver, a white, clotty, fusible precipitate (chloride of silver), which is insoluble in nitric acid, soluble in ammonia, and blackens by exposure to light*. When pure, it is without action on gold leaf, and does not ac—
LIQUID HYDROCHLORIC ACID.

Colorise sulphate of indigo. A rod dipped in a solution of caustic ammonia produces white fumes (sal ammoniac) when brought near strong liquid hydrochloric acid.

Composition.—Liquid hydrochloric acid is composed of water, holding in solution hydrochloric acid gas. When its sp. gr. is 1·162, its composition, according to Dr. Thomson 1, is as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Thomson,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochloric acid gas</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>Water</td>
<td>8</td>
<td>72</td>
</tr>
<tr>
<td>Liquid hydrochloric acid, sp. gr. 1·162</td>
<td>1</td>
<td>109</td>
</tr>
</tbody>
</table>

In the London Pharmacopoeia it is stated that one hundred and fifty-two grains of crystallised carbonate of soda, saturate 100 grains of acid, sp. gr. 1·16. This would indicate a per-centagre length of 33·916.

Dr. Thomson's Table, exhibiting the Specific Gravity of Hydrochloric Acid of determinate Strengths.

<table>
<thead>
<tr>
<th>Atoms of Water to one of Acid.</th>
<th>Real Acid in 100 of the Liquid.</th>
<th>Specific gravity.</th>
<th>Atoms of Water to one of Acid.</th>
<th>Real Acid in 100 of the Liquid.</th>
<th>Specific gravity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>40·659</td>
<td>1·203</td>
<td>14</td>
<td>22·700</td>
<td>1·1060</td>
</tr>
<tr>
<td>7</td>
<td>37·000</td>
<td>1·179</td>
<td>15</td>
<td>21·512</td>
<td>1·1008</td>
</tr>
<tr>
<td>8</td>
<td>33·945</td>
<td>1·162</td>
<td>16</td>
<td>20·442</td>
<td>1·0960</td>
</tr>
<tr>
<td>9</td>
<td>31·346</td>
<td>1·149</td>
<td>17</td>
<td>19·474</td>
<td>1·0902</td>
</tr>
<tr>
<td>10</td>
<td>29·134</td>
<td>1·139</td>
<td>18</td>
<td>18·590</td>
<td>1·0860</td>
</tr>
<tr>
<td>11</td>
<td>27·206</td>
<td>1·1285</td>
<td>19</td>
<td>17·790</td>
<td>1·0820</td>
</tr>
<tr>
<td>12</td>
<td>25·517</td>
<td>1·1197</td>
<td>20</td>
<td>17·051</td>
<td>1·0780</td>
</tr>
<tr>
<td>13</td>
<td>24·026</td>
<td>1·1127</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Purity.—Pure hydrochloric acid (acidum hydrochloricum purum) is colourless, or nearly so, without action on gold leaf, and, when distilled with distilled water, is not altered by a solution of chloride of barium. Commercial hydrochloric acid (acidum hydrochloricum commune) is yellow, and contains usually sesquichloride of iron and sulphuric acid; and sometimes chlorine, nitrous acid (or some other oxide of nitrogen), and perhaps bromine. The Edinburgh College fixes its density at 1·180.

The presence of iron is shown by saturating the acid with carbonate of soda, and then applying tincture of nutgalls, which produces a black tint. Another mode is to supersaturate the liquid with amonia or its sesquicarbonate, by which the red or sesquioxide of iron will be precipitated.

If the liquid acid contain either free chlorine (or bromine) it will possess the power of dissolving leaf-gold, or even of decolorising a small quantity of sulphate of indigo. A solution of protochloride of tin is the readiest test for detecting any gold, which may be dissolved, with which it forms a purplish or blackish precipitate.

Sulphuric Acid (free or combined) may be detected by adding to the suspected acid a solution of chloride of barium (or nitrate of baryta): if sulphuric acid be present, a heavy white precipitate of sulphate of

1 An Attempt to establish the First Principles of Chemistry, vol. i. p. 87. Loud. 1825.
baryta is procured, which is insoluble in nitric acid. In applying
this test, the suspected acid should be previously diluted with five or
six times its volume of water; otherwise a fallacy may arise from the
crystallization of the chloride of barium.

Nitrous acid (or some other oxide of nitrogen) is recognisable by
protosulphate of iron (see Nitric Acid).

Physiological Effects.—a. On Dead Animal Matter.—Very
dilute hydrochloric acid, mixed with dried mucous membrane, has
the property of dissolving various animal substances (as coagulated
albumen, fibrin of the blood, boiled meat, &c.), and of effecting a
kind of artificial digestion of them, somewhat analogous to the
natural digestive process.

β. On Animals.—The effects of liquid hydrochloric acid on living
animals (horses and dogs) have been investigated by Sprengel,
Courton, Viborg⁵, and by Örfila⁶. Thrown into the veins it coagu-
lates the blood, and causes speedy death. Small quantities, however,
may be injected without giving rise to fatal results. Thus Viborg
found that a horse recovered in three hours from the effects of a
drachm of the acid diluted with two ounces of water, thrown into a
vein. Administered by the stomach to dogs, the undiluted acid acts
as a powerful caustic poison. Exhalations of the acid vapours take
place through the mouth and nostrils, and death is generally preceded
by violent convulsions.

γ. On Man.—Properly diluted, and administered in small but
repeated doses, hydrochloric acid produces the usual effects of a
mineral acid before described (pp. 189, 193, 201, and 212): hence it
is tonic, refrigerant, and diuretic. It usually causes a sensation of
warmth in the stomach, relaxes the bowels, and increases the frequency
of the pulse. Larger doses are said to have excited giddiness and a
slight degree of intoxication or stupor. In a concentrated form it
operates as a powerfully caustic poison. The only recorded cases of poison-
ing by it (in the human subject) with which I am acquainted, are two
mentioned by Örfila and another related by my friend and former
pupil, Mr. John Quckett. In the latter case the stomach and duodenum
were found, after death, to be charred, and the gall-bladder
was observed to have a green tint at the part where it was in contact
with the stomach [from the action of the acid on the bile?]. It is
remarkable that the contents of the stomach manifested no acidity to
litmus; nor could any chloride be recognized by nitrate of silver
in the decoction of the stomach and duodenum, or in the con-
tents of the stomach. The particular nature of the chemical change
affected by it in the organic tissues with which it comes in contact,
is not so well understood as in the case of sulphuric or nitric acid. Its
chemical action is less energetic than either of the acids just
mentioned.

⁵ Müller, Elements of Physiology, p. 544.
⁶ Viborg, Die Wirkung der Arzneimittel und Gifte.
⁷ Toxicologie Générale.
LIQUID HYDROCHLORIC ACID.

ES. a. Internal or Remote.—Hydrochloric acid has been em-
d in those diseases formerly supposed to be connected with a
scant condition of the fluids; as the so-called putrid and
brial fevers, malignant scarlatina, and ulcerated sore
mouth. It
ally administered, in these cases, in conjunction with the vege-
tonics; as cinchona or quassia. We frequently employ it to
extract phosphatic deposits in the urine. After a copious evac-
it is, according to Dr. Paris, the most efficacious remedy for
ating the generation of worms; for which purpose the infusion
assia, stronger than that of the Pharmacopoeia, is the best.
It has been employed with benefit in some forms of dys-
a. Two facts give a remarkable interest to the employment of
acid in dyspeptic complaints; namely, that it is a constituent of
Jithy gastric juice; and, secondly, when mixed with mucus,
a solvent or digestive power in the case of various articles of
as before mentioned. Lastly, hydrochloric acid has been used
ofulous and venereal affections, in hepatic disorders, \&c.

External.—In the concentrated form it is employed as a causti-
stray warts, and as an application in sloughing phagedena,
for the latter purpose it is inferior to nitric acid. Van
en employed it in cancerum oris; and, more recently, Breton-
has spoken in the highest terms of its efficacy in angina mem-
cea, commonly termed diphtheritis. It is applied to the throat
sponge. Properly diluted it forms a serviceable gargar in
ation of the mouth and throat. The objection to its use as a
e is its powerful action on the teeth: to obviate this as much as
ble, the mouth is to be carefully rinsed each time after using the
. It is sometimes applied to ulcers of the throat by means of
uge. Water acidulated with this acid has been applied to frost-
parts, to chilblains, \&c. An injection composed of from eight
eleve drops of the acid to three or four ounces of water, has been
eyed as an injection in gonorrhoea. In those forms of dyspepsia
panied with or dependent on a deficiency of this acid in the
c juice, it is calculated to prove serviceable.

MINISTRATION.—It is given, properly diluted, in doses of from
fifteen or twenty minims.

CIDOTES.—In a case of poisoning by hydrochloric acid, the
otes are chalk, whiting, magnesia or its carbonate, and soap;
the absence of these, oil, the bicarbonate of alkalis, milk, white
, or demulcents of any kind. Of course the gastro-enteritis is
combated in the usual way.

IDUM HYDROCHLORICUM DILUTUM, L.; Acidum Muriaticum dilu-
E. (Hydrochloric Acid, fšiv.; Distilled Water, fšxij. “The
ity of this preparation is 1:050,” E.) The dose is from 5ss. to
The most agreeable mode of exhibiting it is in the infusion of
substituting the hydrochloric for sulphuric acid.

cherches sur l’Inflammation speciale du tissu muqueux, et en particulier sur la diphtherite,
malgre, ou en even epidemique. Paris, 1826.
4. ACIDUM HYDRIODICUM.—HYDRIODIC ACID.

Dr. Buchanan⁴ has employed a solution of this acid in water. His formula for making it is as follows:—Dissolve 330 grs. of Iodine of Potassium in 5 lvs. of Distilled Water, and to this add 264 grs. of Tartaric Acid also dissolved in 5 lvs. of Distilled Water. When the Bitartrate of Potash has subsided, strain; and to the strained liquid add sufficient water to make fifty drachms (= 3½, 3½j.)—This solution, according to Dr. Buchanan, possesses all the therapeutic powers of iodine, without its irritating properties. He has given much as 3i. of it three times a day, or 3½j. of iodine daily. He regards 5 lvs. as the ordinary dose; but it would be much safer to begin with a smaller dose.

ORDER VI.—NITROGEN, AND ITS COMPOUNDS WITH OXYGEN AND HYDROGEN.

1. NITROGENIUM.—NITROGEN.

History and Synonymes.—This gas was first recognised in 1772 by Dr. Rutherford, who termed it mephitic air. Priestley called it phlogisticated air. Lavoisier named it azote (from a primitiv; a ζωή, life). Cavendish, finding it to be a constituent of nitric acid, gave it the appellation it now usually bears, nitrogen (from νίτρον, nit, and γεννάω, I beget).

Natural History.—It is found in both kingdoms of nature.

a. IN THE INORGANISED KINGDOM.—It has not hitherto been found in fossiliferous rocks. It is a constituent of coal, of nitrates, of ammoniacal salts and of some mineral waters. It forms 79 or 80 per cent. of the atmosphere.

b. IN THE ORGANISED KINGDOM.—It is a constituent of various vegetable and animal substances, as albumen, fibrin, gelatine, mucus, urea, uric acid, and it is found in the swimming bladders of fishes.

Preparation.—The readiest method of procuring nitrogen is to burn a piece of phosphorus in a confined portion of atmospheric air. The phosphorus combines with the oxygen of the air and forms metaphosphoric acid. The residual gas, after being thoroughly washed, is nearly pure nitrogen.

Properties.—It is a colourless, odourless, tasteless gas; neither combustible nor a supporter of combustion. It neither reddens litmus, nor whitens lime water. Its sp. gr. 0·9722 [0·976 Berzelius]. It is very slightly absorbed in water. Its equivalent by weight is 14 [14·19 Berzelius 14·15 Turner], by volume 1.

Characteristics.—Nitrogen is usually distinguished by its negative properties just described. The only positive test for it is combining it with oxygen to form nitric acid. This may be effectuated by passing a slow stream of air through a solution of a red nitrate or nitrites. The gases evolved are ignited by a slow Bunsen flame and give rise to a blue flame. This is the well-known test of nitrogen, which has been in constant use since the time of Priestley.
in two ways; either by electrifying a mixture of nitrogen and oxygen, or by burning a stream of hydrogen in a mixture of oxygen and nitrogen. The nitric acid thus produced reddens litmus, and when absorbed by potash may be recognised by the tests hereafter to be mentioned. (See *Nitric Acid*.)

Physiological Effects.—The effects of nitrogen gas on vegetables and animals are analogous to those of hydrogen before mentioned. Thus, when inspired, it acts as an asphyxiating agent, by excluding oxygen; when injected into the blood it acts mechanically only. It is an essential constituent of the air employed in respiration.

Uses.—It has been mixed with atmospheric air, and inspired in certain pulmonary affections, with the view of diminishing the timulant influence of the oxygen, and thereby of acting as a sedative.

History and Synonymes.—This gas was discovered by Dr. Priestley in 1776. He termed it *dephlogisticated nitrous air*. Sir H. Davy* gave it the name of *nitrous oxide*. Its common name is *laughing gas*.

Natural History.—This compound is always an artificial production.

Preparation.—It is obtained by heating nitrate of ammonia in a glass retort. Every equivalent or 80 parts of the crystallised salt are resolved into four equivalents or 36 parts of water, and two equivalents or 44 parts of protoxide.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Nitric Acid 54</td>
<td>1 eq. Nitrogen 14</td>
<td>2 eq. Protoxide Nitrogen 44</td>
</tr>
<tr>
<td>Nitrate Ammonia . . . 80</td>
<td>2 eq. Oxygen</td>
<td>14</td>
</tr>
<tr>
<td>1 eq. Ammonia . . . 17</td>
<td>3 eq. Oxygen 24</td>
<td>44</td>
</tr>
<tr>
<td>3 eq. Water . . . 9</td>
<td>3 eq. Hydrogen 3</td>
<td>1 eq. Water 9</td>
</tr>
</tbody>
</table>

Properties.—At ordinary temperatures and pressure it is a colourless gas, with a faint not disagreeable odour, and a sweetish taste. It is not combustible, but is a powerful supporter of combustion, almost rivalling in this respect oxygen gas. Protoxide of nitrogen does not affect vegetable colours. It undergoes no change of colour on being exposed; it is not acted on by air or moist air.

Its equivalent, by weight, is 22 [22-2 Berzelius], by volume 1. Its sp. gr., according to Dr. T. Thomson, is 1.5277.

When subjected to a pressure of 50 atmospheres, at 45° F., it is condensed into a limpid colourless liquid.

Characteristics.—The only gas with which it is possible to con-
found it, is oxygen, with which it agrees in being colourless, not combustible, but a powerful supporter of combustion, re-inflaming a glowing match. From this it may be readily distinguished by mixing it with an equal volume of hydrogen, and exploding it by the electric spark, by which we obtain one volume or 14 parts of nitrogen, and an equivalent or 9 parts of water. If a taper be burnt in a jar of this gas over water, a brown vapour (nitrous acid gas) is produced.

Composition.—It consists of one equivalent or 14 parts of nitrogen, and one equivalent or 8 parts of oxygen; or, by measure, a volume of nitrogen and half a volume of oxygen condensed into the space of one volume.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
<td>63-6</td>
<td>63-9</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>8</td>
<td>30-4</td>
<td>30-7</td>
</tr>
<tr>
<td>Protoxide Nitrogen</td>
<td>1</td>
<td>22</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Physiological Effects.

a. On Vegetables.—Germinating seeds (peas), when watered with a solution of this gas, seemed unaffected by it. Plants introduced into vessels filled with the gas mostly failed in about three days, and died shortly after. But Drs. Turner and Christison did not find that it was injurious to vegetation.

β. On Animals.—The effects of this gas on insects, annelids, mollusca, amphibials, birds, and mammals, were examined by Sir H. Davy. On all it acted as a positive poison. It produced "peculiar changes in their blood and in their organs, first connected with increased living action; but terminating in death." Slowly injected into the veins of animals, considerable quantities were found by Nysten to produce slight staggering only; larger quantities produced the same disorder of the nervous system noticed when the gas is respired.

γ. On Man.—When inhaled, its effects on the nervous system are most remarkable: I have administered this gas to about one hundred persons, and have observed that after the respiration of it from a bladder for a few seconds, it usually causes frequent and deep inspirations, blueness of the lips and countenance, an indisposition to part with the inhaling tube, and a temporary delirium, which subsides in the course of three or four minutes. The sensations are usually pleasing. The delirium manifests itself differently in different individuals; as in some by dancing, in others by fighting, &c. In some few cases I have seen stupor produced. Singing in the ears, giddiness, and tingling sensations in the hands and feet, are sometimes experienced.

Uses.—It has been employed in some few cases only of disease. Beddoes used it in paralysis with benefit, but found it injurious to
yptical and exquisitely sensible". In a remarkable case of
tonic asthma, related by Mr. Curtis”, it acted beneficially. In
ded case it also gave relief.

LA NITROGENI Protoxydi; Protoxide of Nitrogen Water;
see Patent Oxygenous Aérated Water.—At ordinary temperatures
pressures, water dissolves about three-fourths of its own bulk of
oxide of nitrogen; but by pressure the quantity may of course
agglomerated. The patent solution is said to contain five times its
of gas; or each bottle of the liquid is stated to hold a full quart.
 Its effects on the system are not very marked. Sir H. Davy
nearly three pints of the ordinary solution in one day, and says
it appeared to act as a diuretic; and he adds, “I imagined that
pediated digestion” (Op. cit. p. 237). The proprietor of
it water asserts that it exhilarates, and is adapted for torpor,
ssion of spirits, asthma, &c.

3. ACIDUM NITRICUM, L. E. D.—NITRIC ACID.

STORY AND SYNONYMS.—This acid was known in the seventh
ry to Geber, who termed it solutio water*. The nature of its
utensils was shown by Cavendish in 1785, and their proportions
sequently determined by Davy, Gay-Lussac, and Thomson.
been known by various names, as Glauber’s spirit of nitre, and
fortis.

URAL HISTORY.—It is found in both kingdoms of nature.

IN THE INORGANISED KINGDOM.—Combined with potash, soda, lime, or
esin, it is found on the surface of the earth in various parts of the world. The
es have been found in some few mineral waters. Thus there is a district of
ry, between the Carpathians and the Drave, where all the springs, for the
of about 300 miles, contain a small quantity of the nitrate of potash.

IN THE ORGANISED KINGDOM.—Nitrate of lime has been found in Borago
alis, Urtica dioica, Helianthus annuus, and Parietaria officinalis. Nitrate of
has been detected in the roots of Cistampelos Parea, and Genum urbanum;
e juice of Chelidonium majus; in Apium graveolens; and sometimes in the
Beta vulgaris when advanced in age. The same salt is also found in the
rs of Verbascum, in the rhizome of Zingiber officinalis, in the fruit of Areca
wu, in the tubercle of Cyperus esculentus, in Agaricus acris, and A. edulis.

REPARATION.—Nitric acid is prepared by submitting a mixture of
Vitriol and Nitrate of either Soda or Potash to distillation.

he apparatus used on the large scale is usually that employed in
manufacture of hydrochloric acid*; namely, an iron or stoneware
with a stoneware head, which is connected with a row of double-
ted stoneware bottles containing water. Another form of appara
 employed by some manufacturers, is an iron cylinder, set in
work over a fire-place (fig. 51). 168 lbs. of nitrate of potash are
duced at one end of the cylinder, which is afterwards closed
a circular disk of iron perforated to allow of the introduction of

* Davy’s Researches, p. 542.
* Of the Invention of Verity, ch. xxi. and xxiii.
* See fig. 30, p. 277.
* De Candolle, Physiol. Végét. t. 1st, pp. 383, 387, and 403.
Nitric Acid Apparatus.

a leaden flunnel, through which are poured 93 lbs. of strong sulphuric acid (sp. gr. 1.845). The funnel is then removed, aperture closed, and heat applied. The vapours are conveyed into a row of five or six bottles of stone-ware filled to about one-third of their capacity with water. The acid obtained by this process is brown and fuming, and has a sp. gr. of 1.45. It is called in commerce nitrous acid, or fuming nitric acid (acidiä nitrosi; acidum nitricum; acidum nitricum fumans). To render it colourless, it is heated in a glass retort, placed in a sand bath: the vapour which escapes is passed through two stone-ware bottles to save any that may be expelled, and is subsequently conveyed into a chimney (fig. 52). The colourless acid remaining in the retort has a sp. gr. from 1.38 to about 1.4 and constitutes the spirit of nitric acid of commerce (acidiä nitrici commercii). The residue of the iron cylinder is a mixture of sulphuric acid with a little bisulphate of potash, and is sold as sal enixum. It is employed as a flux and in the manufacture of alum.

The quantity of the ingredients employed in the above process is nearly in the proportion of eight equivalents of sulphuric acid, 392 parts of strong nitric acid, and 65 parts of nitrate of potash. Some manufacturers...

For the above information I am indebted to Messrs. White, nitric acid manufacturers, Castle Safran Hill, London, who have kindly permitted me to make the above sketches of their apparatus.
employ two parts by weight of nitrate of potash and one of strong sulphuric acid, or about an equivalent of each of the ingredients. As the water of the sulphuric acid is not sufficient in quantity to form liquid nitric acid with all the acid set free from the nitrate, a part of the nitric acid is decomposed into nitrous acid and oxygen. It is the presence of nitrous acid which communicates the red colour to the commercial or fuming nitric acid.

I am informed by a manufacturer who employs nitrate of soda in the production of nitric acid, that he obtains about as much by weight of nitric acid, sp. gr. 1.4, as of nitrate of soda consumed.

All the British Pharmacopoeias give formulae for the preparation of nitric acid. The London and Edinburgh Colleges use equal weights of dried Nitrate of Potash and Sulphuric Acid. The Dublin College directs 100 parts of Nitrate of Potash and 97 parts of commercial sulphuric Acid. The distillation is to be conducted in a glass retort, by a sand heat. The directions of the Edinburgh College for obtaining pure nitric acid (acidum nitricum purum) are as follows:—

“Purify Nitrate of Potash, if necessary, by two or more crystallizations, till Nitrate of Silver does not act on its solution in distilled water. Put into a glass short equal weights of this purified nitrate and of sulphuric acid, and distil into a cool receiver, with a moderate heat from a sand-bath or naked gas-flame, so as the fused material continues to give off vapour. The pale-yellow acid has obtained may be rendered colourless, should this be thought necessary, by washing it gently in a retort.”

Mr. Phillips states, that the acid obtained by the process of the London Pharmacopoeia has a specific gravity of 1.5033 to 1.504. The Edinburgh College fixes the density of the pure acid at 1.500; and that of the commercial acid at 1.380 at least.

The explanation of the changes which take place is somewhat modified by the strength of the sulphuric acid employed. According to Mr. Phillips, the acid usually met with has a sp. gr. of 1.8433; I have found it generally somewhat below this. The acid alluded to by Mr. Phillips is composed, according to the same authority, very nearly of four equivalents or 160 parts of dry sulphuric acid, and five equivalents or 45 parts of water. These quantities react on two equivalents or 204 parts of nitrate of potash, and produce two equivalents or 185 parts of strong liquid nitric acid (sesquihydrate), and one equivalent or 274 parts of the hydrated bisulphate of potash.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Nitrate Potash</td>
<td>204</td>
<td>2 eq. Nitric Acid</td>
</tr>
<tr>
<td>4 eq. Potash</td>
<td></td>
<td>2 eq. Potash</td>
</tr>
<tr>
<td>3 eq. Water</td>
<td>27</td>
<td>2 eq. Water</td>
</tr>
<tr>
<td>1 eq. Sulphuric Acid</td>
<td>150</td>
<td>2 eq. Sulphuric Acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 eq. Sulphuric Acid</td>
</tr>
</tbody>
</table>

The generation of nitrous acid is greatest at the commencement and towards the close of the operation: for, at the commencement, the excess of uncombined sulphuric acid attracts water from the small quantity of nitric acid then set free, in consequence of which the latter is resolved into nitrous acid and oxygen: about the middle of the process, when the quantity of free nitric acid has increased, while that of sulphuric acid has diminished, the former passes over with water un-
changed; but towards the end of the process, owing to the volatilization of the nitric acid, the sulphuric acid becomes again predominant, and the red vapours of nitrous acid then make their appearance.

Properties.—Strong and pure liquid nitric acid (acidi
cum purum) is colourless, and has a peculiar odour, and an intensely sour taste. In the air it evolves white fumes, forming the union of the acid vapour with the aqueous vapour of the atmosphere; these fumes reddens litmus, and become much whiter, mixed with the vapour of ammonia, owing to the formation of nitrate of ammonia. The sp. gr. of the acid, prepared according to the Pharmacopoeia, is 1·5033 to 1·504, and Mr. Phillips believes it to be the strongest procurable; but Proust says he obtained it as high as 1·62; Kirwan, 1·554; Davy, 1·55; Gay-Lussac, 1·513. The Edinburgh College fixes the density of nitric acid at 1·500. The acid sold in the shops as double aqua (aqua fortis duplex) has a sp. gr. of 1·36. Single aqua (aqua fortis simplex) is of sp. gr. 1·22. Nitric acid has a powerful affinity for water; and, when mixed with it, heat is evolved.

Nitric acid is easily deprived of part of its oxygen. Thus, it is sure to solar light causes the evolution of oxygen, and the production of nitrous acid, which gives the liquid a yellow, orange, or red-brown colour. The acid, thus coloured, may be rendered colourless by the application of a gentle heat, to drive off the nitrous acid. Several of the non-metallic combustibles rapidly decompose nitric acid; as charcoal, phosphorus, sugar, alcohol, volatile oils, resins. The action is unacted on by leaf-gold, platinum, &c. Some of the metals also act powerfully on it, as copper (in the form of turnings), and (in the state of foil). A little water added to the acid facilitates the reaction in some cases, the action of metals on it. The hydracids (as hydrochloric acid) decompose and are decomposed by nitric acid.

Characteristics.—Nitric acid is known by the following characters:—It stains the cuticle yellow or orange; mixed with copper filings, effervescence takes place, owing to the escape of binoxide of nitrogen, and a greenish-blue solution of nitrate of copper is obtained; this oxide forms ruddy vapours in the air, by uniting with oxygen to form nitrous acid gas; and, passed into a solution of the protosulphate of iron, forms a dark olive-brown coloured liquid, which has a strong affinity for oxygen, and has in consequence been employed for bleaching atmospheric air: but the results obtained by it are uneconomic. Nitric acid decolorises sulphate of indigo. Morphia, brucia, or commercial strychnia, communicates a red colour to nitric acid, which is heightened by supersaturating the liquor with ammonia: power of nux vomica renders this acid yellow or orange-coloured. If hydrochloric acid be added to nitric acid, the mixture acquires the power of dissolving leaf-gold: the presence of gold in solution may be recognised by the protocloride of tin, with which it strikes a purple-blackish colour. Lastly, saturated with pure carbonate (or bicarbonate) of potash, a nitrate of potash is procured.

* For an account of the anomalous relations of this acid and iron, I must refer the reader to Becquerel’s Traité de l’Electricité, tom. v. p. 47.
NITRIC ACID.

Nitrates are known by the following characters:—they evolve when heated, and deflagrate when thrown on a red-hot cinder or charcoal; when heated with sulphuric acid they disengage nitric acid, which may be recognised by its action on morphia, brucia, or commercial strychnia; lastly, when mixed with sulphuric acid and copper turnings, they generate binoxide of nitrogen, which is readily recognised by its blackening a solution of sulphate of the protoxide of iron. This last-mentioned property enables us to recognise very minute portions of the nitrates. The nitrate, copper filings, and sulphuric acid, are to be put into the test-tube (fig. 53, a): to which is adapted, by means of a cork, a small curved glass tube, containing at the bend (b) a drop or two of the solution of the protosulphate of iron; heat is to be applied to the mixture in the test-tube, and in a few minutes the ferruginous solution becomes

for blackish.

position.—Anhydrous or dry nitric acid, such as we find it in nitrates, has the following composition by weight:—

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Lavoisier</th>
<th>Cavendish</th>
<th>Berzelius</th>
<th>Davy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>14</td>
<td>25·9</td>
<td>20</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>40</td>
<td>74·1</td>
<td>80</td>
<td>75</td>
<td>74</td>
</tr>
</tbody>
</table>

acid: 6 54 100:0 100 100 100 100

According to Berzelius, its equivalent is 54:25 [54:15, Turner].

Composition by volume, is, one volume of nitrogen gas and two and a half volumes of oxygen gas. The degree of condensation, however, is not known, as uncombined anhydrous nitric acid has not yet been procured.

Liquid nitric acid is composed of nitric acid and water. According to Mr. Phillips, when the specific gravity of the liquid is 1·5083 to 1·504, the composition is as follows:—

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhydrous Nitric Acid</td>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>1/4</td>
<td>15:3</td>
<td>20</td>
</tr>
<tr>
<td>Sesquihydrate of Nitric Acid</td>
<td>1</td>
<td>67·5</td>
</tr>
</tbody>
</table>

Amounts of this acid will saturate about 217 grains of carbonate of calcium to about 81 grains of real or dry nitric acid.

Properties.—The presence of nitrous acid is known by the following:

To detect chlorine or the chlorides, dilute with distilled water and apply nitrate of silver; a white chloride of silver is precipitated which is insoluble in nitric acid, but soluble in ammonia. To test sulphuric acid, add a solution of chloride of barium to the acid; a heavy white sulphate, insoluble in nitric acid, is thrown down. Any fixed impurities may be obtained by evaporation.
PHYSIOLOGICAL EFFECTS. a. On Vegetables.—Nitric acid decomposes the different vegetable tissues to which it may be applied, and gives them a yellow colour.

β. On Animals.—Orfila found that 26 grains of commercial nitric acid, injected into the jugular vein, coagulated the blood, and caused death in two minutes 4. Viborg threw a drachm of the acid, diluted with three drachms of water, into the jugular vein of two horses; in two hours they were well: the blood, when drawn, was slightly coagulated 6. Introduced into the stomach of dogs, it disorganizes this viscus, and causes death in a few hours.

γ. On Man.—On the dead body, M. Tartra has made various experiments to determine the appearances produced by the action of nitric acid. Of course this caustic decomposes the organic tissues; but the phenomena presented vary according to different circumstances,—as the quantity employed, the presence of other substances, &c.

On the living body, its action varies with the degree of concentration or dilution of the acid. In the concentrated form the acid acts as a powerfully corrosive poison, which property it derives in part from its affinity for water, but more especially from the facility with which it gives out oxygen; so that the appearances caused by its action on some of the tissues are different from those produced by sulphuric acid. Thus the permanent yellow stain which it communicates to the cuticle is peculiar to it. Iodine, indeed, stains the skin yellow or brown, but a little caustic potash readily removes the stain when recent; whereas the yellowish stain produced by nitric acid, becomes orange on the addition of an alkaline soap. Bromine also stains the skin yellow, but when recently produced, the colour may also be removed by potash. The yellow or citron stain communicated to the lining membrane of the tongue, pharynx, &c. by nitric acid, has been well shewn by Dr. Roupeil 7. A preparation presentning similar appearances, is preserved in the anatomical museum of the London Hospital. The yellow substance produced by the action of nitric acid on fibrin, was termed by MM. Fourcroy and Vauquelin the yellow acid: the same substance is probably produced by the application of nitric acid to other animal principles. This yellow substance is bitter, and is said by Berzelius to consist of yellow, altered fibrin, combined with nitric acid and with malic acid, formed by the action of some nitric acid on the fibrin. Nitric, like sulphuric acid, also chars the animal tissues, and thus, after the ingestion of it, the stomach is sometimes found blackened, as if sulphuric acid had been swallowed. The symptoms are analogous to those produced by sulphuric acid (see Sulphuric Acid). The yellow, citron, or orange spots, sometimes observed on the lips, chin, or face, will, when present, at once indicate the kind of acid swallowed. Sometimes the binoxide of nitrogen is evolved by the mouth.

Properly diluted, nitric acid produces effects similar to those of

4 Toxicolog. Générale.
5 Wibmer, Die Wirkung, &c.
6 See his Illustrations of the Effects of Poisons.
the other dilute acids. It is said, however, to act less evidently as a tonic, and to be more apt to disagree with the stomach, so that it cannot be employed for so long a period. In some cases it has excited ptomaine, and from this circumstance, as well as from the occasional benefit derived from its use in the venereal disease, it has by some writers been compared, in its operation, to mercury; a comparison founded rather on theoretical than practical considerations.

Uses.—a. Internal.—As nitric acid produces certain effects, in common with other mineral acids, it may be used as a substitute for the latter in various diseases. Thus, it is administered in conjunction with the bitter infusions, in those conditions admitting of, or requiring, the use of tonics. Properly diluted, it is employed as a refrigerant in febrile disorders. In lithiasis, attended with phosphatic deposits in the urine, it may be used instead of the sulphuric or hydrochloric acid. In some obstinate cutaneous diseases, as impetigo, it is given to the extent of half a drachm daily in barley water. It may be employed also to relieve heartburn.

In 1798 this acid was used by Mr. Scott, a surgeon, at Bombay, as a substitute for mercurial preparations, which Girtanner erroneously accused owed their efficacy to the quantity of oxygen which they contained. Mr. Scott first tried it in chronic hepatitis, and with considerable success. He then extended its use to venereal diseases, and obtained the happiest results from it.

Subsequently, it has been most extensively employed in the last-mentioned diseases; but the success attending its use has been very variable. That it has been, and is frequently serviceable, no one can doubt who reads the immense body of evidence offered in its favour by Scott, Kellie, Albers, Prioleau, Rollo, Cruickshank, Beddoes, Ferrier, and others. But on the other hand it is equally certain that in many occasions it has been useless. The same remark, indeed, may be made of mercury, or of any other remedy: but as an antivenereal medicine it does not admit of comparison with this metal. However, we frequently meet with syphilitic cases in which the employment of mercury is either useless or hurtful. Thus it can rarely be employed with advantage in scrofulous subjects; or in persons whose idiosyncrasies render them peculiarly susceptible to the influence of this metal; and in sloughing sores it is inadmissible. Now these are the cases in which nitric acid may be employed with benefit; and I believe the best mode of administering it is in conjunction with the compound decoction of sarsaparilla.

For further information respecting its employment, I must refer to the works of Holst and Mr. Samuel Cooper.

b. External.—In the concentrated state, nitric acid has been employed as a powerful caustic to destroy warts, and as an application to parts bitten by rabid animals or venomous serpents, to phlegdenic

2 See pp. 190, 193, 201, and 312: also Hydrochloric and Sulphuric Acids.
4 Reports, principally concerning the Effects of the Nitrous Acid in Venereal Disease. Bristol, 1797.
5 De Acidi Nitrici usw Medicinae Dissertatio. Christiannah, 1818.
6 Del. of Practical Surgery.
ulcers, &c. In order to confine the acid to the spot intended to be acted on, the neighbouring parts may be previously smeared with some resinous ointment. In sloughing phagedena the application of strong nitric acid, as recommended by Mr. Welbank," is attended with the most successful results, as I have on several occasions witnessed. The best mode of applying it is by a piece of lint tied round a small stick or skewer. When the slough is very thick, it is sometimes necessary to remove part of it with a pair of scissors, in order to enable the acid to come in contact with the living surface.

Largely diluted (as 50 or 60 drops of strong acid to a pint or quart of water) it is recommended by Sir Astley Cooper as a wash for sloughing and other ill-conditioned sores.

In the form of ointment it is used in various skin diseases, especially porrigo and scabies, and as an application to syphilitic sores.

Nitric acid vapour has been employed to destroy contagion, but it is probably inferior to chlorine. It was first introduced for this purpose by Dr. Carmichael Smyth" (to whom Parliament granted a reward of £5000): hence these fumigations have been termed Fumigationes nitricae Smythiana. The vapour is readily developed by pouring one part of oil of vitriol over one part of nitrate of potash in a saucer placed on heated sand.

Administration.—Strong nitric acid may be administered, in some mild dilution, in doses of from five to ten minims, three or four times daily.

Antidotes.—Poisoning by nitric acid requires precisely the same treatment as that by sulphuric acid. (See Sulphuric Acid.)

1. Acidum Nitricum Dilutum, L. E. D. Diluted Nitric Acid (Nitric Acid, f₃; Distilled Water, f₅six. L.—“Mix together three fluid ounces of Nitric Acid (commercial) and four fluid ounces of Water. If Pure Nitric Acid is used, four fluid ounces of it must be mixed with six fluid ounces of Water. The density of this preparation is 1.290.” E. sm.—Nitric Acid, by measure, 3 parts; Distilled Water, by measure, 4 parts. D.) The sp. gr. of the diluted nitric acid of the London Pharmacopoeia is 1.080; 100 grains of it saturates about 31 grains of crystallised carbonate of soda. The following is its composition:

| Dry or Anhydrous Nitric Acid | 11.44 | Strong liquid Nitric Acid (sesquihydrate) 10.07 |
| Water | 88.26 |

Diluted Nitric Acid, Ph. L. 100:00

The dose of this preparation is from thirty to forty minims.

2. Unguentum Acidii Nitrici, D. Oxygenised Fat; Pommas d'Alyon.—(Olive Oil, f₃j.; Prepared Hog's-lard, f_{iv.}; Nitric Acid, f₃; Distilled Water, f_{six.}).

"Medico-Chirurg. Trans. vol. xi.

* Diluted nitric acid, Ph. Ed., prepared with pure nitric acid (sp. gr. 1.5), has a sp. gr. 1.228, and contains 39-72 per cent. of real acid. But if prepared with commercial nitric acid (sp. gr. 1.28), sp. gr. is 1.1487, and it contains 26-40 per cent. of real acid. So that the strengths of these variety of nitric acid are to each other, by weight, as 100 to 66—by measure, as 100 to 69; a dilution of 40 per cent. in acids prepared by the two modes directed.—(Mr. R. Phillips, London Med. Gaz. May 8, 1840, p. 273.)
NITRO-HYDROCHLORIC ACID.

Having melted the oil and lard in a glass vessel, they are beginning to become concrete add the acid: then stir constantly with a glass rod until they become firm.) The nitric undergoes partial decomposition, binoxide of nitrogen being d. Part of the fatty matter is oxydized and converted into e (see Unguentum Hydrargyri Nitratis). This ointment has consistence and a yellow colour. Its uses have been above l. It is more efficacious when recently prepared.

ACIDUM NITRO-HYDROCHLORICUM.—NITRO-HYDROCHLORIC ACID.

(Adsum Nitro-muriaticum, D.)

TORY AND SYNONYMES.—This liquid was known to Geber 9. It formery called aqua regia. Its nature was first explained by PARATION.—It is readily prepared, according to the Dublin recipe, by mixing 2 parts, by measure, of hydrochloric acid part, by measure, of nitric acid.

The arts, however, hydrochlorate of ammonia, or common salt, is substituted for hydrochloric acid; or nitrate of potash for the acid.

The reaction of one equivalent or 54 parts of nitric acid on one pent or 37 parts of hydrochloric acid, we obtain one equivalent parts of nitrous acid, one equivalent or 36 parts of chlorine, equivalent or 9 parts of water.

<table>
<thead>
<tr>
<th>MATERIALS.</th>
<th>COMPOSITION.</th>
<th>RESULTS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochloric Acid</td>
<td>(\frac{1}{2}) eq. Chlorine : (\frac{1}{2}) eq. Oxygen</td>
<td>1 eq. Chlorine : 1 eq. Nitrous Acid</td>
</tr>
<tr>
<td>Acid</td>
<td>1 eq. Hydrogen</td>
<td>1 eq. Water</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>46</td>
</tr>
<tr>
<td>91</td>
<td>91</td>
<td>91</td>
</tr>
</tbody>
</table>

PROPERTIES.—It has a yellow colour. Its most remarkable prop. that of dissolving gold and platinum, metals that are insolub. either nitric or hydrochloric acid separately. It should be a cool dark place, for heat rapidly expels the chlorine, while enables it to decompose the water and to form hydrochloric

ACTERISTICS.—It is recognised by its colour, by its power of bing gold, by its precipitating a solution of the nitrate of silver, cipitate being insoluble in nitric acid, but soluble in ammonia; production of two salts, a chloride and a nitrate, when an s added to it; and by the evolution of binoxide of nitrogen dition of copper turnings (see Nitric Acid.)

PHYSIOLOGICAL EFFECTS.—It is a powerfully corrosive poison, in a similar manner to nitric acid.

It has been employed internally in the same cases as nitric more especially syphilis, diseases of the liver, and some of the

* Invention of Verity, ch. xxiii.
Exanthemata. Externally it has been used as a bath, either locally or generally, in syphilis and hepatic affections. Dr. Lendrick has recently noticed the utility of the general nitro-muriatic bath, temperature of 90° or 95°, in syphilitic and mercurial cachexia, liver consumption. In India the whole body (the head excepted) is immersed; but in this country pediluvia only are usually employed, or the body is merely sponged with it.

ADMINISTRATION.—When taken internally the dose is ten or fifteen drops properly diluted, and carefully increased.

ANTIDOTE.—Poisoning by this acid is to be treated in the same way as that by sulphuric acid.

BALNEUM NITRO-HYDROCHLORICUM.—The nitro-muriatic bath is prepared in wooden tubs, by adding this acid to water, until the latter becomes as acid to the taste as vinegar (from 4 to 6 fl. ounces of the acid to about 3 gallons of water in a deep narrow bath). The patient should remain in the bath from 10 to 30 or 40 minutes. It excites tingling and prickling of the skin, and is said to affect the gums and salivary glands, causing plentiful pttyalism; indeed, we are told that, without the latter effect, every trial is to be regarded as inconclusive. In the passage of biliary calculi this bath is said to have proved remarkably effective.

5. AMMONIA.—AMMONIA OR AMMONIACAL GAS.

HISTORY AND SYNONYMES.—It is probable that Pliny was acquainted with the smell of Ammonia, and that the "vehement odour which he says" arose from mixing lime with nitrum was proved by the action of lime on sal ammoniac. Dr. Black, in 1756, pointed out the distinction between ammonia and its carbonate; Dr. Priestley first procured ammonia in a gaseous form. He called it alkaline air. It is sometimes termed volatile alkali, and occasionally azotured hydrogen.

NATURAL HISTORY.—Ammonia, free or combined, exists in various kingdoms of nature.

a. IN THE INORGANISED KINGDOM.—Hydrochlorate and sulphate of ammonia are met with native usually in the neighbourhood of volcanoes. Aluminum phosphate of ammonia (or ammonia-alum) occurs in Bohemia. Dr. Mareet detaches the hydrochlorate in sea water. This salt has also been recognised in mineral waters. Ammonia exists in many of the native oxides of iron, and in the chalybeate waters. Carbonate of ammonia exists in rain water.

b. IN THE ORGANISED KINGDOM.—Ammonia is found in vegetables, in quantities only. In the free state, it is said to exist in several plants, as Chenopodium vulvaria, Sorbus aucuparia, in the juice of the leaves of Isatis tinctoria, in the bark of Zanthoxylum Clave Herculris, and in Fucus vesiculosus. Combined with carbonic acid, it is found in Justicia purpurea; with nitric acid, in the extract of hyoscyamus, distilled water of the lettuce, &c. In combination with diff...
trochlorate of ammonia and quicklime in a glass retort, and
ing over mercury. In the absence of a mercurial apparatus
may be generated in a Florence flask, to the mouth of which
ight glass tube is connected by means of a cork. The bottles
are to be filled with gas are to be inverted over the tube.
this process, one equivalent or 54 parts of hydrochlorate of am-
are decomposed by one equivalent or 28 parts of lime; and
ults of the decomposition are one equivalent or 17 parts of
nia; one equivalent or 56 parts of chloride of calcium, and one
ent or 9 parts of water.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>1 eq. Ammonia 17</td>
<td>1 eq. Ammonia 17</td>
</tr>
<tr>
<td>Chloride</td>
<td>1 eq. Hydrochloric Acid 37</td>
<td>1 eq. Hydrochloric Acid 1</td>
</tr>
<tr>
<td>Ammonia</td>
<td>1 eq. Chlor. 35</td>
<td>1 eq. Chlor. 1</td>
</tr>
<tr>
<td>Water</td>
<td>1 eq. Calcium 29</td>
<td>1 eq. Chloride Calcium 56</td>
</tr>
</tbody>
</table>

We adopt the ammonium theory, the production of ammonia in
nove process may thus explained: one equivalent or 54 parts
rise of ammonium is decomposed by one equivalent or 28 parts
, and the products of the reaction are as above stated.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride Ammonium 54</td>
<td>1 eq. Ammonium 17</td>
<td>1 eq. Ammonia 17</td>
</tr>
<tr>
<td>Chloride Ammonium 54</td>
<td>1 eq. Chlorine 35</td>
<td>1 eq. Chlorine 1</td>
</tr>
<tr>
<td>Ammonia</td>
<td>1 eq. Calcium 29</td>
<td>1 eq. Chloride Calcium 56</td>
</tr>
<tr>
<td>Water</td>
<td>1 eq. Water 9</td>
<td>1 eq. Water 9</td>
</tr>
</tbody>
</table>

According to Dr. Kane, ammonia is an amidide of hydrogen, and
moniac is a chloro-amidide of hydrogen; and the changes are
well-known odour. It reddens turmeric paper, and changes the colour of violet juice to green; but by exposure to the air, or application of heat, both the turmeric paper and violet juice are restored to their original colour. The specific gravity of the latter liquid is condensed into a colourless, inflammable liquid. Ammoniacal gas is a supporter of combustion, but is not combustible in the atmosphere when mixed with air or oxygen. It forms an explosive mixture. Equal volumes of ammoniacal gas require half a volume of oxygen for complete combustion. The remainder of the explosion are, a volume of nitrogen and some water.

Characteristics.—It is readily recognised by its peculiar odour, its action on turmeric paper, and by its forming white fumes with hydrochloric acid or chlorine. Dissolved in water, it commences a deep blue colour to the salts of copper, throws down a yellow precipitate (platinum-bichloride of ammonia) with the bichloride of platinum and a white one with bichloride of mercury.

Conia agrees with ammonia in evolving a vapour which darkens turmeric paper, and forms white fumes (hydrochlorate of conia) with hydrochloric acid gas.

Composition.—Ammonia is composed of hydrogen and nitrogen in the following proportions:

<table>
<thead>
<tr>
<th>Element</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>A. Berthollet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
<td>89:35</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3</td>
<td>3</td>
<td>17:65</td>
</tr>
</tbody>
</table>

Ammonia... 1 17 100:00 100:00 Ammoniacal gas... 2

According to Berzelius, its equivalent is 17:19 [17:15, Turner].

The annexed diagram illustrates the volumes of the constituents of ammonia and their degree of condensation in combination to form ammoniacal gas.

Hypothetically, Dr. Kane regarded ammonia as a compound of suppositional substance called ammonium (N₂H), and hydrogen: in other words, as an amide of hydrogen.

Physiological Effects.

a. On Vegetables.—Ammonia is very destructive to plants, and changes their green colour to brown.

b. On Animals.—If an animal be immersed in this gas, the glottis is immediately brought on, and death results from asphyxia. Nysten injected some of this gas into the veins of

*Transactions of the Royal Irish Academy, vol. xix. part 1.
1 De Candolle, Pâques. Veg, p. 1344.
2 Reckersche, p. 180.*
The animal cried out, respiration became difficult, and death soon took place. Neither gas nor visible lesion was observed in the heart, the two ventricles of which contained liquid blood. In another experiment he threw ammoniacal gas into the pleura of a pig: cries, evacuation of urine, and vomiting, immediately followed; on afterwards convulsions came on, and continued for several hours: ultimately they ceased, and recovery took place.

In almost all cases of poisoning in animals, by ammonia, or its carbonate, convulsions are observed, apparently shewing that these substances act on the spinal marrow.

γ. On Man.—Ammonia is a powerful local irritant. This is obeyed by its pungent odour, and its acid and hot taste; by its irritating the eyes; and, when applied for a sufficient length of time to the skin, by causing vescication. If an attempt be made to inhale the pure form, spasm of the glottis comes on: when diluted with atmospheric air, it irritates the bronchial tubes and larynx, and, unless the quantity be very small, brings on inflammation of the lining membrane. Its powerful action on the nervous system is best seen in cases of syncope (see *Aqua Ammoniae*).

Uses.—Ammoniacal gas is rarely employed in medicine. M. Bourselet de Béziers used it with success in the case of a child affected with croup, to provoke the expulsion of the false membrane.

Antidote.—In case of the accidental inhalation of strong ammoniacal vapour, the patient should immediately inspire the vapour of nitric or hydrochloric acid. If bronchial inflammation supervene, on the other hand, it is to be treated in the usual way.

6. *Aqua Ammoniae.*—WATER OF AMMONIA.

(Liquor Ammoniae, and Liquor Ammoniae Fortior, L.—Aqua Ammoniae, and Aqua Ammoniae Fortior, R.—Aqua Ammoniae caustica, D.)

History.—This solution was formerly termed *spiritus salis ammoniaci causticus cum calce viva paratus*.

Preparation.—It is prepared by the action of lime on either sulphate or hydrochlorate of ammonia. On the large scale, the apparatus employed is an iron cylinder, connected with the ordinary worm frigerator, and this with a row of double-necked stoneware bottles containing water, analogous to those described under the head of nitric acid. (See p. 286.)

All the British Colleges give formula for its preparation. The following are the directions of the London College:

“Take of Hydrochlorate of Ammonia ten ounces, Lime eight ounces, Water two pints: Put the Lime, slacked with water, into a retort, then add the Hydrochlorate of Ammonia, broken into small pieces, and the rest of the water. Let it boil for a month and a half, then take the fluid and distil it.”

The Edinburgh College gives the following directions for preparing *Ammoniac Aqua*, and *Ammoniac Aqua Fortior*.

“Take of Muriate of Ammonia, thirteen ounces; Quicklime, thirteen ounces; Water, seven fluidounces and a half; Distilled Water, twelve fluidounces. Take a bottle with the Water, cover it up till it cool, triturate it well and quickly with the Muriate of Ammonia previously in fine powder, and put the mixture into a glass retort, to which is attached a receiver with a safety tube. Connect with the receiver a bottle also provided with a safety tube, and containing four ounces...”
of the distilled water, but capable of holding twice as much. Connect this bottle with another loosely corked, and containing the remaining eight ounces of distilled water. The communicating tubes must descend to the bottom of the bottles at the further end from the retort; and the receiver and bottles must be kept cool by snow, ice, or a running stream of cold water. Apply to the retort a gradually-increasing heat till gas ceases to be evolved; remove the retort, end up the aperture in the receiver where it was connected with the retort, and apply to the receiver a gentle and gradually-increasing heat, to drive over as much of the gas in the liquid contained in it, but as little of the water, as possible. Should the liquid in the last bottle not have the density of 0.960, reduce it with some of the stronger Aqua Ammoniae in the first bottle, or raise it with distilled water, so as to form Aqua Ammoniae of the prescribed density."

The Dublin College employs 3 parts of Muriate of Ammonia, two of free burned Quicklime, and ten of Water. The lime is to be slacked with one part of hot water, and then introduced into the retort, and the salt dissolved in the remaining hot water, added, and five parts distilled by a medium [between 100° and 200°] heat into a refrigerated receiver.

The theory of the process is the same as that for ammoniacal gas. An excess of lime is used to facilitate the extrication of the ammonia. The water put into the receiver is to absorb the gas.

Properties.—Solution of ammonia is a colourless liquid, having a very pungent odour, and a caustic alkaline taste. Its action on turmeric paper and violet juice is like that of ammoniacal gas before described. It is lighter than water, but its sp. gr. varies with its strength. In the shops, a very strong solution (called Liquor Ammoniae Fortior) is kept, having a sp. gr. of about 0.880; it is employed for smelling-bottles. One fluidounce of Aqua Ammoniae Fortior (sp. gr. 0.880) with three of water makes Aqua Ammoniae of about sp. gr. 0.970. Prepared according to the London and Edinburgh Pharmacopoeias, the sp. gr. is 0.960; according to the Dublin 0.950. A cubic inch of Liquor Ammoniae (sp. gr. 0.960) weighs 242.36 grs., and it contains 132 cubic inches of ammoniacal gas in condensed solution. A cubic inch of Liquor Ammoniae Fortior (sp. gr. 0.882) weighs 222.66 grs., and it holds dissolved nearly 40 cubic inches of ammoniacal gas. The quantity of ammoniacal gas which water can dissolve, varies with the pressure of the atmosphere and the temperature of the water.

Davy ascertained that at the temperature of 50°, under a pressure equal to 29.8 inches, water absorbs about 670 times its volume of gas and becomes of sp. gr. 0.875. He drew up the following table, showing the quantity of ammonia in solutions of different specific gravities:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9750</td>
<td></td>
<td></td>
<td>0.9435</td>
</tr>
<tr>
<td>0.9783</td>
<td>32.50</td>
<td></td>
<td>0.9475</td>
</tr>
<tr>
<td>0.9800</td>
<td>25.25</td>
<td></td>
<td>0.9513</td>
</tr>
<tr>
<td>0.9854</td>
<td>23.57</td>
<td></td>
<td>0.9543</td>
</tr>
<tr>
<td>0.9868</td>
<td>22.92</td>
<td></td>
<td>0.9572</td>
</tr>
<tr>
<td>0.9900</td>
<td>19.54</td>
<td></td>
<td>0.9597</td>
</tr>
<tr>
<td>0.9930</td>
<td>17.52</td>
<td></td>
<td>0.9619</td>
</tr>
<tr>
<td>0.9985</td>
<td>15.86</td>
<td></td>
<td>0.9698</td>
</tr>
</tbody>
</table>

It appears from the observations of Davy and Dalton that the

In the Edinburgh Pharmacopoeia it is stated that the density of the above mixture is 0.960, but this is an error. Two fluidounces of water with one fluidounce of aqua ammoniae fortior yield a mixture whose sp. gr. is 0.960.

* Mr. H. Phillips's Translation of the Pharmacopoeia, 4th edn.

* Elements of Chemical Philosophy, p. 258.
specific gravity of mixtures of liquid ammonia and water is exactly mean of that of the two ingredients.

COMPOSITION.—From the above observations, the composition of initial solutions of ammonia is nearly as follows:—

<table>
<thead>
<tr>
<th></th>
<th>Lond. and Edinb. Ph. (sp. gr. 0.000)</th>
<th>Dub. Ph. (sp. gr. 0.005)</th>
<th>Liq. Am. Fort. (sp. gr. 0.088)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammoniacal gas</td>
<td>10</td>
<td>12.5</td>
<td>30.5</td>
</tr>
<tr>
<td>Water</td>
<td>90</td>
<td>87.5</td>
<td>69.5</td>
</tr>
<tr>
<td>Liquor Ammoniac</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

CHARACTERS.—(See Ammoniacal Gas.)

PURITIES.—Liquor ammonia frequently contains traces of carbonate of ammonia, which may be detected by lime-water, or by a solution of the chloride of calcium, either of which occasions a white precipitate (carbonate of lime) if carbonic acid be present. When a solution of the liquid has been neutralized by pure nitric acid, it will not cause a precipitate by the addition of nitrate of silver, oxalic acid, or of sesquicarbonate of ammonia; for the first would indicate the presence of hydrochloric acid, or chlorine; the second, of carbonic acid; the third, of lime, or other earthy matter. If pure, it does not evolve with dilute acids.

COMPATIBLES.—It is hardly necessary to state that all acids are incompatible with ammonia. With the exception of the salts of ash, soda, lithia, baryta, and strontia, ammonia decomposes most of the metallic salts.

PHYSIOLOGICAL EFFECTS. a. On Vegetables.—The effects of ammonia on plants have been before noticed.

b. On Animals.—Orfila injected sixty grains of liquor ammonia into the jugular vein of a strong dog: tetanic stiffness immediately ensued; the urine passed involuntarily, and the animal became convulsed: death took place in ten minutes. The body immediately opened, when the contractile power of the muscles was found extinct. In another experiment, thirty-six grains of concentrated solution of ammonia were introduced into the stomach, and esophagus tied: in five minutes the animal appeared insensible, in a few moments after was able to walk when placed on his feet; inspirations were deep, and his posterior extremities trembled. Twenty hours he was insensible, and in twenty-three hours he died. On dissection, the mucous membrane of the stomach was reddened in some places. These experiments show the effects of the doses of this solution on the nervous system. The first experiment agrees in its results (that is, in causing tetanic convulsions) with that made by Nysten, and which has been before mentioned, of pouring ammoniacal gas into the cavity of the pleura. From the convulsions it may be inferred, that in these instances the (grey matter of the) spinal marrow was specifically affected.

c. On Man. — On Local effects.—In the concentrated form the action of liquor ammonia is exceedingly energetic. Applied to the skin, it causes pain, redness, vesication, and destruction of the part; thus acting, first as a rubefacient, then as a vesicant, lastly as a caustic or corrosive. Its emanations are also
irritant: when they come in contact with the conjunctival membrane, a flow of tears is the result; when inhaled, their poweria action on the air-passages is well known. Persons in syncope are observed to be almost immediately raised from a death-like state, merely by inhaling the vapour of this solution. In case of insensibility it must be employed with great caution; for, if used injudiciously, serious, or even fatal, consequences may result. Nysten tells us that a physician, for some years subject to epilepsy, was found by his servant in a fit. In order to rouse his master, the latter applied a handkerchief, moistened with this solution, to his nose; so assiduously, that he brought on bronchitis, of which the patient died on the third day. In the Edinburgh Medical and Surgical Journal, there is the report of the case of a lad whose death was produced, or at least hastened, by an attendant applying “with such unwearied but destructive benevolence,” ammonia to the nose, the suffocation had almost resulted. Dyspnoea, with severe pain in the throat, immediately succeeded, and death took place 48 hour afterwards. A French physician also suffered ulceration of the mouth, and violent pulmonary catarrh, in consequence of the excessive use of ammonia, given as an antidote for hydrocyanic acid. More recently, another case of poisoning by the vapour of ammonia has been published 4. It arose from the accidental bursting of a carboy of liquor ammonia. The mucous membrane of the nose and lips was destroyed. The tongue was deprived of its epithelium, and a large quantity of sanguineous froth escaped from the mouth. The respiration was so difficult, that suffocation was feared. The pulse was feeble, irregular, and frequent. There were no convulsions. Bronchitis supervened, but the patient recovered.

When the solution of ammonia is swallowed in large doses, it acts as a powerfully corrosive poison; but modern well-marked cases of poisoning by it in the human subject are wanting. However, it is very evident that violent inflammation of all that part of the alimentary canal with which the poison may be in contact, would be the result, and that if much were taken, decomposition of the part might be expected. When swallowed in a very dilute form, and in small quantity, the local phenomena are not very marked, and the effect of the substance is then seen in the affection of the general system. The chemical action of ammonia on the tissues is analogous to that of potash, hereafter to be described.

ββ. Remote effects.—The remote effects may be investigated under two heads, according as they are produced by small or large doses. In small or therapeutic doses, such as we are accustomed to employ in the treatment of diseases, ammonia acts as a stimulant, excitant, or caelifacient. It produces a sensation of warmth in the mouth, throat, and epigastrium, frequently attended with eructations. A temporary excitement of the vascular system succeeds, but this

4 Christian, Treatise on Poisons.
 Journal de Chimie Medicale, t. vi. p. 499, 2me Sér.
is, however, something remarkably different between the stimulant ammonia and those of alcohol or opium. The first may be employed at benefit in many inflammatory and febrile cases, in which the latter highly prejudicial. Ammonia, observes Dr. Billing, is not, like wine ture of opium, a diffusel stimulant. "In the first place, ammonia empirically by the most able of the profession, in cases where they are experience that they must not employ wine or tincture of opium. he shows that it is not really a diffusel stimulant—it is a local one; ach, through the medium of the solar plexus, excites the heart more, though not injuriously. Again, so far from being a diffusel stimulus, it only unites with animal acids, and then circulates, or is diffused, not unanglant, but as a sedative saline; so as to perform the double operation of any local stimulant to the stomach and heart, and a sedative to inflamed es elsewhere, although the latter indication be not contemplated in its ration."

acts of large or poisonous doses on the human subject have not scribed: but that the nervous system is affected, seems pro- from a case mentioned by Plenck, which terminated fatally minutes; though the symptoms are not related. (See Ammo- quicarbonas.)

e compare the effects of ammonia with those of other stimul camphor, wine, and opium, we observe, in the first place, e influence of ammonia is principally manifested in the gan- and true spinal systems,—while the other stimulants, above ed, affect the cerebral system. Thus the effects of ammonia ally exhibited on the circulation, respiration, secretion, and dic actions: but camphor, wine, and opium, though they also these functions, yet they principally affect the intellectual func- Secondly, the effects of ammonia are more transient than
spasm. It is more especially fitted for fulfilling these indications when our object is at the same time to promote the action of the skin. It is calculated for states of debility with torpor or inactivity. It is also used as an antacid and local irritant.

1. In dyspeptic complaints, accompanied with preternatural acidity of stomach and flatulence, but without inflammation, a properly diluted solution of ammonia may be employed with a two-fold object—that of neutralizing the free acid, and of stimulating the stomach. It must be remembered that the healthy secretions of the stomach are of an acid nature, and that the continued use of ammonia, or any other alkali, must ultimately be attended with injurious results, more especially to the digestive functions. While, therefore, the occasional employment of alkalis may be serviceable, their constant or long-continued use must ultimately prove deleterious.

Ammonia may, under some circumstances, be employed to neutralize acids introduced into the stomach from without, as in poisoning by the mineral acids, though chalk and magnesia would be more appropriate, being less irritant. It is a valuable antidote in poisoning by hydrocyanic acid. Its beneficial operation has been ascribed to the union of the alkali with the acid, whereby hydrocyanate of ammonia is formed; but since it has been found that this salt is highly poisonous, it is evident that this explanation is not satisfactory. Some have ascribed the activity of the hydrocyanate to its decomposition by the free acids of the stomach, and the consequent evolution of free hydrocyanic acid; but this explanation is not satisfactory. I believe the efficiency of ammonia as an antidote to poisoning by hydrocyanic acid, arises from its exerting an influence of an opposite nature to that of the poison. In poisoning by the oil of bitter almonds or other agents supposed to contain this acid, ammonia is equally serviceable. The antidote should be given by the stomach, if the patient can swallow, and the vapour should be cautiously inhaled.

2. To produce local irritation, rubefaction, vesication, or destruction of the part.—As a local agent, ammonia has been employed in a variety of diseases, sometimes as a rubefacient or irritant, sometimes as a vesicant, and occasionally as a caustic. Thus it is employed as a rubefacient in rheumatic and neuralgic pains, and as a counter-irritant to relieve internal inflammations. As a local irritant, a weak solution has been injected into the vagina and uterus, to excite the catamenial discharge; but there are some objections to its use. Thus, it is a most unpleasant kind of remedy, especially to young females; moreover, the stoppage of this discharge is in many cases dependent on constitutional or remote causes, and, therefore, a topical remedy is not likely to be beneficial. Lavagna employed ten or fifteen drops of the solution, diluted with milk. The following is Nisato’s formula:—

\[\text{B. Ammon. liquid. gt. xl.; Decoct. hordei, una. viii. ; Mucilag. Arab. non. dimid. Misce, et fiant quatuor intra diem injectiones.} \]

Sometimes ammonia is employed as a vesicatory; and it has two advantages over cantharides—a more speedy operation, and non-
tion of the urinary organs. It may be employed in the form of ointment or solution. As a caustic, the strong solution of ammonia may be sometimes used with advantage in the bites of rabid animals.

3. The vapour of the solution of ammonia may be inhaled when we wish to make a powerful impression on the nervous system, as in syncope, or to prevent an attack of epilepsy. To guard against or relieve fainting, ammoniacal inhalations are very powerful and useful; their instantaneous operation is frequently astonishing. Pinel says, he once saw an attack of epilepsy prevented by this means. The patient (a watchmaker) had intimations of the approaching paroxysm from certain feelings; but he found, by inhaling the vapour of ammonia, it was frequently prevented. In the case of a confirmed epilepsy, which I was in the habit of watching for some years, I think I have also seen analogous beneficial effects. I speak doubtfully, because it is so difficult to determine, in most cases, the actual approach of the fit. It is deserving of especial notice, that ammonia is useful in three conditions of system, which, though produced by very different causes, present analogous symptoms; viz. idiopathic epilepsy—the insensibility and convulsions (? epilepsy) produced by loss of blood—and the insensibility and convulsions (? epilepsy) which poisonous doses of hydrocyanic acid give rise to. (See Ammonia Sesquicarbonas).

In asphyxia, ammoniacal inhalations have been strongly recommended by Sage, who says that he produced the apparent death of rabbits by immersion in water, and recovered them subsequently by the use of ammonia. A case is told us of a man who had been submerged in the Seine for twenty minutes, and who, when taken out of the water, appeared lifeless, yet by the use of ammonia recovered; and a M. Routier, a surgeon, of Amiens, is said to have restored a patient in the same way. That it may sometimes be of service I can readily believe, but it must be employed with great caution.

4. Ammonia is given internally as a stimulant and sudorific with manifest advantage in several cases, of which the following are illustrations:

a. In continued fevers which have existed for some time, and where all violent action has subsided, and the brain does not appear much disordered, it is occasionally of great service. Its diaphoretic action should be promoted by diluents and warm clothing. It has an advantage over opium—that, if it do no good, it is less likely to do harm.

b. In intermittent fevers it is sometimes of advantage, given, during the cold stage, to hasten its subsidence.

c. In the exanthemata, when the eruption has receded from the skin, and the extremities are cold, it is sometimes of great benefit, on account of its stimulant and diaphoretic properties. But in many of these cases the recession arises from, or is connected with, an inflammatory condition of the bronchial membrane, for which the usual treatment is to be adopted.

d. In some inflammatory diseases (especially pneumonia and rheumatism), where the violence of the vascular action has been reduced by proper evacuations, and where the habit of the patient is unfa-
vourable to the loss of blood, ammonia has been serviceable. In combination with decoction of senega, I have found it valuable in old pulmonary affections. (See Senega.)

5. In certain affections of the nervous system, ammonia is frequently employed with the greatest benefit. Thus it has been used to relieve the cerebral disorder of intoxication. In poisoning by those cerebro-spinants commonly termed sedatives—such as foxglove, tobacco, and hydrocyanic acid, ammonia is a most valuable agent. This remedy has been supposed to possess a specific influence in relieving those disorders of the nervous system accompanied with spasmodic or convulsive symptoms; and hence it is classed among the remedies denominated antispasmodic. Velsen, of Cleves, has used it with advantage in delirium tremens. It was a remedy frequently tried in the malignant or Indian cholera, and occasionally procured relief, but it was not much relied on.

6. Against the bites of poisonous animals—as serpents and insects, ammonia is frequently employed with the best effects. There does not appear, however, any ground for the assertion of Sage, that it is a specific: in fact, Fontana declares that it is sometimes hurtful in viper bites.

Administration.—It is given in doses of from five to twenty or thirty drops, properly diluted.

Antidotes.—The diluted acids—as vinegar, lemon or orange juice, &c., are antidotes for ammonia. To abate the inflammatory symptoms caused by the inhalation of its vapour, blood-letting has been found serviceable.

1. Linimentum ammoniæ, L. E. D.; Liniment of Ammonia; Volatile Liniment; Oil and Hartshorn. (Solution of Ammonia, f 3j. [f 3j. D.]; Olive Oil, f 3j. Mix and shake them well together).—This is an ammoniacal soap composed of the oleo-margarate of ammonia mixed with some glycerine. It is employed as an external stimulant and rubefacient, to relieve rheumatic and neuralgic pains, lumbago, sore throat, sprains, bruises, &c.

2. Linimentum ammoniæ compositum, E.; Compound Liniment of Ammonia. (Stronger solution of Ammonia [sp. gr. 0·880], f 3v.; Tincture of Camphor, f 3ij.; Spirit of Rosemary, f 3j. Mix them well together. This liniment may be also made weaker for some purposes, with three fluidounces of Tincture of Camphor and two of Spirit of Rosemary).—These are obvious imitations of Dr. Granville’s counter-irritating or antidysnomous lotions. This liniment may be used so as to produce rubefaction, vesication, or canterization. A piece of linen six or seven times folded, or a piece of thick and coarse flannel, impregnated with this liniment, is to be applied to the part and covered.

For some other uses of ammonia, see Ammonia. Scequicarbonare.

1 See the articles Soap and Olive Oil.
2 Lancet, October 27, 1838; and Brit. and Foreign Med. Review, vol. vii. p. 292.—Also Dr. Granville’s work, entitled Counter-Irritation, its Principles and Practice, illustrated by one hundred and the most painful and important Diseases effectively cured by external applications. Lond. 1838.
Ammoniacal Ointment.—The formula, as given by Soubiran, is as follows:—Suet one part, lard one part, and Strong Solution of Ammonia two parts. In his work, however, the following formula is given:—Hog’s tallow, Oil of Sweet Almonds, 3iss., and Strong Liquid Ammonia from 3v. to 5v. Melt the lard, mix it with the oil, and pour into a wide-mouthed bottle with a ground glass stopper; then ammonia, close the bottle, mix the contents together by shaking, and keep the mixture in a cool place. This ointment, when applied to the skin and covered by a compress, speedily produces the redness of rubefaction. It is a useful rubefacient, vesicant, and counter-irritant.

TURĂ AMMONIÆ COMPOSITA, L. Spiritus Ammoniaci succinatus, 5ij.; Rectified Spirit, fœlix.; Oil of Lavender, mxi.; Oil of Lavender, miv.; Stronger Solution of Ammonia, Oij. Macerate the Mastic Spirit, that it may be dissolved, and pour off the clear tincture; then add the other ingredients, and shake them all together. This liquid is milky, owing to the separation of the mastic from its solution by ammonia. It is commonly called Eau de Luce Lucie, after an apothecary at Liége. M. B. Jussieu gave it to his pupils who had been bitten by a viper; and, as the patient recovered, the remedy acquired considerable celebrity as a counter-irritant to the bites of venomous snakes. But Fontana has shown, ammonia (its active principle) does not possess any powers of this kind. The compound tincture of ammonia is a powerful antispasmodic, and is now principally employed as an antispasmodic, in doses of from ten to thirty or forty minimis. It has also been used as a stimulating emboction.
Lully, in the 13th century, was acquainted with the impure solution of carbonate of ammonia obtained from putrid urine; and it is probable that the Arabians had known it long before. Basil Valentine speaks of the spiritus salis urinæ.

Natural History (see Ammonia, p. 294).—Carbonate of ammonia is formed during the putrefaction or destructive distillation of those organic substances which contain nitrogen. It is a constituent of rain water (see p. 259).

Preparation.—Anhydrous neutral carbonate of ammonia can only be obtained by bringing together dry carbonic acid and ammoniacal gases. It is not employed in medicine.

Hydrated neutral carbonate of ammonia is the first, and, therefore, the most volatile, of the solid products which appear in the distillation of the commercial hydrated sesquicarbonate of ammonia. If hydrated sesquicarbonate of ammonia be digested in a small quantity of water, we obtain a solution of a neutral carbonate of ammonia, mixed, however, with a little of the bicarbonate.

The same neutral carbonate is obtained when a mixture of sal ammoniac and carbonate of either soda or potash is submitted to distillation with water; and on this principle several liquid preparations (presently to be mentioned) of this neutral salt are directed to be prepared in the Pharmacopœia. One equivalent or 54 parts of the hydrochlorate of ammonia react on one equivalent or 70 parts of carbonate of potash, and yield one equivalent or 76 parts of chloride of potassium, one equivalent or 9 parts of water, and one equivalent or 39 parts of carbonate of ammonia.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Hydrochloride</td>
<td>1 eq. Ammonia</td>
<td>1 eq. Carbonate of Ammonia</td>
</tr>
<tr>
<td>1 eq. Hydrochloric Acid</td>
<td>1 eq. Hydr.</td>
<td>1 eq. Chloride</td>
</tr>
<tr>
<td>1 eq. Carbonic Acid</td>
<td>1 eq. Potash</td>
<td>1 eq. Potassium</td>
</tr>
<tr>
<td>1 eq. Potash</td>
<td>1 eq. Glycer.</td>
<td>1 eq. Potassium</td>
</tr>
</tbody>
</table>

Bone spirit, obtained by the destructive distillation of bones, contains neutral carbonate of ammonia in solution with animal empyreumatic oil.

Properties.—Hydrated neutral carbonate of ammonia is a crystalline salt, having an ammoniacal odour, but weaker than that of a solution of caustic ammonia.

Characteristics.—Its solution yields, on the addition of chloride of barium, a white precipitate (carbonate of baryta): and no further precipitate is obtained by the further addition of caustic ammonia to the mixture. This character distinguishes the neutral carbonate from the sub- and super-carbonates of ammonia (see Hydrated Sesquicarbonate and Bicarbonate of Ammonia).

Composition.—The hydrated neutral carbonate of ammonia has, according to Rose, the following composition:—

Chymische Schriften, Ander-Tuelle, 8, 392. Hamb. 1677.
CARBONATE OF AMMONIA.

Carbonate of Ammonia 2 34 32-680 30-97
Bicarbonate of Ammonia 1 10 9-343 10-64

Or

Carbonate of Ammonia 1 30 44-83
Carb. of Oxide of Ammonium 1 48 55-17

PHYSIOLOGICAL EFFECTS AND USES.—The effects of carbonate of ammonia are similar to, but somewhat milder than, those of caustic soda. The neutral carbonate is more powerful than the sesquicarbonate, and still more so than the bicarbonate of ammonia.

In the solid form it is not employed in medicine. Several preparations, however, owe their medicinal activity to it.

IRITUS AMMONIÆ, L. E. D. Spirit of Ammonia.—Prepared according to the London and Dublin Pharmacopoeias, this is a solution of carbonate of ammonia in rectified spirit; but according to the former it is a solution of ammoniacal gas in spirit.

The following are the formulae of the three colleges:

London College orders Hydrochlorate of Ammonia, \(\frac{3}{4} \) ; Carbonate of Ammonia, \(\frac{3}{4} \) ; Rectified Spirit, \(\frac{3}{4} \) ; and let three pints in this process double decomposition takes place (as above explained), carbonate of ammonia, which is produced, distils over with the spirit, in the greater part of it dissolves; the remainder being deposited in a crystalline state.

Dublin College directs [Sesqui-] Carbonate of Ammonia, coarsely powdered, to be dissolved, with a moderate heat, in Rectified Spirit, \(\frac{1}{4} \) ; and let three pints in this process double decomposition takes place (as above explained), carbonate of ammonia, which is produced, distils over with the spirit, in the greater part of it dissolves; the remainder being deposited in a crystalline state.

Edinburgh College orders Rectified Spirit, \(\frac{1}{4} \) ; and let three pints in this process double decomposition takes place (as above explained), carbonate of ammonia, which is produced, distils over with the spirit, in the greater part of it dissolves; the remainder being deposited in a crystalline state.

During the solution in the heated spirit, the sesqui-carbonate evolves acid gas, and is reduced to the state of carbonate of ammonia, of which grains are taken up by each ounce measure of the spirit.

Fresh-burnt Lime, urate of Ammonia, in very fine powder, \(\frac{3}{4} \) ; Water, \(\frac{3}{4} \) ; Let the slaked with the water in an iron or earthenware vessel, and cover the retort with the powder be cold; mix the lime and muriate of ammonia quickly in a mortar, and transfer the mixture at once to a glass retort; the retort a tube which passes nearly to the bottom of a bottle containing rectified spirit; heat the retort in a sand-bath gradually, so long as the gas passes over, preserving the bottle cool. The bottle should be large enough to contain one-half more than the spirit used. In this process we obtain a tincture of the sal ammoniac and lime, ammoniacal gas, which is, and is dissolved in the spirit contained in the receiver.

The medicinal effects of this preparation are analogous to those of Ammonia. It may be employed in hysteria, flatulent colic, and nervous debility. It is, however, but little used except in the preparation of the following compounds. The dose of it is from \(\frac{3}{4} \) , properly diluted with water. Saturated with camphor, it is a highly stimulating liniment.

IRITUS AMMONIÆ FETIDUS, L. E. D. Fetid Spirit of Ammonia.—The method of preparation is similar to the preceding preparation, a difference exists in the formula of the British Colleges. The London and Dublin Colleges substitute carbonate of ammonia, while the Edinburgh College substitutes a solution of caustic ammonia.

\[\text{See p. 395.} \]
The formula of the *London College* is the same as that for *Spiritus Ammoniac, L.*; except that five ounces of Asaefetida are put into the retort with the other ingredients.

The *Dublin College* orders Asaefetida $\frac{1}{2}$ ozt. to be macerated for three days in Spirit of Ammonia, Oji. [*wine measure*], shaking occasionally; then pour off the clear liquor, and distil a pint and a half.

The *Edinburgh College* employs Spirit of Ammonia, $\frac{3}{4}$ ss.; Asaefetida, $\frac{3}{8}$ ss. Break the Asaefetida into small fragments; digest it in the spirit for twelve hours; and distil over ten fluid ounces and a half by means of a vapour-bath heat.

This preparation is a very unnecessary one. It is merely a solution of the volatile oil of the asaefetida in spirit of ammonia; for which a mixture of tincture of asaefetida and spirit of ammonia may be conveniently and more efficaciously substituted. It is a colourless, pungent, and fetid liquor, which becomes brownish by age. It is employed in hysteria, in doses of from half a dramm to a dramm in water.

3. SPIRITUS AMMONII AROMATICUS, L. E. D. Spirit of Sal Volatile.—

The preparation of the London and Dublin Pharmacopoeias is a solution of the carbonate of ammonia; but that of the Edinburgh Pharmacopoeia contains caustic ammonia.

The *London College* gives the following formula:—Hydrochlorate of Ammonia, $\frac{2}{3}$ ozt.; Carbonate of Potash, $\frac{7}{8}$ ozt.; Cinnamon, bruised; Cloves, bruised, of each $\frac{3}{8}$ ozt.; Lemon Peel, $\frac{3}{4}$ ozt.; Rectified Spirit; Water, of each Oij. Mix them, and let six pints distil,—In this process double decomposition takes place; as already noticed, and the carbonate of ammonia distils over with the spirit and part of the water flavoured by the essential oils of the aromatics used.

The *Dublin College* orders spirit of Ammonia, Oij. [*wine measure*]; Essential Oil of Lemons, $\frac{3}{8}$ ozt.; Nutmegs bruised, $\frac{3}{8}$ ss.; Cinnamon Bark, bruised, $\frac{3}{8}$ ozt. Macerate in a close vessel for three days, shaking occasionally; then distil a pint and a half.

The *Edinburgh College* orders Spirit of Ammonia, $\frac{3}{8}$ ozt.; Volatile Oil of Lemon-peel, $\frac{3}{8}$ ozt.; Volatile Oil of Rosemary, $\frac{3}{8}$ ss. Dissolve the oils in the spirit by agitation.

This preparation, on account of its more agreeable taste and smell, is usually preferred to the *Spiritus Ammoniac* above noticed, than which it is somewhat weaker. It is frequently employed in languors, faintings, hysteria, flatulent colic, and nervous debility, in doses of from $\frac{3}{8}$ ss. to $\frac{2}{3}$ ozt. properly diluted with water.

8. AMMON'I'LE SESQUICARBO'N'AS, L. — SESQUICARBONATE OF AMMONIA, E.

(Ammonia Carbonas, E. D.)

History.—This salt was probably known to Raymond Lully; but until late years it has been confounded with the other carbonates of ammonia. It is frequently denominated *subcarbonate of ammonia, volatile or smelling salts, or baker's salt.* The last appellation has been given to it because of its use by bakers, as a substitute for yeast in the manufacture of some of the finer kinds of bread.

It is probable that the terms *sal alkali volatile siccum seu urinsum, sal volatile satis ammoniaci, and sal volatile cornu cervi, applied to this rather than any other carbonate of ammonia.*
NATURAL HISTORY.—See Ammonia (p. 294), and Ammonia Carbonas (p. 305).

PREPARATION.—Manufacturers prepare it by submitting to sublimation a mixture of sal ammoniac or impure sulphate of ammonia and chalk. A few years since, it was extensively made at Messrs. Bush & Co.'s, Bow Common. The retorts in which the sublimation was effected, were of cast iron, and similar in shape and size to those employed in the manufacture of coal gas. Each retort communicated posteriorly with a leaden receiver, with which was connected a second receiver of the same size and shape. The receivers had the form of square prisms placed endways, and were supported in a wooden frame-work. The impure sesquicarbonate thus obtained was contaminated with tar or oily matter, and deposited a dark carbonaceous matter when dissolved in acids. It was refined in iron pots, surmounted with leaden heads, and heated by the flue of the retort furnace. A little water is introduced into the pots to render the sesquicarbonate translucent. In another manufactory, which I have inspected, the pots are heated by a water-bath; a temperature of 150° F. being, I am informed, sufficient for this process.

Fig. 54.

Manufacture of Sesquicarbonate of Ammonia.

All the British Colleges give formulæ for the preparation of this salt. The London and Edinburgh Colleges order of Hydrochlorate of Ammonia, lb. j., and Chalk lbiss. These are to be rubbed separately to powder, then mixed, and submitted to sublimation with a heat gradually increased. The Dublin College orders equal parts of Muriate of Ammonia, and dried Carbonate of Soda.

In this process three equivalents or 162 parts of sal ammoniac react on three equivalents or 150 parts of carbonate of lime, and produce an equivalent or 118 parts of the hydrated sesquicarbonate of ammonia, three equivalents or 168 parts of chloride of calcium, one equivalent or 17 parts of ammonia, and one equivalent or 9 parts of water. The chloride of calcium is left in the retort, the hydrated sesquicarbonate of ammonia is sublimed, while the ammonia and the water are dissipated.
Materials, Composition, and Products

<table>
<thead>
<tr>
<th>Materials</th>
<th>Composition</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 eq. Hydrochlorate</td>
<td>3 Hydrochloric Acid</td>
<td>1 eq. Water</td>
</tr>
</tbody>
</table>
| Amin. 162 | 1 eq. Hydr. | 1 eq. Water | 9
| 3 eq. Chloric Acid | 3 eq. Chloro | 1 eq. Ammonia | 17
| 1 eq. Ammonia | 1 eq. Ammonia | 3 eq. Chloro Calc. 168 |
| 3 eq. Carb. | 3 eq. Carb. Acid | 3 eq. Calc. 60 |
| Lime, 168 | 3 eq. Oxys. | 3 eq. Calc. 60 |
| 1 eq. Lime | 1 eq. Oxys. | 3 eq. Calc. 60 |

It appears from some experiments, presently to be noticed, that the compound called hydrated sesquicarbonate of ammonia is a double salt, consisting of one equivalent of anhydrous carbonate of ammonia (NH$_2$, CO$_2$) and one equivalent of hydrated bicarbonate of ammonia (NH$_3$, 2 CO$_2$, 2 HO). Now in general, when two neutral salts react on each other, the resulting compounds are also neutral; and, therefore, by the mutual action of 3 equivalents of hydrochloric acid and 3 equivalents of carbonate of lime, the calculated product should be 3 equivalents of hydrated neutral carbonate of ammonia (NH$_3$, CO$_2$, HO), called hypothetically carbonate of the oxide of ammonium, and 3 equivalents of chloride of calcium. But it appears from Rose's experiments that such a hydrated neutral carbonate of ammonia does not exist per se. Hence at the commencement of the heating process ammoniacal gas escapes with just so much water as is sufficient to form the hypothetical oxide of ammonium.

Hydrated sesquicarbonate of ammonia cannot be re-sublimed unchanged. Hence in the process of refining, its constitution changes; every two equivalents lose an equivalent of carbonic acid, and the product is a hydrated carbonate of ammonia.

Material, Composition, and Products

<table>
<thead>
<tr>
<th>Material</th>
<th>Composition</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Hydr. Sesquicarbonate Ammonia 236</td>
<td>1 eq. Carbonic Acid 22</td>
<td>1 eq. Carbonic Acid 21</td>
</tr>
<tr>
<td>5 eq. Carbonic Acid 110</td>
<td>4 eq. Ammonia 68</td>
<td>1 eq. Hydrated ½ Carbo. of Ammonia 31</td>
</tr>
<tr>
<td>4 eq. Water 36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Properties.—Hydrated sesquicarbonate of ammonia is met with in the form of fibrous, white, translucent cakes, about two inches thick. When exposed to the air it evolves carbonate of ammonia and is converted into bicarbonate of ammonia; so that its vapour has a pungent odour, and strongly reddens turmeric paper. The resulting bicarbonate is opaque, pulverulent, and much less pungent, from which it has been termed mild carbonate of ammonia. The sesquicarbonate is soluble in four times its weight of cold water; but boiling water or alcohol decomposes it, with the evolution of carbonic acid.

Characteristics.—As an ammoniacal salt, this substance is recognised by its odour, its fugacious action on turmeric paper, and by its action on the salts of copper, bichloride of platinum, and bichloride of mercury (see tests for ammonia, p. 296). As a carbonate it is known by its solution yielding a white precipitate (carbonate of baryta) with the chloride of baryum; the clear liquor from which this precipitate has subsided, yields a further precipitate on the addition of caustic ammonia. By this last character the sesquicarbonate is distinguished from the neutral carbonate.

Composition.—This salt consists, according to Mr. Phillips[^2]

Dr. Thomson, and Rose, of carbonic acid, ammonia, and water, in the following proportions:—

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>H. Phillips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonic Acid</td>
<td>3</td>
<td>66</td>
<td>55·93</td>
<td>54·2</td>
</tr>
<tr>
<td>Ammonia</td>
<td>3</td>
<td>34</td>
<td>28·81</td>
<td>29·3</td>
</tr>
<tr>
<td>Water</td>
<td>2</td>
<td>48</td>
<td>15·26</td>
<td>16·5</td>
</tr>
<tr>
<td>Hydrated Sesquicarbonate of Ammonia</td>
<td>1</td>
<td>118</td>
<td>100·00</td>
<td>100·00</td>
</tr>
</tbody>
</table>

It appears, however, from the observations of Dalton¹ and Scanlan², that it is not a single salt or true sesquicarbonate, but a mixture or compound of the carbonate and bicarbonate; for if treated with a small quantity of cold water, a solution of carbonate of ammonia is obtained, while a mass of bicarbonate having the form and dimensions of the sesquicarbonate employed, and of which it is a mere skeleton, is left. Two circumstances appear to me to prove that it is not a mere mixture, but a true chemical combination of these salts; viz. first the uniformity of its composition, and secondly its crystalline structure. Its constitution, then, is as follows:—

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhydrous Carbonate of Ammonia</td>
<td>1</td>
<td>39</td>
<td>33·05</td>
</tr>
<tr>
<td>Hydrated Bicarbonate of Ammonia</td>
<td>1</td>
<td>79</td>
<td>50·95</td>
</tr>
<tr>
<td>Hydrated Sesquicarbonate of Ammonia</td>
<td>1</td>
<td>118</td>
<td>100·00</td>
</tr>
</tbody>
</table>

IMPURITY.—The hydrated sesquicarbonate of ammonia of commerce is sometimes contaminated with empyreumatic oil, and in this state it yields a more or less deeply-coloured, or even blackish, solution when dissolved in dilute acid. The pure salt, on the other hand, yields a colourless solution, and leaves no residuum when heated on platinum or glass. It is translucent and crystalline; but when exposed to the air it evolves carbonate of ammonia, and becomes opaque, pulverulent, and less pungent: in this state it consists principally of bicarbonate of ammonia. Lastly, its aqueous solution, saturated with pure nitric acid, gives no precipitate with solution of chloride of baryum or of nitrate of silver; for a precipitate with the first of these substances would indicate the presence of a sulphate, with the second a chloride.

PHYSIOLOGICAL EFFECTS. a. On Animals.—The principal experimenters with this salt are Seybert, Orfila, and Gaspard, on dogs, and Wilmer on man. Seybert³ injected in one experiment fifteen grains, in a second twenty-five grains, and in a third experiment forty-five grains of this salt, dissolved in a little water, into the crural vein of a dog: the animal appeared to suffer great pain; the frequency of the heart’s action was increased, the respiration became difficult, and violent convulsions came on; but in all these cases perfect recovery took place. The blood, drawn after the injection, had its natural colour, odour, and consistence. Orfila⁴ found that two drachms and a half of the salt, given to a dog, caused gastric inflammation, with

¹ Memoirs of the Literary and Philosophical Society of Manchester, 2nd Ser., vol. iii. p. 18.
² Abhandlung für 1838, p. 266.
³ Quoted by Wilmer, Die Wirkung, &c.
⁴ Verhandl., Gez. Genc.
tetanic convulsions; the body ultimately becoming curved, with the head forcibly bent backwards. Gaspard (quoted by Wibmer *) killed a young pig, of three weeks old, by injecting twenty-four drops of a solution of carbonate of ammonia in an ounce of water into the veins. Death occurred in nine hours.

β. On Man.—Wibmer found that a grain and a half of this salt produced on himself no remarkable effect; three grains increased the frequency of the pulse from 68 to 72 beats per minute, with throbbing headache. In other experiments, in which he took from six to twelve grains (in some repeating the dose at short intervals), the effects were usually, but not constantly, increased frequency of pulse, with disorder of brain, manifested by the pain, heaviness, throbbing, &c. In one instance, he says, disposition to cough, and increased secretion of bronchial mucus, were remarkable. To an epileptic patient (a female) in the London Hospital, I gave fifteen grains of this salt three times a day for two months, without any apparent injury. The fits, which previously had occurred at stated periods, were suspended during the time the patient was under the influence of the medicine. Huxham* has mentioned a remarkable case illustrative of the ill effects resulting from the long-continued use of this salt.

"I had lately under my care," he observes, "a gentleman of fortune and family, who so habituated himself to the use of vast quantities of the volatile salts, that at length he could eat them in a very astonishing manner, as other people eat sugar and caraway seeds. The consequence was that he brought on a hectic fever, vast hemorrhages from the intestines, nose, and gums; every one of his teeth dropped out, and he could eat nothing solid; he wasted vastly in his flesh, and his muscles became as soft and flabby as those of a new-born infant; and he broke out all over his body in pustules. His urine was always excessively high coloured, turbid, and very fetid. He was at last persuaded to leave off this pernicious custom; but he had so effectually ruined his constitution, that, though he rubbed on in a miserable manner for several months, he died, and in the highest degree, of marasmus. And I am persuaded he would have died much sooner, had he not constantly drunk very freely of the most fine and generous wines, and daily used large quantities of asses' milk, and anti-scorbutic juices, acidulated with juice of lemon."

The general action of this salt is similar to that of caustic ammonia, already noticed. Its topical operation, however, is less intense; for combination with carbonic acid diminishes the local action of ammonia in proportion to the quantity of acid present.

In small doses it proves antacid, stimulant, and sudorific. By repeated use it operates as a liquefacent (see p. 194), like the other alkalis, though much less intensely so. In doses of thirty grains or more it is apt to occasion vomiting. The effects of an over-dose are abdominal pains, and other symptoms of inflammation, convulsions, and other phenomena indicative of its action on the nervous system.

Uses.—It is used in the same cases and under the same regulations as the solution of ammonia, to which I must refer the reader (see p. 302).

* Die Wirkung, &c.
* Essay on Fevers, pp. 48 and 308, 3d edit. 1791.
Recently this salt has been recommended, by Dr. Barlow, in diabetes, several cases of which are said to have been relieved, if not cured, by it. I regret that I cannot confirm Dr. Barlow's favourable notice of it. In one case (that of a man, an out-patient at the London Hospital) it has, in my hands, failed to give any relief, after a prolonged trial.

It has been employed with excellent effect in some cases of scrofula. It is best adapted for those cases attended with a languid circulation and a dry state of skin.

It is frequently employed for the preparation of effervescing draughts. The following are the relative proportions of acid and base to be used:

\[
\begin{align*}
20 \text{ grains of Sesquicarbonate of Ammonia} & \quad \text{require} \quad 6 \text{ fluidrachms of Lemon Juice, or} \\
 & \quad \text{24 grains of crystallized Citric Acid, or} \\
& \quad \text{25 grains of crystallized Tartaric Acid.}
\end{align*}
\]

The citrate and tartrate of ammonia thus obtained are useful remedies in febrile cases, where the object is to promote cutaneous circulation and exhalation.

Full doses of this salt have been employed in paralysis, to occasion vomiting.

Mixed with some aromatic oil (as the oil of bergamot or lavender), it is used as a smelling salt, against syncope, hysteria, &c.

As a topical agent it has been employed in aqueous solution, or mixed with oil to form an imperfect kind of soap, or made into ointment with lard. Its operation in these cases is that of a topical stimulant and rubefacient. It proves useful in rheumatic pains, sprains, &c.

ADMINISTRATION. — As a stimulant and diaphoretic, it is used in doses of from five grains to a scruple, exhibited either in the form of pill or of solution. As an emetic, the dose is 30 grains, properly diluted, and repeated if necessary.

ANTIDOTES.—(See Ammonia, p. 304.)

1. LIQUOR AMMONIÆ SESQUICARBONATIS, L. Ammonia Carbonatis Aqua, E. D. (Sesquicarbonate of Ammonia, 5iv. [4 parts, D.]; Distilled Water, Oj. [15 parts, D.]; Dissolve and filter).—By exposure to the air, this solution loses its pungency by the formation of bicarbonate of ammonia. It may be given internally in doses of from \(\frac{1}{2}\) ss. to \(\frac{1}{2}\) ss., or even \(\frac{1}{3}\)ij, properly diluted. It is employed in the preparation of Ferri Potassio-tartras, Ph. L., and is a constituent of the following liniment:

2. LINIMENTUM AMMONIÆ SESQUICARBONATIS, L. Liniment of Sesquicarbonate of Ammonia. (Solution of Sesquicarbonate of Ammonia, fj.; Olive Oil, fjij. Shake them together until they are mixed).—Oil and sesquicarbonate of ammonia form a soap, but, owing to the presence of the carbonic acid, it is of an imperfect kind. Its effects
and uses are analogous to the Linimentum Ammoniac before mentioned (p. 304).

9. AMMO'NIE BICAR'BONAS, D.—BICARBONATE OF AMMONIA

HISTORY.—This salt was formed by Berthollet, and hence sometimes termed Berthollet's neutral carbonate of ammonia.

PREPARATION.—The directions of the Dublin College for preparation, are as follows:

"Take of Water of Carbonate of Ammonia any required quantity, suitable apparatus let the water be exposed, until the alkali is saturated, a stream of Carbonic Acid Gas which escapes during the solution of white man- diluted Muriatic Acid. Then let it rest, and let crystals form, which are dried without heat, and preserved in a close vessel."

Bicarbonate of Ammonia is also formed by keeping the condenser carbonate of ammonia in imperfectly closed vessels. An mode of obtaining it is by digesting water on the sesquiser rated carbonate, the more soluble carbonate is dissolved, leaving the less soluble bicarbonate (see p. 311).

PROPERTIES.—The crystals of this salt belong to the right hand system*. Their smell and taste are very faintly ammoniacal. The salt is less soluble in water than the preceding carbonates; it requires eight parts of cold water to dissolve it. The solution on exposure to the air, loses part of its carbonic acid, especially if heated.

Characteristics.—It is distinguished from the before-mentioned carbonates by having scarcely any ammoniacal odour. Its solu- tion at first occasions no precipitate with chloride of barium or chloride of calcium (unless caustic ammonia be added): after a short time, however, the mixture evolves carbonic acid, and a white carbonate is precipitated.

COMPOSITION.—The composition of this salt is as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Phillips</th>
<th>Rose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>1</td>
<td>17</td>
<td>21-5</td>
<td>21-9</td>
</tr>
<tr>
<td>Carbonic Acid</td>
<td>2</td>
<td>44</td>
<td>55-7</td>
<td>56-9</td>
</tr>
<tr>
<td>Water</td>
<td>2</td>
<td>18</td>
<td>27-8</td>
<td>22-3</td>
</tr>
<tr>
<td>Crystallized Bicarbonate of Ammonia</td>
<td>2</td>
<td>79</td>
<td>100-0</td>
<td>100-0</td>
</tr>
</tbody>
</table>

PHYSIOLOGICAL EFFECTS AND USES.—The operation and uses of this salt are analogous to those of the preceding compounds of ammonia. It is termed diaphoretic, antispasmodic, and antacid. Being less caustic, it is more palatable than the other carbonates. It may be employed to form effervescent medicines. About 18 grs. of Citric, or 19 grs. of Tartaric Acid, are required to saturate 10. of this salt.

ADMINISTRATION.—The dose of it is from six to twenty-four grs. dissolved in cold water.

HYDROCHLORATE OF AMMONIA.

AMMON'IE HYDROCHLO'RAS, L.—HYDROCHLORATE OF AMMONIA, E.

(Ammomie Murias, E.D.)

History.—The early history of this salt is involved in considerable obscurity; for though the term sal ammoniacus (ἀλευρώματος) is met with by several old writers, it is believed, by the erudite Beckmann, as by others, to refer to rock-salt. The first distinct notice of this substance is to be found in Geber, who was acquainted with the mode of purifying it by sublimation. But as my Dr. Royle observes, this salt "must have been familiar to the ancients ever since they have burnt bricks, as they now do, with the dung of animals; as some must have been found crystallized at the bottom of the kiln."

The name of sal ammoniac, derived from Ammonia, the name of a deity of Libya where the oracle of Jupiter Ammon was situated, was derived from ἄμζος, sand, on account of the sandy nature of its soil. Herodotus mentions the salt found in this

nymes.—Few substances have had so many synonyms as sal ammoniac. Besides those above given, the most familiar are, sal alba or muriate of ammonia. On the ammonium hypothesis it is chloro-amid of ammonium (NH₃ Cl.), while, according to Dr. White, it is chloro-amid of hydrogen (NH₃ H, H Cl.).

ural History.—(See Ammonia, p. 294.)

paration.—In Egypt, Sal Ammoniac is obtained by sublimation of the soot afforded by the combustion of camel's dung. Probably the muriatic acid or chlorine of this salt is derived from the salt on which these animals feed; for Chaptal says that he could procure sal ammoniac from the soot of cow dung and that of horses while in the process of combustion.

years ago this salt was manufactured in London from the soot of iron. At the latter end of the last century it was made in Paris by the union of ammoniacal vapour (obtained by the decomposition of amm). In iron cylinders placed in a furnace) with muriatic acid.

The present time sal ammoniac is manufactured in this country.

2 on the Antiquity of Hindoo Medicine, p. 41. London, 1837.
3 (Medicinal), cap. 181 et 182.
4 Alchemical names of this substance, see Dr. T. Thomson's History of Chemistry, vol. i. end 1830; and Parr's Medical Dictionary, art. Ammoniacus.
5 A full and complete description of the process, with illustrative plates, will be found in the Description de l'Egypte, Etat Moderne, tom. i. p. 413. Paris, 1809; Planches ii. & xxiv. Lettres. See also Parkes's Chemical Essays, ed. 2d, vol. ii. p. 487. Lond. 1823.
from the impure ammoniaal liquors obtained as secondary products in the manufacture of coal gas and animal charcoal.

1. Manufacture of Sal Ammoniac from Coals.—In the manufacture of coal gas, coal is submitted to distillation in iron retorts, and the volatile matters obtained are conveyed to a condensing vessel or refrigeratory, in which are deposited tar and an ammoniacaal liquor.

This ammoniacaal liquor (commonly termed gas liquor) contains several salts of ammonia—such as carbonate, hydrocyanate, sulphate, and hydrosulphate. It is usually sold to sal-ammoniac manufacturers, who reside in the outskirts of the metropolis. The precise mode of proceeding, to convert it into sal ammoniac, varies according to circumstances. Sometimes sulphuric acid is added, and the liquor evaporated, by which brown crystals of sulphate of ammonia are obtained. This salt is then mixed with chloride of sodium, and submitted to distillation in iron pots lined with clay, to which is adapted a leaden dome or head, having an aperture or open cylindrical tube, which can be closed or opened according to circumstances (fig. 55).

A few years since I saw this process in operation at the Westminster Gas-works. On examining the clay removed from the pots after the operation, I discovered small, but perfect and beautiful, crystals of the bisulphuret of iron, which had been formed during the process.

Every equivalent or 66 parts of sulphate of ammonia react on one equivalent or 60 parts of chloride of sodium, and yield one equivalent or 54 parts of sal ammoniac, and one equivalent or 72 parts of sulphate of soda.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Composition</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Sulphate of Ammonia</td>
<td>1 eq. Ammonia</td>
<td>1 eq. Hydrochlor. Ammonia</td>
</tr>
<tr>
<td>1 eq. Sulphuric Acid</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>1 eq. Water</td>
<td>9</td>
<td>1 eq. Hydrogen</td>
</tr>
<tr>
<td>1 eq. Oxygen</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1 eq. Chloride of Sodium</td>
<td>60</td>
<td>1 eq. Sulphate of Soda</td>
</tr>
<tr>
<td>1 eq. Chlorine</td>
<td>24</td>
<td>Soda</td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

In some cases the gas liquor is saturated with hydrochloric acid, and the brown crystals of hydrochlorate of ammonia obtained by evaporation are purified by sublimation.

As a cheap substitute for hydrochloric acid, manufacturers sometimes employ chloride of calcium. This proceeding I have seen adopted at the manufactory of Messrs. Bush & Co., Bow Common.

1 The chloride of calcium used in the above process is a secondary product obtained, I am informed, from salt-works. It contains the chlorides of sodium and magnesium.
HYDROCHLORATE OF AMMONIA.

The process has been described by my friend and former pupil, Dr. G. H. Jackson. To the gas liquor, chloride of calcium is added, when a copious precipitation of carbonate of lime takes place, muriate of ammonia being left in solution. The whole of this is put into a tub, having holes in the bottom to allow the solution to drain through, leaving the solid particles behind. This solution is evaporated at a gentle temperature in iron tanks, when it yields impure crystals of muriate of ammonia, of a brownish colour. The salt is then dried, and the water of crystallization driven off in a long iron vessel, very similar to a sand-bath. It is now placed in an iron subliming pot (previously coated to the extent of from one to five inches in thickness, with a composition of common clay, sand, and charcoal), capable of holding about 5 cwt. This is covered by a dome of lead, with an aperture at the top, in which a stopper is placed, by the removal and appearance of which the manufacturer judges of the progress of the sublimation. A gentle fire is kept up under the subliming pot for seven or eight days, when the dome having cooled down, and the sal ammoniac somewhat contracted, so as to loosen from the sides, the dome is thrown off from the iron pot, and about 2 or 3 cwt. of white, semi-transparent, muriate of ammonia are knocked off in cakes.

I have seen cakes of sal ammoniac, made at Messrs. Bush & Co.'s by this process, weighing between 5 and 6 cwt. each; and I am informed that they sometimes weigh 1000 lbs. each. They are discoloured on their convex surface (in contact with the leaden dome), and are, therefore, carefully scraped before being sent out.

The grey salt scraped from the exterior of the cakes consists of, or at least yields, hydrochloric acid, ammonia, and lead. A solution of the purified salt yields no iodide of lead on the addition of iodide of potassium, but affords a black precipitate (sulphuret of lead) when sulphuretted hydrogen gas is passed through it. It is probably a double chloride of lead and ammonium.

Yellow or brownish streaks or bands are frequently observed in the cakes of sal ammoniac. These are ascribed by the manufacturers to the neglect of the workmen who, falling asleep during the night, allow the fire to go down considerably, and then suddenly raise the heat, by which chloride of iron is sublimed in combination with sal ammoniac.

For several years I have been accustomed to show, in the lecture-room, that a solution of these yellow bands in water gives no traces of iron on the addition of ferrocyanide of potassium, until a few drops of nitric acid be added, when a copious blue precipitate is formed; and I, therefore, inferred that this yellow matter was a double chloride of iron and ammonium. My opinion has been fully confirmed by the experiments of Dr. G. H. Jackson.

2. Manufacture of Sal Ammoniac from Bones.—Animal charcoal is extensively manufactured from bones for the use of sugar-refiners; and during the process an ammoniacal liquor (called bone spirit) is obtained as a secondary product. The operation is thus conducted.

Bones are first boiled to remove the fatty matter which is used in
soap-making. The larger and finer pieces are then selected for the manufacture of buttons, handles of knives and tooth-brushes, &c.; while the smaller and refuse portions are sold as manure. The remainder is submitted to distillation.

The stills or retorts are sometimes made of cast iron, and in shape and size resemble those used at gas-works. Formerly they were placed horizontally in the furnace¹, and the volatile matters were conveyed away by a pipe opening into the ends of the retorts. To facilitate the speedy removal of the charcoal, they are sometimes placed obliquely in the furnace: the bones are introduced at the upper end, and the charcoal is removed from the lower end;—while the volatile matters are conveyed away by a side pipe. But these retorts are considered inferior to the vertical ones, on account of the facility and speed with which the latter can be charged and discharged. The vertical stills or retorts are made of cast iron or of Welch bricks; the latter, I am informed, are preferable. In a large manufacture of animal charcoal in this metropolis, the shape of the retort is that of a right rectangular prism; its height being twenty feet, its length about three feet, and its breadth two feet. It is closed at the top by a moveable iron plate, secured by a screw bolt. It is closed below by a double trapdoor opening underground. Around the retort is a furnace of brickwork, whose shape is that of a truncated pyramid.

Fig. 56.

Manufactury of Animal Charcoal and Bone Spirit.

a. Furnace enclosing the retort.
b. Top of the retort.
c. Pipe to convey away the volatile products.
d. Water cistern, through which the volatile matter passes.
e. Pipe leading to
f. The iron receiver (an old steam boiler) communicating with a reservoir cistern underground.

¹ See Ure's Dictionary of Arts and Manufactures, p. 1081, figs. 284 and 285. Lond. 1833.
The bones are introduced at the upper end of the retort (b): the volatile products are conveyed away by the iron pipe (c). After passing through the cistern (d) they are conveyed to a series of receivers (f and g), where the brown ammoniacal liquor (bone spirit) and the empyreumatic oil (animal oil) are deposited. The non-condensable portion is a fetid inflammable gas: this, after passing through water contained in the second receiver, is conveyed into a chimney, or is burned. The solid residue in the retort is removed, while red hot, through the lower and underground end of the retort, into wrought-iron canisters (l), which are instantly closed by iron covers, luted to make them air-tight, and then raised to the surface by a crane (k). When cold it is ground, and sold as animal, bone, or ivory black.

The products of this operation are easily accounted for. When bones are heated, their cartilaginous or gelatinous portion undergoes decomposition, and its elements (carbon, hydrogen, nitrogen, and oxygen) enter into new combinations. Some of the oxygen and hydrogen unite to form water. Carbon and oxygen, combining in different proportions, furnish carbonic oxide and acid. Carbon with hydrogen forms carbohydrogen; while nitrogen uniting with hydrogen produces ammonia, which, with some carbonic acid, forms carbonate of ammonia. The empyreumatic or animal oil consists of carbon, hydrogen, and oxygen, with probably some nitrogen.

Manufacturers of animal charcoal usually sell their bone spirit to makers of sal ammoniac, who adopt different modes of proceeding, according to circumstances. Sometimes sal ammoniac is made from one spirit in the same way as from gas liquor. Some manufacturers digest the bone spirit with ground plaster of Paris (sulphate of lime), by which carbonate of lime and sulphate of ammonia are formed; the former is precipitated, the latter remains in solution. The liquor being filtered and evaporated yields brown crystals of sulphate of ammonia, which, being mixed with common salt, is submitted to sublimation, by which sulphate of soda and sal ammoniac are obtained.

Properties.—Hydrochlorate of ammonia usually occurs in commerce in the form of large hemispherical cakes, which are translucent, and by exposure to the atmosphere become slightly moist. By solution or sublimation it may be obtained in regular octahedral, or cubic, or plumose crystals: the latter are formed of rows of minute octahedrons, attached by their extremities (Graham). Its sp. gr. is 1·450. Its taste is saline and acrid; it has no odour. When heated, it sublimes without undergoing fusion or decomposition. It is soluble in about 3 parts of cold and 1 of boiling: cold being produced during the solution. It dissolves in alcohol.

Characteristics.—It may be recognised by the following characters: it is white and volatile; and if heated on the point of a knife by the flame of a candle, it readily sublimes. Mixed with caustic potash, or quicklime, it evolves ammoniacal gas, which is known by its odour, its action on turmeric paper, and its fuming with the vapour of hydrochloric acid. Dissolved in water the hydrochlorate of ammonia produces, with a solution of nitrate of silver, a white precipitate of chloride of silver, recognised by the properties before described (see
p. 226): and with bichloride of platinum a yellow precipitate (platinum bichloride of ammonia) which, when collected, dried, and ignited, yields spongy platinum.

Composition.—The following is the composition of this salt:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>1</td>
<td>17</td>
<td>31:48</td>
</tr>
<tr>
<td>Hydrochloric Acid</td>
<td>1</td>
<td>37</td>
<td>68:31</td>
</tr>
<tr>
<td>Hydrochlorate Ammon.</td>
<td>1</td>
<td>54</td>
<td>100:00</td>
</tr>
</tbody>
</table>

If one equivalent or two volumes of hydrochloric acid gas are mixed with one equivalent or two volumes of ammonia gas, combination is effected; the gases appear, heat is evolved, and the white hydrochloric acid is deposited.

Analogy would lead us to regard this salt as chloride of some metallic base. If such a base exist, it must consist of one equivalent nitrogen and four equivalents hydrogen. Berzelius assumes the existence of this hypothetical metallic base, and calls it *ammonia*. While sal ammoniac is termed by him *chloride of ammonium*, the protoxide of this hypothetical metal will be equal to an equivalent of ammonia and one of water. I have already referred to Dr. H. Davy's amidogen hypothesis of ammonia; and stated that, according to this view, sal ammoniac is a *chloro-amid of hydrogen*. The composition of sal ammoniac, according to these hypothetical notions, is as follows:

<table>
<thead>
<tr>
<th>Atoms Eq.wt.</th>
<th>Per Ct.</th>
<th>Chloride of Hydrogen</th>
<th>1</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>1</td>
<td>35</td>
<td>66:6</td>
<td></td>
</tr>
<tr>
<td>Ammonium</td>
<td>1</td>
<td>18</td>
<td>53:3</td>
<td></td>
</tr>
<tr>
<td>Chloride of Ammonium</td>
<td>1</td>
<td>54</td>
<td>99:9</td>
<td></td>
</tr>
<tr>
<td>Chloro-amid of Hydrogen</td>
<td>1</td>
<td>54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impurities.—The hydrochlorate of ammonia is sometimes rendered impure by the presence of iron, or of lead (see p. 317).

Physiological Effects.

a. **On Vegetables.**—According to H. Davy, water holding in solution 1:300 of its weight of hydrochlorate of ammonia promotes vegetation. Solutions which contained 1:30 of their weight of this salt he found injurious.

b. **On Animals.**—A solution of sal ammoniac mixed with blood drawn from the body produces no change in the size or colour of the blood-disk. Courten, Sprögel, Viborg, and Gaspard (cited by Wibmer), injected solutions of sal ammoniac into the veins of animals (dogs and horses): large doses generally caused convulsions, sometimes paralysis, and death. From the observations of G. Smith, Arnold, and Moirou, this salt appears to be a local irritant.

a Agricultural Chemistry.
b Phil Trans. for 1712.
c Die Wirkung, &c.
e Pharmacol. Vétérinaire.
and when introduced into the stomach in large quantities causes vomiting, purging, and gastro-enteritis. It exercises a specific influence over distant organs, for the three first of the above-mentioned experimenters observed that inflammation of the stomach ensued, to whatever part of the body the salt might have been applied, and the convulsions and paralysis before referred to, attest its action on the nervous system. Arnold says it diminishes the plasticity of the blood.

γ. On Man.—Wibmer tried this salt on himself. He took from ten to twenty grains for a dose, which he repeated at the end of an hour. The effects were a sensation of warmth and oppression in the stomach, headache, and increased desire of passing the urine.

In this country it is so rarely employed internally that we have very slight experience either of its physiological or of its therapeutic effects. In Germany, where it is more frequently administered, it is in high repute as a powerful alterative or resolvent.

“Like most salts,” says Sundelin, “sal ammoniac operates on the alimentary canal as an excito-irritant. After its absorption it appears to reduce moderately the action of the heart and large arteries, and, in this respect, belongs to debilitating or temperant agents. But it acts as excitant and irritant to the venous and arterial capillary systems, to the lymphatic vessels and glands, to the skin, to the kidneys, and especially to the mucous membranes; not only increasing secretion but also improving nutrition and assimilation, and countering organic abnormal conditions (as tumours, thickenings, and relaxations), so frequently met with in those structures. It promotes not only the mucous secretions but also cutaneous exhalation, and even menstruation. Its diuretic effects are less obvious. It extends its stimulating influence to the serous and fibrous tissues, whose nutrition it improves.

“From these statements it follows that sal ammoniac operates like the more-profoundly-acting alternative agents, and even approaches, in many respects, mercury, but is especially distinguished from the latter in this, that it by no means acts to such a degree as a liquefacient, nay even melting, agent on solidified organic substance and its crisis, and by its not so powerfully stimulating the lymphatic system. Its long-continued use may, indeed, injure the digestive powers, but never gives rise to general cachexia. I have administered large doses of it against thickening of the mucous membrane, for months, without remarking any injurious effects beyond those just mentioned. In large doses it purges like other salts, but in small ones rather constipates.”

Kraus says, that a slight miliary eruption and very painful speishe have been produced by large doses of it.

Uses.—In this country it is rarely employed internally. In Germany, where it is frequently used, it is administered in the following cases:

1. See p. 105.

1. In mild inflammatory fevers, especially those complicated with affections of the mucous or fibrous membranes, as in the diseases called bilious, gastric, catarrhal, or rheumatic fevers, it is employed for promoting secretion and hastening critical discharges.

2. In inflammation of the mucous or serous membranes, as catarrh, dysentery, urethritis, peritonitis, pleuritis, &c. when the first violence of the disease has been subdued, but when the secretions and exhalations are not yet established. In these cases it is used as a substitute for mercury.

3. In chronic diseases of various kinds, as chronic inflammation of the lungs, liver, and spleen—enlargement of the mesenteric glands—induration of the prostate, uterus, and ovaries—catarrhus vesicae—chronic ulceration of the uterus—mucous discharges from the urethra and vagina, it is administered as an alternative, as a stimulant to the absorbent system, and as a promoter of healthy secretion.

4. In amenorrhœæ it is strongly recommended by Sundelin⁴ as an emmenagogue, in those cases in which the disease depends on, or is connected with, inactivity of the uterus.

Externally it is sometimes employed, on account of the cold produced during its solution, in headache, inflammatory affections of the brain, mania, apoplexy, &c. When used for this purpose it must be applied as soon as the salt is dissolved. Mr. Walker⁷ found that five parts of this salt, with five parts of nitrate of potash and sixteen parts of water, lowered the thermometer from 50° to 10° F. A mixture of this kind placed in a bladder has been recommended by Sir A. Cooper as an application to hernial tumours, as I have already mentioned (see p. 33). It may be applied, instead of the ice-cap before noticed (p. 33), to the head.

As a stimulant and resolvent, or discutient, sal ammoniac is used in the form of plaster or lotion (see below). In powder it is sometimes employed as a dentifrice. A solution of 3s. in 13xij. of water is sometimes used as a gargle:

It is occasionally used to augment the solubility of bichloride of mercury, with which it combines to form a soluble double salt (see Liquor Hydrargyri Bichloridi). Tobacconists use it in the manufacture of snuff.

ADMINISTRATION.—For internal use the dose of it is from five to thirty grains every two or three hours, either in a pulverulent form, combined with sugar or gum, or in solution with some saccharine or mucilaginous solution, to which an aromatic should be added.

ANTIDOTE.—In the event of poisoning by this salt, warm water and mucilaginous and demulcent liquids should be given, to promote vomiting. No chemical antidote or counterpoison is known. Gastric enteritis is, of course, to be combated by the usual means.

1. LOTIO AMMONIÆ HYDROCHLORATIS. Muriate of Ammonia Wash.
SOLUTION OF ACETATE OF AMMONIA.

A solution of sal ammoniac, in water or in vinegar, with or without the addition of rectified spirit, is used as a resolvent or discutient lotion or embrocation. The proportions of the ingredients vary according to circumstances. When a strong lotion is required, from one to two ounces of the salt are dissolved in twelve fluidounces of liquid. Four ounces of rectified spirit are sometimes added. A wash of this strength is used in contusions and ecchymosis, when there is no wound of the skin;—in chronic tumors of the breast;—in white swellings, and other chronic affections of the joints;—in hydrocele, and dropsical enlargement of the thyroid gland;—in chilblains;—in sphenacel, after the requisite scarifications, &c. Weaker solutions (as from 3j. to 5iv. of the salt in 0j. of water) are employed as washes in scabies and ulcers; and as injections in gonorrhea and leucorrhœa.

2. EMPLASTRUM AMMONIÆ HYDROCHLORATIS. Sal Ammoniaci Plaster. Lead plaster 3ss., Soap 3ij.; melt them together, and when nearly cold, add Hydrochlorate of Ammonia 5ss., in fine powder. This plaster is stimulant and rubefacient. Its efficacy depends on the evolution of ammoniacal gas, in consequence of the action of the alkali of the soap on the hydrochloric acid of the sal ammoniac: hence it requires renewal every twenty-four hours. It is employed as a discutient for chronic swellings and indurations, white swellings, &c. Dr. Paris* recommends it in rheumatism of the muscles of the chest, and in pulmonary complaints.

11. LIQUOR AMMONII ACETATIS, L.—SOLUTION OF ACETATE OF AMMONIA.

(Ammonii Acetatis Aqua, E.D.)

History.—This solution appears to have been first described in 1782, by Boerhaave, who introduced it into the Materia Medica. It was subsequently employed by Minderer or Mindererus; and hence obtained one of its names, Spiritus seu Liquor Mindereri.

Natural History.—Acetate of ammonia is, I believe, always an artificial compound.

Preparation.—The London College directs this solution to be prepared with Sesquicarbonate of Ammonia 3ivs., or as much as may be sufficient, and Distilled Vinegar Oiv.; add the Sesquicarbonate of Ammonia to the Vinegar to saturation.

The Edinburgh College orders "Distilled Vinegar (from French Vinegar in preference) f5xxiv.; Carbonate [Sesqui] of Ammonia 3j.; mix them to dissolve the salt. If the solution has any bitterness, add, by degrees, a little distilled vinegar till that taste be removed. The density of the distilled vinegar should be 1·005, and that of Aqua Acetatis Ammoniæ 1·011."—The Dublin College directs one part of [Sesqui] Carbonate of Ammonia to be added gradually, and with

* Pharmacologia.
frequent agitation, to as much distilled vinegar as may be requisite to saturate the ammonia; namely, about thirty parts. The saturation is to be determined by means of litmus.

In practice, diluted acetic acid is frequently substituted for distilled vinegar, and as the percentage strength of this acid, as found in commerce, is subject to considerable variation, so must be the strength of the solution of acetate of ammonia. To obviate this, it would have been better if the British Colleges had fixed absolutely the quantity of hydrated sesquicarbonate of ammonia which should be employed to yield a given number of fluidounces of the solution of acetate of ammonia. Apothecaries then would be at liberty to employ a stronger or a weaker acetic acid, without affecting the strength of the product.

Every equivalent or 118 parts of hydrated sesquicarbonate of ammonia require two equivalents or 102 parts of anhydrous acetic acid to form a neutral compound, while three equivalents or 66 parts of carbonic acid gas are set free. Assuming distilled vinegar to contain 4.6 per cent. of real acid, it follows that 2217.39 parts of distilled vinegar would contain two equivalents or 102 parts of acetic acid.

MATERIALS.

<table>
<thead>
<tr>
<th>COMPOSITION.</th>
<th>PRODUCTS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Hydrated Sesquicarbonate of Ammonia</td>
<td>118</td>
</tr>
<tr>
<td>2 eq. Water</td>
<td>18</td>
</tr>
<tr>
<td>2 eq. Ammonia</td>
<td>34</td>
</tr>
<tr>
<td>2 eq. Acetic Acid</td>
<td>102</td>
</tr>
<tr>
<td>2 eq. Acetate Ammon.</td>
<td>120</td>
</tr>
<tr>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>

Properties.—When pure this liquid is colourless. Any tint, therefore, which the solution of the shops may have, is referrible to impurities in either the vinegar or the sesquicarbonate. Filtering it through powdered animal charcoal will usually remove any yellow or brown colour which it may have. If quite neutral, it will affect neither turmeric nor litmus paper. It is better, however, to have a slight excess of acid present than of sesquicarbonate; for if the latter predominate, the solution is much more irritable; and if employed as a collyrium, might produce inconvenient results.

Characteristics.—It is totally dissipated by heat. With nitrate of silver it gives crystals (acetate of silver) soluble in water. When concentrated it evolves vapours of acetic acid on the addition of strong sulphuric acid, and gives out ammonia if potash or lime be mixed with it. With sesquichloride of iron it yields a red liquor (peracetate of iron).

Composition.—By evaporating a saturated solution of acetate of ammonia under the exhausted receiver of the air-pump, and over sulphuric acid, crystals of the acetate are obtained. They are transparent oblique rhomboidal prisms, and consist, according to Dr. Thomson, of

<table>
<thead>
<tr>
<th></th>
<th>Atoms.</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic Acid</td>
<td></td>
<td>51</td>
<td>39.031</td>
</tr>
<tr>
<td>Ammonia</td>
<td>1</td>
<td>17</td>
<td>12.977</td>
</tr>
<tr>
<td>Water</td>
<td>1</td>
<td>63</td>
<td>48.991</td>
</tr>
<tr>
<td>Crystallized Acetate Ammonia</td>
<td>1</td>
<td>131</td>
<td>99.999</td>
</tr>
</tbody>
</table>

* For some remarks on the different strengths of this preparation, in the different European pharmacopoeias, see Mohr, in the *Berlinerisches Jahrbuch für die Pharmacie*, Bd. XII, S. 253, Berlin 1845.*
SOLUTION OF ACETATE OF AMMONIA.

Quantity of dry or anhydrous acetate of ammonia contained in solution kept in the shops, varies with the strength of the disnегar. Now, according to Mr. Phillips, 100 grs. of distilled water should saturate 13 grains of crystallized carbonate of soda, and indicate the presence of 4.6 per cent. of acetic acid; and, hence, 100 grains of liquor ammoniae acetatis, prepared from the sugar, would be composed as follows:—

<table>
<thead>
<tr>
<th>of Ammonia (dry)</th>
<th>Crystallised Acetate of Ammonia</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>69.940</td>
<td>11.053</td>
<td>88.364</td>
</tr>
</tbody>
</table>

Ammonia Acetatis (Ph. L.) 99.999

Liquor Ammoniae Acetatis (Ph. L.) ... 99.999

RITTIES.—This solution ought neither to be discoloured by the addition of hydrochloric acid, nor to throw down any precipitate of silver or chloride of barium. These substances, therey be employed to detect, respectively, metallic matter, hydrochloric acid or a chloride, and sulphuric acid. Pure acetate of ammonia occasions no precipitation with diacetate or acetate of lead; liquor ammoniae acetatis of the shops usually does, owing to the presence of some free carbonic acid or sesquicarbonate of ammonia.

PHARMACEUTICAL EFFECTS.—In small doses this solution is regarded as a diuretic: in large doses, diaphoretic, diuretic, and perhaps laxative. These effects, however, are not very obvious. Wibmer in moderate doses, yet did not observe any diaphoretic, or purgative effects from it; but he experienced headache, disturbance of digestion. Dr. Cullen says, "I have known four men taken at once, and soon after four ounces more, without ible effect." The local operation of this solution is that of a violent stimulus.

a. Internal.—It is employed in febrile and inflammatory diseases as a constituent of the ordinary saline draught. It is administered with nitrate of potash, or tartar emetic, and camphor and opium. When administered as a tonic, its operation is to be promoted by the use of tepid and external warmth. Its diuretic effect is assisted by the skin cool, and conjoining the spirit of nitric ether.

b. Externally.—Diluted with water it is sometimes employed as a wash to inflamed and bruised parts. Mixed with six ounces of rose-water, to which a drachm or two of opium may sometimes be added, it is employed as a salve in chronic ophthalmia.

c. Ophthalmia.—It is given in doses of half a fluid ounce to three ounces every five or six hours.

OTHER SALTS OF AMMONIA.

MONLE SULPHAS; Sulphate of Ammonia; Sulphate of Oxide of Ammonia; Sulphate of Sulphation of Ammonium; Glauber's Secret Sal Ammoniac.—This salt is obtained by dissolving hydrated sal ammoniac in warm water. It is usually obtained by dissolving hydrated sal ammoniac in warm water.
sesquicarbonate of ammonia in diluted sulphuric acid to saturation, and evaporating so that crystals may form as the solution cools. In an impure state it is procured by saturating the ammoniacal liquor of gas works or bone spirit with sulphuric acid; and the sulphate thus obtained is used in the preparation of sal ammoniac. Sulphate of ammonia when crystallized (NH₄SO₄·2H₂O) contains two equivalents of water; of one of which it may be deprived by heat. A hydrous sulphate of ammonia does not appear to exist; for when anhydrous sulphuric acid and ammoniacal gas are combined, a compound is formed in which neither sulphuric acid nor ammonia are evident to the usual tests. Its composition is supposed to be NH₄SO₄·H₂O, and it has been denominated sulfanis.

2. AMMONIUM NITRAS; Nitrate of Ammonia; Nitrate of Ammonium; Nitrum semivapum; Nitrum flammans. This salt is obtained by saturating diluted nitric acid with sesquicarbonate of ammonia, and evaporating so that crystals may form when the solution cools. If the solution be evaporated at a temperature below 100° F., large and beautiful six-sided prisms are obtained, terminated by six-sided pyramids (prismatic nitrate of ammonia). These crystals belong to the right prismatic system, and are isomorphous with nitrate of potash. They consist of one equivalent nitric acid 54, one equivalent ammonium 17, and one equivalent water 9. If the solution be boiled down, fibrous crystals are obtained (fibrous nitrate of ammonia). When dried at 300° F., nitrate of ammonia assumes the form of a compact white mass (compact nitrate of ammonia). In doses not exceeding a scruple, this salt acts as a diuretic; and, according to the experiments of Wibmer made on himself, it reduces the frequency of the pulse and the animal heat, without affecting the head, chest, or stomach. It has been given in fevers and acute catarrhs, in doses of from one to two scruples. But it is rarely employed.

It is the source from whence protoxide of nitrogen is obtained (see p. 283). It generates considerable cold while dissolving in water, it is sometimes used to form a freezing mixture. Lastly, it is occasionally employed to promote the incineration of organic substances.

3. AMMONIUM CITRAS; Citrate of Ammonia. — A solution of this salt is obtained by saturating lemon or lime juice, or a solution of citric acid, with sesquicarbonate of ammonia. 70 grains of the commercial crystals of citric acid or 53 xvijs. of lemon juice, saturate 59 grains of hydrated sesquicarbonate of ammonia. Liquid citrate of ammonia is employed either in the still or effervescent form as a cooling saline diaphoretic in febrile disorders.

ORDER VII.—CARBON, AND ITS COMPOUNDS WITH OXYGEN, HYDROGEN, AND NITROGEN.

SECT. I.—CARBONIUM.—CARBON.

HISTORY.—The term carbon (from carbo, ónis, coal) was first employed by Morveau, Lavoisier, and Berthollet, to designate the pure matter of charcoal. To the second of these chemists, we are indebted for demonstrating, that by combustion in oxygen gas the diamond and charcoal yield the same product; namely, carbonic acid gas.

NATURAL HISTORY.—Carbon is found in both kingdoms of nature.

a. In the Inorganised Kingdom.—When pure and crystallized it constitutes the diamond, which Sir J. D. Brewster asserts to be of vegetable origin; but a specimen, described by Mr. Heiland, was found in a primary rock. Plumb...
and anthracite consist principally of carbon. The bituminous substances (as coal, petroleum, naphtha, &c.) also contain it. These are admitted by geologists to be of vegetable origin. Carburetted hydrogen is evolved from coal strata, marshy places, stagnant waters, &c. Carbonic acid is found either in the free state, as in the atmosphere, in mineral waters evolved from the earth in old volcanic countries, &c. or combined with metallic oxides, in the form of the carbonate of lime, iron, &c. It is remarkable that carbon is rare among the older rocks.

3. In the Organised Kingdom.—Carbon is an essential constituent of all organised beings, vegetable or animal.

Properties.—Carbon is a solid, odourless, tasteless substance, neither fusible (?) nor volatile: combustible in oxygen gas, yielding carbonic acid gas. Its equivalent by weight is 6. Some years since Dobereiner asserted that he had discovered a metallic basis in it; but that statement has not been confirmed.

The other properties of carbon are so varied, that chemists are obliged to admit distinct varieties of this substance: the principal are the diamond, plumbago, and charcoal (animal and vegetable). Of these the two latter only require consideration in this work.

1. PLUMBA GO.—GRAPHITE OR BLACK LEAD.

History.—This substance was probably known to the ancients; but it was first accurately distinguished from other bodies with which it had been previously confounded, especially with molybdene (bisulphide of molybdenum), by Scheele in 1779. The terms plumbago, plumbum nigrum, molybdene, meet with in Pliny, do not apply to graphite.

Natural History.—It is found in various parts of the world; chiefly in primitive rocks and the coal formations. The finest occurs at Borrowdale, in Cumberland. It is brought to London, and sold by auction, at a public-house in Essex-street, Strand, on the first Monday in every month. The best quality usually sells for two guineas or more per pound, and is employed for making pencils. The ordinary kinds used in this country are imported from Ceylon and Hamburg.

Properties.—It occurs either crystallized in regular six-sided prisms (belonging to the rhombohedral system), or in kidney-shaped masses, or disseminated in rocks. Its colour is iron or steel-grey, with a metallic lustre. It has a greasy feel, and writes easily on paper. Its specific gravity is 2·08 to 2·15.

Characteristics.—It is known to be a variety of carbon by its yielding carbonic acid when burned in oxygen gas. Its physical properties distinguish it from most other varieties of this element. Some kinds of coal-gas charcoal closely resemble it. Of non-carbonaceous substances, molybdene (bisulphide of molybdenum) is
the only substance that can be confounded with it in external appearance.

Composition.—It consists essentially of carbon, but is usually mixed with variable proportions of silica, iron, and other substances. The following are analyses of three varieties by Vanuxen:

<table>
<thead>
<tr>
<th>Material</th>
<th>Borrowdale (pure)</th>
<th>Borrowdale (Impure)</th>
<th>Bastlestown (pure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>58.37</td>
<td>61.27</td>
<td>58.4</td>
</tr>
<tr>
<td>Water</td>
<td>12.85</td>
<td>2.31</td>
<td>9.5</td>
</tr>
<tr>
<td>Silica</td>
<td>5.18</td>
<td>10.10</td>
<td>2.6</td>
</tr>
<tr>
<td>Alumina</td>
<td>1.00</td>
<td>5.30</td>
<td>2.00</td>
</tr>
<tr>
<td>Oxides of Iron, Manganese, &c.</td>
<td>3.05</td>
<td>20.00</td>
<td>1.4</td>
</tr>
<tr>
<td>Plumbago</td>
<td>92.30</td>
<td>99.30</td>
<td>100.0</td>
</tr>
</tbody>
</table>

I suspect, however, that the finest varieties of the Borrowdale graphite contain a less quantity of foreign matter than is here stated. Graphite has been recently analysed by Dr. R. F. Marchand, who states that 1.4580 grammes of native graphite left a residue of pure white silica, without a hue of oxide of iron, weighing only 0.0075. On this erroneous supposition that the carbon was chemically combined with iron, graphite was formerly called carburet or percarburet of iron. From some observations of Schrader's, however, it would appear that the iron is in combination with titanic acid.

Physiological Effects.—Various properties have been assigned to it; but further evidence is wanting to establish its action on the body. Richter says it alters, in some way, the lymphatic secretion and the condition of the skin; and, after some days' use, causes increased secretion of urine, with difficulty in passing it.

Uses.—It has been employed both externally and internally in chronic diseases of the skin (as herpes). When used externally, it is mixed with lard in the proportion of one or two drachms to an ounce of the latter. Internally the dose is ten or twelve grains to a drachm.

2. CARBO LIGNI, L. E. D.—WOOD CHARCOAL.

History.—Wood charcoal must have been familiar to man from the most remote period of antiquity, and was probably known to the first inhabitants of the globe. For an account of the ancient method of procuring it, I must refer the reader to the works of Theophrastus (cap. x.) and Pliny.

Natural History.—Wood charcoal is always an artificial product. Some samples of Bovey coal have very much the appearance of wood charcoal, but are readily distinguished by their containing hydrogen in consequence of which they burn with a yellow flame. Moreover, they are not good conductors of galvanic electricity.

Preparation.—Ordinary wood charcoal is prepared, on a large scale, for the purposes of fuel, by burning billet-wood piled in a conical heap, covered by turf and sand, to prevent the access of

8 Silliman's *Journal*, vol. x. p. 105.
9 *Proceedings of the Chemical Society*, No. 1, p. xii. 1841.
11 *Nat. Hist. Lib. xvi. cap. vii.*
12 Kidd's *Outlines of Mineralogy*, vol. ii. p. 47.
WOOD CHARCOAL.

Atmospheric air, a few holes being left near the bottom and one at the top, to occasion a draught. The heap is then set fire to, and when the flame has pervaded the whole mass, the holes are closed. When cooled, the billets are found converted into charcoal. For an account of the mode of arranging the wood in heaps, consult Dumas m.

The charcoal used in the manufacture of gunpowder is prepared by the distillation of wood in cast iron cylinders, set horizontally (or nearly so) in brickwork, over a furnace. The charge is introduced at the front, and the opening is then perfectly secured by an iron door and bar, well fueled. The back part of each cylinder is perforated by two pipes, one above the other, which bend downwards into tubs containing water. The tar flows out by the lower pipe, and the volatile acid by the upper one, and condenses in the receiver (the tub), the smoke and vapours escape into the air. When sufficiently burnt, the charcoal is raked out into iron boxes, which are immediately covered, to exclude the air. At the Waltham Abbey mills, charcoal is prepared from the Dogwood (Cornus sanguinea), the Alder (Alnus glutinosa), and the Willow (Salix). The bogwood charcoal (which occasions a peculiar ringing sound when it falls on iron) is used for rifle powder; the other kinds for cannon and musket powder. 1st-Cdr. Moody tells me that the Dutch White Willow (Salix Rosselliana?) is the best kind of Willow for charcoal, but that the Huntingdon Willow is also a good one. (See also Acetic Acid.)

Properties.—Wood charcoal is black, odourless, and insipid. It is as the texture of the wood from which it has been obtained. It is brittle, and may be easily pulverized, especially when hot. Though very bad conductor of heat, it is an excellent conductor of electricity. It is insoluble, infusible, and incapable of volatilization. Its specific gravity varies, according to the substance from which it has been obtained. A remarkable property possessed by it is that of adsorbing certain substances (such as hydrosulphuric acid, organic colouring principles, various odorous matters, &c.) from liquids in which they are dissolved, or through which they are diffused. Another curious quality is that of condensing, within its pores, a certain quantity of any gas with which it may be placed in contact. One volume of boxwood charcoal absorbs 1.75 volumes only of hydrogen gas, but 90 volumes of ammoniacal gas. Some of the properties just mentioned (as that of decolorizing) are possessed, in a more eminent degree, by animal charcoal.

Characteristics.—By combustion in oxygen gas, charcoal yields carbonic acid gas; a property by which it is shown to consist of carbon. Its texture and appearance will distinguish it from other forms of carbon.

Composition.—The following is the composition of charcoal obtained from different woods, according to the experiments of Berthier o:

<table>
<thead>
<tr>
<th>Wood</th>
<th>Poplar</th>
<th>Maple</th>
<th>Ash.</th>
<th>Fir.</th>
<th>Alder</th>
<th>Birch.</th>
<th>Oak.</th>
<th>Hazel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glazed Ashes</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>10</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Volatile Matters</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Charcoal</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

* Traité de Chimie appliqué aux Arts, t. i. p. 561.
* For some further details consult Mr. Wilkinson's work on the Engines of War. Lond. 1841.
PHYSIOLOGICAL EFFECTS.—Wood charcoal I believe to be an inert substance both with respect to animals and vegetables. Burdin gave a pound of it daily without producing any other effect than that of blackening the stools. A variety of properties and virtues have, however, been ascribed to it, as I believe, without foundation: thus it has been termed anodyne, emmenagogue, tonic, purgative, &c. In the French edition of Hahnemann’s Materia Medica, no less than thirty-five pages are occupied with the enumeration of the symptoms produced by one-millionth of a grain of this substance!!

USES.—In this country, charcoal is used as a therapeutic agent principally as a disinfectant and antiseptic, to absorb the fetid odour evolved by gangrenous and phagedenic ulcers. For this purpose it may be used in the form of powder or of poultice. Its disinfecting and antiseptic powers, however, are much inferior to those of chlorine or of the chlorides [hypochlorites] of lime and soda.

As a tooth-powder it is a valuable agent, freeing the teeth from the foreign matters which cover them, and at the same time counteracting the unpleasant smell of the breath arising from decayed teeth or disordered stomach; but it is apt to lodge in the space between the gum and tooth, forming an unsightly livid circle (see p. 219). Brachet states, that it checks caries of the teeth. Areca-nut charcoal is a favourite variety for tooth-powders.

Internally, charcoal has been exhibited in various affections of the alimentary canal, such as dyspepsia, cardialgia, diarrhoea, and dysentery. The beneficial effects said to have been produced in these cases can only be referred to the action of charcoal on the secretions of the bowels; an explanation apparently supported by Dr. Chapman’s statement, that in dysentery, when the stools are highly acrid and offensive, charcoal entirely divests them of the bad smell and acrimony. In consequence of the advantage said to have been obtained by Dr. Calcagno, of Sicily, by the use of charcoal in intermittents, it was tried by Dr. Calvert, physician to the British forces at Palermo, and with success. In this country, however, I believe, it is never resorted to in ague by medical practitioners. Dr. Daniel, of Savannah, has recommended it in obstinate constipation and in the nausea and confinement of the bowels which frequently attend pregnancy. It has also been used in various other disease, but experience has not confirmed its efficacy.

ADMINISTRATION.—The dose of charcoal, as ordered by different writers, varies from ten grains to a table-spoonful or more.

CATAPLASMA CARBONIS LIGNI, D. Charcoal Poultice. (Prepare by taking Wood Charcoal red hot from the fire, extinguishing it by sprinkling dry sand over it, reducing it to a very fine powder, and adding it to the simple cataplasm warm).—The simple cataplasm here referred to is made by adding boiling water to a mixture of one...
part linseed meal and two parts oatmeal, and smearing it over with
olive oil. The charcoal poultice is applied to foul, unhealthy, and
gangrenous ulcers, to destroy their fetor and improve their appear-
ance. As an antiseptic, however, it is inferior to the chlorides [hypor-
dolorites] of lime and soda.

History and Synonymes.—This substance must have been known
from the most ancient times. The kind usually met with in the
shops is prepared from bones, and is termed bone black, or, more
commonly, ivory black (ebur ustum nigrum).

Natural History.—It is always an artificial product.

Preparation.—The mode of preparing animal charcoal from
bones has been already described. (See Ammonia Hydrochloras,
p. 318.)

Properties.—In its general properties animal charcoal agrees with
charcoal procured from wood. The decolorising powers of the former
are, however, much superior to those of the latter.

Composition.—Animal charcoal, prepared by calcining the bones
of the ox, sheep, and horse, consists of the following ingredients*:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate of Lime</td>
<td>88.0</td>
</tr>
<tr>
<td>Carbonate of Lime</td>
<td></td>
</tr>
<tr>
<td>Charcoal</td>
<td>10.0</td>
</tr>
<tr>
<td>Carburet or Silicet of Iron</td>
<td>2.0</td>
</tr>
<tr>
<td>Sulphuret of Calcium or Iron</td>
<td>traces</td>
</tr>
<tr>
<td>Common Bone Black</td>
<td>100.0</td>
</tr>
</tbody>
</table>

For the ordinary purposes of the arts, as sugar refining, this impure
animal charcoal answers very well, because the earthy salts in no way
affect the process. But in various pharmaceutical operations the pre-
sence of phosphate and carbonate of lime would preclude its use, on
account of the free acid in the liquids to be decolorised. Hence the
necessity of the purification of animal charcoal.

Animal charcoal, when deprived of its saline matters, usually con-
tains traces of nitrogen. Döbereiner, indeed, supposed it to be a kind
of sub-nitriuret of carbon, composed of one equivalent or 14 parts of
nitrogen, and six equivalents or 36 parts of carbon. Bussy, however,
has shown, that though animal charcoal retains its nitrogen with con-
siderable obstinacy, yet that the latter may be separated by heat.

Physiological Effects.—The remarks already made in reference to
the physiological effects of wood charcoal apply equally well to
animal charcoal.

Uses.—The principal use of animal charcoal is as a decolorising
agent in various pharmaceutical processes, as in the preparation of
sulphate of quina, hydrochlorate of morphia, veratia, &c. The
theory of its efficacy is imperfectly understood. The superior value
of animal to vegetable charcoal is usually referred to the minute sepa-
rion of the carbonaceous particles effected by the presence of other

matters, as of phosphate of lime, when bones are employed. Carbonate of potash is better for this purpose than phosphate of lime. The property possessed by minute particles of charcoal, of abstracting colouring matter from liquids, depends, probably, on some chemical affinities existing between carbon and colouring matter. It is stated, in some works, that charcoal which has been once used cannot have its decolorising property restored by a fresh ignition, unless it be mixed with some inorganic substance. This, however, is an error. The animal charcoal which has been used in sugar refining, is returned to the maker to be fresh ignited, and is then employed again, and this process of re-igniting, is, I am informed, repeated many times, without any loss of decolorising power.

CARBO ANIMALIS PURIFICATUS, L. E. Purified Animal Charcoal.
(Animal Charcoal, lb.; Hydrochloric Acid [commercial, E.] and Water, of each, ⅔x⅓. Mix the acid with the water, and pour it gradually upon the water; then digest for two days with a gentle heat, frequently shaking them. Set by, and pour off the supernatant liquor, then wash the charcoal very frequently with water, until nothing acid is perceptible; lastly, dry it. L.—The Edinburgh College directs the mixture to be boiled, after the digestion for two days; then diluted with two pints of water; the undissolved charcoal collected in a filter of linen and calico, and washed with water till what passes through scarcely precipitates with solution of carbonate of soda. The charcoal is to be heated first moderately, and then to redness in a closely covered crucible.)—In this process the hydrochloric acid dissolves the phosphate of lime, and decomposes the carbonate of lime and sulphuret of calcium, evolving carbonic and hydrosulphuric acid gases, and forming chloride of calcium, which remains in solution. The carbonate of soda, used by the Edinburgh College, is for the purpose of detecting the presence of a calcareous salt in the washings.

Purified animal charcoal causes no effervescence when mixed with hydrochloric acid, by which the absence of carbonate of lime is shown. Nor is any precipitate produced by the addition of ammonia, or its sesquicarbonate, to the acid which has been digested in the charcoal, by which the absence of any dissolved calcareous matter is shewn: caustic ammonia would precipitate any phosphate of lime in solution, while its sesquicarbonate would yield a white precipitate with chloride of calcium. Purified animal charcoal, “when incinerated with its own volume of red oxide of mercury, is dissipated, leaving only a scanty ash.”—*Ph. Ed.*

Purified animal charcoal is used as a decolorising agent in the preparation of the vegetable alkaloids.

SECT. II.—OXYCARBONS.

1. ACIDUM CARBONICUM.—CARBONIC ACID.

History and Synonyms.—Although the ancients were acquainted with the poisonous properties of carbonic acid gas, Dr. Black, in 1757, was the first who explained its nature.
the ancients is evidently this acid, as is also the *spiritus sylvestris* or gas of Paracelsus and Van Helmont. *Fixed air, acid vapour, and aerial acid*, are other synonyms for it.

NATURAL HISTORY.—It is a constituent of both kingdoms of nature.

a. In the Inorganised Kingdom.—Carbonic acid is a constituent of the atmosphere. In some parts of the world it is evolved from the earth in large quantities, particularly in old volcanic countries. Thus, in the vicinity of the Lake of Lash, Bischof estimates the exhalation as equal to 600,000 lbs. daily, or 219,000,000 lbs. (equal to about 1,855,000,000 cubic feet) annually. Some of the acid, evolved in the Brohththal, on the Rhine, is employed by him in the manufacture of chemical preparations on the large scale. D’Arcet has applied the carbonic acid gas, evolved from the mineral waters of Vichy, to the preparation of alkaline bicarbonates. Most persons are familiar, by report, with the *Grotto del Cane*, near Naples. It is a cavity in a rock, through the fissures of which carbonic acid is evolved. It has received its name from the practice of putting dogs into it, who fall down suffocated. The *Valley of Poison*, in Java, which has been described by Loudon, is another spot where this acid escapes from the earth. It is a cavity of an oval form, about three quarters of a mile in circumference, and from thirty to thirty-five feet deep; filled to the height of about eighteen feet with carbonic acid gas. The bottom of it is covered with the skeletons of men and various other animals, who have fallen victims to its destructive operation. If a traveler should be so unfortunate as to enter it, he cannot be sensible of his danger until too late to return.

Mr. Loudon thrust a dog in: he fell in fourteen seconds. A fowl thrown in appeared to be dead before it reached the ground! Carbonic acid gas is frequently met with in mines and wells; and is termed by miners *choke damp* (from the German *dampf*, vapour).

Few mineral waters are without this acid; and in some it exists in such quantity as to give them a sparkling or effervescent quality (see p. 268).

Lastly, carbonic acid is found (native) in combination with various bases: as with soda, baryta, strontian, lime, magnesia, and the oxides of manganese, zinc, lead, iron, and copper. According to Mr. De la Beche, the average amount of carbonic acid, locked up in every cubic yard of limestone, is about 16,000 cubic feet.

It is produced in the burning of limestone (carbonate of lime) at limekilns, and by the combustion of charcoal, coal, wood, coal gas, the fire-damp of coal-mines, and other combustibles containing carbon.

1. In the Organised Kingdom.—Carbonic acid gas is exhaled by plants in dark or shady places, and hence is met with in greenhouses, especially during the night. Animals develop it in the process of respiration; and, therefore, in crowded rooms, with imperfect ventilation, accidents have sometimes happened from the accumulated carbonic acid. It is produced by the decomposition of organic remains, as during the fermentation of saccharine fluids, and in the destructive distillation of animal substances: hence the danger of descending into brewers’ cellars. Free or combined carbonic acid is found in the blood, urine, bones, &c.

PREPARATION.—Carbonic acid gas may be procured in various ways, but for ordinary purposes is usually obtained by the action of some acid on carbonate of lime. Soda-water makers and the preparers of the alkaline bicarbonates obtain it by the action of sulphuric acid on common whiting. In the laboratory, hydrochloric acid and white marble are generally employed. It is most readily prepared in a tubulated glass retort, and may be collected over

water. The ordinary hydrochloric acid of the shops should be
diluted with four or five times its volume of water. By the reaction
of one equivalent or 37 parts of hydrochloric acid on one equiva-
 lent or 50 parts of carbonate of lime, we obtain one equivalent or
56 parts of chloride of calcium, one equivalent or 9 parts of water,
and one equivalent or 22 parts of carbonic acid.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 eq. Lime 28</td>
<td>1 eq. Water 1</td>
</tr>
<tr>
<td>1 eq. Hydrochloric Acid 37</td>
<td>1 eq. Oxygen 8</td>
<td>1 eq. Calc. 20</td>
</tr>
<tr>
<td></td>
<td>1 eq. Chlorine 36</td>
<td>1 eq. Chlor. Calcium 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td>87</td>
</tr>
</tbody>
</table>

Properties.—At ordinary temperatures and pressures, carbonic
acid is gaseous. In this form it is invisible, irrespirable, has a faint
odour, and a sharp taste. Its specific gravity is 1·5277. It is
neither combustible nor a supporter of combustion, except in the
case of potassium, which, when heated in this gas, takes fire, the
products of the combustion being carbon and carbonate of potash.
It extinguishes most burning bodies when introduced into it in the
ignited condition. It reddens litmus feebly.

Liquefaction.—Under a pressure of 36 atmospheres at 32°, carbonic
acid is a limpid, colourless liquid, which is insoluble in water and in
the fat oils, but is soluble in all proportions in alcohol, ether, oil of
turpentine, and carburet of sulphur. Its refractive power is much
less than that of water. Its expansibility by heat is greater than
that of gases; for when heated from 32° to 86° F., its bulk increases
from 20 to 29 volumes, while the pressure of its vapour augments
from 36 to 73 atmospheres.

Solidification.—By an intense degree of cold, liquid carbonic acid
may be solidified. Thus, when the pressure is removed from this
liquid by opening a stopcock in the condensing vessel, the cold pro-
duced by the expansion is so great, that a quantity of solid carbonic
acid is formed. In this state it is so intensely cold, that mercury,
liquid chlorine, liquid cyanogen, &c. may be readily frozen by
it. Being a very bad conductor of heat, it may be handled with
impunity.

Characteristics.—Carbonic acid gas is recognised by its feebly
reddening litmus, by being inflammable and a non-supporter of
combustion (except in the case above mentioned), and by its forming
with a solution of lime or of baryta, a white precipitate, soluble in
acetic acid.

The carbonates effervesce on the addition of hydrochloric acid.
The evolved gas is known to be carbonic acid by the characters

**At the Ecole de Pharmacie, in Paris, the apparatus employed in the condensation of the gas
burst, and destroyed the préparateur (see Journal de Pharmacie t. xxvii; and London Medical
Gazette, April 16, 1841).**
CARBONIC ACID.

before stated. The soluble mono-carbonates form white precipitates in solutions of lime or baryta, soluble in excess of carboxylic acid.

COMPOSITION. — By burning charcoal in one volume or 16 parts, by weight, of oxygen gas, we procure one volume or 22 parts, by weight, of carboxylic acid gas.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Carbon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 eq.</td>
<td></td>
<td></td>
<td>1 eq.</td>
<td>Carb. Acid gas</td>
</tr>
<tr>
<td></td>
<td>Oxygen</td>
<td>= 16</td>
<td></td>
<td>Acid gas</td>
<td>= 22</td>
</tr>
<tr>
<td></td>
<td>= 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physiological Effects. a. On Vegetables.—Carbonic acid gas is injurious to seeds, and diminishes or stops their germination. An aqueous solution of carboxylic acid applied to the roots of plants promotes vegetation. An atmosphere containing not more than 1–8th of its volume of carboxylic acid promotes the vegetation of plants exposed to the solar rays, but is injurious to those which grow in the shade. The carbon of plants is derived from carboxylic acid, which they take in from the atmosphere, decompose, retain the carbon, and evolve (partially or wholly, according to circumstances) the oxygen. Humus nourishes plants by presenting a slow and lasting source of carboxylic acid which is absorbed by the roots.

b. On Animals.—The respiration of carboxylic acid is deleterious and fatal to all classes of animals. It operates as a narcotic or stuporific poison. That it is a positive poison, and does not act merely by excluding oxygen, as some have supposed, seems to be proved by three facts: —firstly, an atmosphere composed of 79 parts of carboxylic acid and 21 of oxygen acts as a poison, although there is as much oxygen present as there is in atmospheric air; secondly, one bronchial tube of the land-tortoise may be tied, without any serious injury to the animal; but if, instead of tying it, the animal be made to inhale carboxylic acid gas by it, death takes place in a few hours; and, thirdly, "the cases of insidious poisoning by small doses of carboxylic acid scarcely admit of explanation, save on the grounds of the essentially and specifically poisonous action of carboxylic acid gas, when sufficiently diluted to become respirable." The impression produced on the pulmonary extremities of the par vagum, by the carboxylic acid in the lungs, is supposed by some physiologists to be the ordinary stimulus to inspiration. According to the experiments of Nycten, this gas may be injected into the venous system in large quantity, without stopping the circulation, and with-

\[2\] Liebig's Organic Chemistry, in its Application to Agriculture and Physiology, edited by L. Playfair, Ph. D. Lond. 1840.
\[3\] Christian, Treatise on Poisons, p. 785, 3d edit.
\[4\] Dr. Golding Bird's experiments, in the Guy's Hospital Reports, vol. iv. p. 75; also London Medical Gazette, N. S., vols. i. and ii. for 1838-9.
\[6\] Recherches, p. 99.
out acting primitively on the brain; but when more is injected, the blood can dissolve, it produces death by distending the heart when air is injected into the veins (see p. 23). Applied to the animals, free access of common air to the lungs being present produces, if the experiment be continued long enough, death.

γ. On Man.—If an attempt be made to inhale pure carbonic gas, the glottis spasmodically closes, so as to prevent the portions from entering the lung[1]. When mixed with more than twice its volume of air, this gas ceases to provoke spasm of the mucous membrane and may be taken into the lungs. It then acts as a narcotic. Its specific influence is exercised on the central organs of the spinal system, which it probably gains access to, through the medium of the blood. Its action on the nervous system does not depend on its impeding the arteriolarization of the blood; because death does not occur from the respiration of an atmosphere containing sufficient oxygen to support life per se, but with which is mixed carbonic acid. It is impossible to state the maximum quantity of this gas which may be present in the air without exciting its effects: probably varies for different individuals, some persons being much more susceptible of its action than others. If the proportion of carbonic acid be large, the effects are almost immediately developed; while if the proportion be small, they are very slowly manifested. Bird has shewn that an atmosphere, containing five per cent. carbonic acid, proved fatal to a bird in thirty minutes; and it is probable that the continued respiration of an atmosphere containing a considerably smaller proportion of carbonic acid, would be attended with dangerous and even fatal consequences.

The earliest symptom usually experienced by persons exposed to an atmosphere containing carbonic acid gas is throbbing headache, with a feeling of fulness and of tightness across the temples, the occipital region. Giddiness, loss of muscular power, a sense of tightness at the chest, augmented action of the heart, and palpitation, succeed. The ideas become confused, and the memory partially fails. A buzzing noise in the ears is next experienced; vision is impaired; and a strong tendency to sleep succeeds, or syncope ensues. The pulse falls below its natural standard and respiration becomes slow and laborious, the surface cold and livid, but the eyes retain their lustre. Convulsions, sometimes accompanied with delirium, foaming at the mouth, and vomiting, convulsion and are terminated by death. On post-mortem examination, gorgement of the cerebral vessels, and sometimes serous or sanguineous effusion, are the usual appearances.

Applied to the skin (care being taken that it be not inhaled) induces a sensation of warmth and prickling or tingling, sometimes accompanied by pain, increased frequency of the pulse, sweating, excitement of the nervous system. M. Collard de Martigny [2]

[2] For further details, I must refer the reader to Dr. Bird’s paper before cited.
CARBONIC ACID.

(Christison) experienced weight in the head, obscurity of sight, in the temples, ringing in the ears, giddiness, and an undefinable sense of terror. *Taken into the stomach,* dissolved in water, or in the form of effervescing draughts, it allays thirst, and diminishes natural heat, thus acting like the other dilute acids. If it be taken in the stomach, it distends this viscus, excites eructations, and causes both nausea and vomiting. It appears to promote the peristaltic movements of the alimentary tube, to assist the digestive process, to give relief to cram, and to act as a refreshing and exhilarating substance, likely to be diuretic and diaphoretic. Wöhler and Stehberger (especially) state, that the use of carbonic acid did not increase the acidity of the urine.

When drunk too quickly, a large quantity of carbonic acid impregnated with this gas has been found to excite giddiness and intoxication; and it is probable that an excited state is due to this substance for part of its intoxicating effects. Applied to ulcers and suppurating surfaces, carbonic acid acts as a stimulant, improves the quality of the discharge in ulcers, and destroys the putrefactive action of the secretions, diminishes the unpleasant odour of foul and gangrenous ulcers, and promotes the separation of the dead and mortified parts.

When inhaled.—In some diseases of the lungs, particularly phthisis, it has been proposed to mix carbonic acid gas with the vitiated air breathed by the patient, with the view of lessening the influence of the oxygen, to diminish the quantity and intensity of the matter expectorated, and at the same time to increase the physical activity. But the practice is dangerous. The benefit derived by some patients in cow-houses, has been ascribed to the inhalation of carbonic acid gas.

Taken into the stomach, carbonic acid is a most valuable remedy for certain diseases of the stomach, and diminishing the irritability of the stomach. The best mode of exhibiting it is, I believe, in the form of an effervescing draught, composed of citric acid and bicarbonate of soda. In fever, it is an excellent refrigerant; especially serviceable in cases which are accompanied with gastric irritation. In that class of diseases attended with a white or phosphatic deposit in the stomach, water may be taken with advantage; but in this case the common effervescing draught (made of a vegetable acid and carbonated alkali) must not be substituted for it, on account of the caustic property communicated by the latter to the urine. From its septic qualities, carbonic acid has been administered internally, especially in cases of dysenteric diseases which are supposed to be connected with a septic tendency, as typhoid fevers, &c.

Clusters of carbonic acid gas have been employed in cases of the rectum and colon,—for example, ulceration of the rectum, especially when of the kind commonly denominated can-
caneous. Mr. Parkin has recommended them in dysentery. The gas may be introduced into the rectum from a bladder, or solutions of tartaric acid and bicarbonate of soda may be injected in the usual way.

d. A stream of carbonic acid gas has been applied to the uterus with great benefit, in a painful condition of this viscus, as I have already mentioned (see p. 155).

e. Applied to the skin, care being taken that the gas be not inhaled, it is employed either in its gaseous form, or dissolved in water. It is, of course, adapted to those cases where it is desirable to excite the vascular system, especially of the skin, and to cause perspiration; while, on the other hand, it is objectionable in inflammatory cases. In chlorosis, amenorrhoea, dyspepsia, hysteria, scrofula, &c., it has also been found useful.

ξ. It has been applied to cancerous and other ulcers, to allay pain, to improve the quality of the secretions, and to check sloughing. It is readily administered by means of a tube connected with a bottle generating the gas. In this case it should be procured by the action of dilute sulphuric acid on marble; for, if hydrochloric acid be employed, the gas requires washing, to remove any of this acid which may pass over with it. Or it may be used in the form of solution, in which case carbonic acid water is employed. Or, lastly, we may apply the yeast poultice (see Cataplasma Fermenti).

η. In ophthalmia, of a chronic kind, a stream of carbonic acid gas, directed on the inflamed part, has appeared to be serviceable. I have seen it used in a case of scrofulous ophthalmia: the patient recovered under its use, after the ordinary plans of treatment had been unsuccessfully tried.

Administration.—Internally, carbonic acid may be administered under the form of carbonic acid water or effervescing draught. The latter, however, cannot always be employed as a substitute for the former. Where no objection exists to the use of the vegetable salts of potash, the ordinary effervescing draught may be administered. In febrile disorders, when the stomach is in a very irritable condition, I prefer a draught made with citric acid and the bicarbonate of potash to other modes of employing carbonic acid.

Another mode of administering carbonic acid is under the form of the aciduloses or carbonated mineral waters (see p. 268).

Antidotes.—In accidents arising from the inhalation of carbonic acid gas proceed as follows:—remove the patient immediately into the open air, and place him on his back, with his head somewhat elevated. Produce artificial respiration by pressing down the ribs, forcing up the diaphragm, and then suddenly removing the pressure. Dash cold water over the body, and abstract a small quantity of blood either by venesection or cupping. Apply bottles of hot water to the feet. Stimulants of various kinds may be employed either internally by the stomach, or in the form of frictions, or inhalations of ammonia, or air impregnated with chlorine gas.

Fig. 57. Front view of the Machine.

Tyler's Improved Soda-Water Apparatus.

Fig. 58. End view of the same.
At the ordinary temperature and pressure of the atmosphere, one volume of water absorbs one volume of carbonic acid gas, and acquires a spe. gr. of 1.0018. By doubling the pressure, the quantity of gas absorbed by the water is doubled, and so on for other degrees of pressure; for Dr. Henry has shown, that the quantity of gas forced into the water is directly as the pressure. In the United States' Pharmacopœia five volumes of gas are directed to be condensed in one volume of water.

The Bottle Soda Water of the shops is, in general, carbonic acid water only. Some few manufacturers introduce a small portion of soda (see Aqua Soda Supercarbonatis).

Carbonic acid water is a brisk, sparkling liquid. It has a pungent, acidulous taste; reddens litmus; and causes, with lime water, a white precipitate (carbonate of lime), which is re-dissolved by an excess of carbonic acid water.

Carbonic acid water is a refreshing, refrigerant beverage, operating as an anti-emetic, diaphoretic, and diuretic. In febrile disorders it is used to allay thirst, check nausea, and promote secretion. In lithiasis it is employed to check the formation of the phosphates in the urine. It is a convenient vehicle for the exhibition of many medicines, the nauseating qualities of which it diminishes. By the aid of it, extemporaneous imitations of carbonated magnesian and carbonated chalybeate waters may be readily made (see Aqua Magnesiac Supercarbonatis and Aqua Ferri Supercarbonatis).

2. Ac’idum Oxal’icum J.—Oxalic Acid.

History.—This acid was discovered by Scheele, though the credit of its discovery was for a long time given to Bergmann.

Natural History.—It is found in both kingdoms of nature.

a. In the Inorganised Kingdom.—Oxalic acid, in combination with the protolite of iron, constitutes the mineral denominated by Rivero, Humboldtine; by Necker and Benda, Humboldtit.

b. In the Organised Kingdom.—Oxalic acid is found in both plants and animals, but principally in the former.

Oxalate of lime is found in Rhubarb, Bistort, many Lichens, &c. Some Lichens contain nearly half their weight of oxalate of lime. In Varioaria faginea [V. communis], Braconnet found 47.4 per cent. of this salt. Combined with potash, oxalic acid is found in Oxalis Acetosella, Runex Acetosa, Rhabarb, &c. Oxalate of soda is found in Salsola. A solution of free oxalic acid is said to exude from the hairs of Cicer Arietinum, but the accuracy of the statement is doubtful.

Oxalate of lime constitutes the Mulberry Calculus, and is found in the Liquor Allantoëdis of the cow.

Preparation.—Oxalic acid is obtained by the action of nitric acid on sugar or potato starch. Treacle is usually employed in this country as a substitute for solid sugar. The process is generally
OXALIC ACID.

341

conducted in open earthenware jars, heated by a warm water bath. The nitrous vapours evolved are usually allowed to escape into the air. In France, attempts have been made to economise them by their employment in the manufacture of sulphuric acid (see Sulphuric Acid). To prevent their noxious influence on the workmen and the surrounding neighbourhood, as well as to economise them, a patent has been taken out to conduct the process in closed vessels connected with receivers and condensers, by which the vapours are condensed and collected again to be used.

Oxalic acid is obtained by digesting, by aid of a gentle heat, one part of sugar, or, better still, of potato starch, in 5 parts of nitric acid of sp. gr. 1.42, diluted with 10 parts of water, as long as gaseous products are evolved; by evaporation the acid is obtained in crystals, which may be purified by a second crystallization, after being well dried on paper or porous earthenware. From 12 parts of potato starch, 5 of the acid are obtained. The mother liquor should be treated with an additional quantity of acid, and again warmed, when a second crop of crystals will be obtained: this is repeated until the solution is quite exhausted. The formation of oxalic acid depends on the oxidation of organic matter, at the expense of part of the oxygen of the nitric acid, while nitrous vapours are given out. Those organic matters, as sugar and starch, which contain oxygen and hydrogen in the same proportion as water, yield it in the greatest quantity. One equivalent of anhydrous sugar ($C_{12}H_{22}O_{11}$), and eighteen equivalents of oxygen (O_{18}), contain the elements of six equivalents of anhydrous oxalic acid ($6C_2O_3$), and nine equivalents of water ($9HO$). But the process is not so simple as this calculation would lead us to suppose. Part of the carbon of the sugar escapes in the form of carbonic acid gas. The mother liquor contains, besides some acetic acid, saccharic acid ($C_{12}H_{22}O_{11}$); which, when acted on by a further portion of nitric, is converted into oxalic and carbonic acids. If the nitrous vapours be conveyed into a condenser, nitric and nitrous acids are deposited.

Properties.—The crystals of oxalic acid are colourless, transparent prisms, which belong to the oblique prismatic system. They are usually flattened, six-sided (by the truncation of one pair of the lateral edges), and have two or four terminal planes.

Crystallized oxalic acid has often been mistaken for Sulphate of Magnesia, and the consequence has been fatal in many instances. Sulphate of Zinc and Bicarbonate of Mercury are likewise apt to be confounded with this acid.

The crystals of oxalic acid taste and react on vegetable colours powerfully acid. When pure they have no odour. Exposed to a warm air they effloresce, evolve 28 per cent. (equal to two equivalents) of water, and become a pulverulent residue (hydrate of oxalic acid). When heated rapidly to 350° F. they fuse, evolve water, and the

1 Report of Patent Inventions, N.S. vol. viii. p. 5. Lond. 1827.—A patent has been taken out for preparing this acid in leaden vessels, and for obtaining it from potatoes (ibid. N.S. vol. xxv. p. 46. Lond. 1841).

yellow. If they be exposed to a warm atmosphere, the nitric acid escapes along with the water of crystallization.

Physiological Effects. a. On Vegetables.—A solution of oxalic acid acts as a poison to plants. The acid (solid?) has been said to promote the germination of old seeds; but I suspect the statement to be inaccurate.

b. On Animals.—The best series of experiments on the effects of this acid on animals are those of Christison and Coindet. They found that concentrated solutions of half-ounce doses of this acid introduced into the stomachs of cats and dogs caused exquisite pain, violent attempts to vomit, dulness, languor, great debility, and death in from two to twenty minutes. Post-mortem examination showed corrosion of the inner coat of the stomach. Large doses of a dilute solution caused great depression of the heart's action; and small doses gave rise to tetanus or narcotism. Furthermore, the acid acts with great violence, and produces nearly the same effects, to whatever part of the body it is applied. From these results it has been inferred that the concentrated acid is a corrosive poison,—while the dilute acid ceases to be corrosive, but, being absorbed, acts on the brain, spinal cord, and heart.

It appears to me absurd to suppose, as is usually done, that a dilute solution ceases to act chemically. It does not indeed destroy the gastric membrane as a concentrated solution does, but doubtless it must effect some chemical change on the blood when it gains access to it: though the precise alteration may hitherto have evaded notice. We know that a twentieth part of oxalic acid, added to boiling syrup, renders it thin, and incapable of crystallizing; and we may, therefore, imagine that its action on other organic substances may be equally energetic; and thus alterations may be effected in the condition of the blood, which, though not very marked, may nevertheless be sufficient to render this fluid incapable of supporting life.

g. On Man.—The effects of oxalic acid on the human subject vary somewhat with the dose. When this is large, and the solution concentrated, acute pain is experienced; but, after small doses and dilute solutions, this symptom is not well marked. Vomiting is usually present. The circulation is always depressed; the pulse being feeble or failing, and the surface cold and clammy. Nervous symptoms (such as lassitude, weakness of the limbs, numbness, pain in the back extending down the thighs, and, towards the end, convulsions) have sometimes, but by no means invariably, made their appearance. But death follows so speedily after the injection of large doses (“few of those, who have died, survived above an hour,” Christison), that the symptoms have not been fully made out. If life be prolonged for a few hours, symptoms of gastro-enteritis are observed. Post-mortem examination discovers irritation and often corrosion of the stomach.

Some years since I opened the body of a man, who died in twenty minutes

7 Edinburgh Medical and Surgical Journal, vol. xix.—In Wilmers work (Die Wirkung, &c. Bd. iv. S. 32) will be found a notice of the experiments of Rave and Klostermann.
8 I have before noticed some of Drs. Christison and Coindet’s experiments with this acid : see vp. 77, and 119.
after swallowing oxalic acid by mistake for Epsom salts. The post-mortem examination was made a few hours after death, and while the body was quite warm. The stomach presented a diffused redness, like that of a part affected with erysipelas. The epithelium was destroyed; and presented, in patches, the appearance of the scalded cuticle, or of the pellicle which forms on the surface of boiling saline solutions. I have a wax model of the stomach, executed by the late Mr. Miller.

Uses.—Oxalic acid is not at the present time used in medicine. In France, Tablettes d’Acide Oxalique are prepared. Either free or combined with ammonia, it is a valuable test for lime. It is employed for removing ink stains and iron moulds from linen; for cleaning the leather of boot-tops; and for certain styles of discharge in calico printing.

Antidotes.—Administer as speedily as possible large quantities of chalk, whiting, or magnesia, suspended in water; by which means earthy oxalates are formed in the stomach. In the absence of these antidotes, large quantities of warm water may be administered, and at the same time vomiting is to be promoted by tickling the throat. Small quantities of water may prove injurious by favouring absorption. Alkalis do not deprive the acid of its poisonous operation. The stomach-pump and emetics may be used; but on account of the rapidity with which this acid acts, it is not advisable to lose time by their application, until after the antidote has been administered. The same treatment is to be adopted in poisoning by the following salts:

1. **Ammonie Oxalas**, E. Oxalate of Ammonia.—(Oxalic Acid, 2iv.; Carbonate [Sesquicarbonate] of Ammonia, 3viij.; Distilled Water, 4iv. Dissolve the carbonate in the water, add gradually the acid, boil, and concentrate sufficiently for crystals to form on cooling.) This salt consists of 1 eq. Oxalic Acid 36, 1 eq. Ammonia 17, and 2 eq. Water 18 = 71. By heat it suffers decomposition and yields oxamide (oxalamide), composed of HN₃, C₂O₂. Oxalate of ammonium was introduced into the Edinburgh Pharmacopoeia as a test for calcareous solutions, with which it produces a white precipitate (oxalate of lime), which is readily soluble in nitric acid, but is only moderately soluble in hydrochloric acid. It does not occasion any precipitate in solutions of the magnesian salts; hence it is a valuable agent for separating lime from magnesia. According to the experiments of Drs. Christison and Coindet, it is but little inferior in the energy of its operation on the body to oxalic acid. Ninety grains, which contain thirty-six grains of oxalic acid, killed a strong cat in nine minutes. The symptoms were tetanus and coma.

2. **Potass.é Quadroxalas**: Quadroxalate of Potash.—This salt is sold in commerce as Binoxalate of Potash, Sal Acetoxal, Salt of Woodson, or Essential Salt of Lemons. It is made by neutralizing one part of oxalic acid with carbonate of potash, and adding to the solution three parts more of acid. It crystallizes in colourless transparent prisms of the doubly oblique prismatic system; and which consist of 4 eq. Oxalic Acid 144, 1 eq. Potash 48, and 7 eq. Water 63 = 255. If three parts of the salt be converted into carbonate by heat, and added to a solution of one part, the neutral oxalate of potash is formed (Liebig). The commercial quadroxalate is not pure; for I find that it yields, by ignition in a covered crucible, carbonate of potash, contaminated with carbonaceous matter; whereas the pure quadroxalate yields the carbonate only. It is employed for removing ink stains and iron moulds from linen, and for de-

colorizing straw used for bonnet-making. This salt was formerly used in medicine as a refrigerant. In France, *Tablettes ou Pastilles la Soif* are prepared with it. It possesses poisonous properties similar to, but less energetic than, oxalic acid. A case of poisoning by about an ounce of this salt has been published by my friend and former pupil, Mr. John Jackson*. The accident was not known for an hour and a half after it occurred. The symptoms were those of great depression of the heart's action, but without either tetanus or coma. The eyes were sore, the vision dim, the conjunctiva a good deal injured, and the pupils dilated. The patient ultimately recovered.

III.—OXYHYDROCARBONS.

1. ALCOHOL, L. E. D.—ALCOHOL.

History.—Fermented liquors were known in the most remote ages of antiquity. The Sacred Historian tells us* that, after the flood (which is supposed to have occurred 2,348 years before Christ), "Noah planted a vineyard: and he drank of the wine, and was drunken." Homer†, the most ancient of all the profane writers whose works have reached us, and who lived more than 900 years before the Christian era, also frequently mentions wine, and notices its effects on the body, mind, &c. Herodotus‡, who wrote 445 years before Christ, tells us, that the Egyptians drank a liquor fermented from barley.

It is uncertain at what period vinous liquors were first submitted to distillation. Morewood* considers the Chinese to have been acquainted with this process long before the rest of Asia, Africa, and Europe. It is usually stated, that Albuchasis, who is supposed to have lived in the 12th century, taught the mode of procuring spirit from wine§. But as the process of distillation was certainly known long before his time‖, it is highly probable that his predecessors had submitted fermented liquors to this operation. Raymond Lully‖, in the 13th century, was acquainted with spirit of wine (which he called *aqua ardens*), as well as of the mode of depriving it of water by means of carbonate of potash.

Preparation.—The preparation of alcohol may be divided into three stages: the production of a fermented vinous liquor; the preparation from this of an ardent spirit by distillation; and, lastly, rectification or purification.

Stage 1. Production of a Vinous liquor.—When vegetable substances are placed in contact with air and moisture, they undergo that kind of decomposition which is denominated *fermentation*. The products of this process vary at different periods or stages; and on this depends the distinction into kinds or varieties of fermentation. Thus starchy liquids, under some circumstances, become sac-

* London Medical Gazette, Dec. 18, 1840. In the same journal for March 5th, 1841, is a case of poisoning by about two scruples of oxalic acid swallowed in combination with carbonate of soda (permanganate of soda?).
† Iliad, ch. ix.
‡ Odyssey, ix. and xii.
§ Gesta, lxxvii.
** Dr. Boyle's Essay on the Antiquity of Hindu Medicine, p. 46. London, 1837.
charine; the process being termed the saccharine ferment.

Sugar dissolved in water, and mixed with nitrogenous (ferment), is converted into carbonic acid and alcohol; and the process the name of vinous fermentation is applied. Under some circumstances, mannite, lactic acid, and a syrupy mucilage, arise by the action of the nitrogenous or albuminous principles of the juices on the sugar; this change has been denominated there or mucilaginous fermentation. Vinous liquids are capable of generating acetic acid, and the process is denominated acetous fermentation. Lastly, most vegetable substances are slowly converted into gases, and a substance called vegetable mould (humus), con the process termed the putrefactive fermentation.

To produce a vinous liquid, it is necessary that there be sugar (or some substance capable of forming sugar, as some certain quantity of water, and a ferment (usually yeast). Most certain temperature (the best is between 70° & 80° F.) is required.

Both grape and cane sugar yield alcohol by fermentation; it is highly probable, however, that cane sugar, before it undergoes fermentation, is converted into grape sugar by contact with the ferment; and that, consequently, it is grape sugar alone that yields alcohol and carbonic acid.

On this view, the one equivalent of silver 9 parts of water, to form one equivalent or 180 parts of grape sugar, which, in the process of fermentation, are converted into four equivalents or 88 parts of carbonic acid, and four equivalents of alcohol.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Crystallized Cane Sugar 171</td>
<td>4 eq. Carbon... 24</td>
</tr>
<tr>
<td>1 eq. Water 9</td>
<td>8 eq. Carbon... 48</td>
</tr>
<tr>
<td>180</td>
<td>8 eq. Oxygen... 64</td>
</tr>
<tr>
<td>180</td>
<td>4 eq. Oxygen... 32</td>
</tr>
<tr>
<td>180</td>
<td>12 eq. Hydrog. 12</td>
</tr>
<tr>
<td>180</td>
<td>4 eq.</td>
</tr>
</tbody>
</table>

Vinous fermentation, then, is the metamorphosis of sugar into alcohol and carbonic acid. But as the elements of the yeast ferment take no part in the transformation, (that is, do not enter into combination with the elements of the sugar) some difficulty is experienced in accounting for its agency in exciting fermentation. Two opinions are entertained respecting it: by some it is regarded as a putrefying substance, whose atoms are in continual motion, which they communicate to the constituents of the sugar, and destroy its equilibrium; by others, yeast is considered to

* Ibid. p. 946.
* The view above referred to is that entertained by Liebig; for full details of it I must refer to his work, entitled Organic Chemistry, in its Application to Agriculture and Physiology, edited by Dr. P. B. Loud. 1840; and Turner's Elements of Chemistry, 7th ed. p. 944, 1840. Born de Chimie Médicale, t. ii. p. 423, 2nd Série, 1837] ascribes decompositions of this kind to the mere contact of one body with another, to a new force which he supposes to act in a slow and continuous manner, and which he designates catalytic force (from carbo醛e, I loosen or dissolve).
* The Yeast Plant will be described and figured in a subsequent part of this work, reader is referred. For further details, consult the Memoirs of Schwann (Poggendorff's Journ. Bd. xii. p. 184; Pharmaceutisches Central-Blatt for 1857, S. 847; and Meyen's
essentially of seeds or sporules, whose vegetation is the immediate cause of the metamorphosis of the sugar.

The liquid obtained by the vinous fermentation has received different names, according to the substance from which it is obtained. When procured from the expressed juices of fruits, as grapes, currants, gooseberries, &c. it is denominated Wine (Vinum); from a decoction of malt and hops, Ale or Beer (Cerevisia); and from a mixture of honey and water, Mead (Hydromel). Fermented infusions of barley (raw rain and malt), prepared by the distillers of this country for the production of ardent spirit, are technically denominated Washes.

The liquid obtained by vinous fermentation consists of water, alcohol, colouring and extractive matters, enanthic ether, volatile oil e.g. oil of potatoes, oil of grain, &c.), various acids and salts.

STAGE 2. PRODUCTION OF ARDENT SPIRITS.—By the distillation of a vinous liquid we obtain Ardent Spirit (Spiritus Ardens). When grape wine is employed, the spirit is called Brandy (Spiritus Vini Gallici, Ph. Lond.); when the vinous liquid is obtained by the fermentation of molasses or treacle, the spirit is termed Rum (Spiritus Sacchari); when the liquid is a fermented infusion of grain (Wash), the spirit is denominated Corn Spirit (Spiritus Frumenti); and when the vinous liquid is either a fermented infusion of rice or toddy, Palm Wine, the spirit is named Arrack (from the former, it is termed Spiritus Oryzae). The well-known liquors called Gin, Hollands or Geneva, and Whiskey, are corn spirits flavoured.

Ardent spirit, from whatever source obtained, consists of water, alcohol, volatile oil, and, frequently, colouring matter. The following are, according to Mr. Brande*, the average quantities of alcohol sp. gr. 0.825 at 60° F. in some kinds of ardent spirit:—

<table>
<thead>
<tr>
<th>Alcohol (by measure)</th>
<th>100 parts (by measure) of Alcohol (by measure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandy contains</td>
<td>55.29</td>
</tr>
<tr>
<td>Rum</td>
<td>53.66</td>
</tr>
<tr>
<td>Gin</td>
<td>51.99</td>
</tr>
<tr>
<td>Whiskey (Scotch)</td>
<td>54.32</td>
</tr>
<tr>
<td>Whiskey (Irish)</td>
<td>53.90</td>
</tr>
</tbody>
</table>

Each variety of ardent spirit has an aroma peculiar to itself, and which is characteristic of the substance from which it is produced. This depends on volatile oil.

When wash is distilled, the fluid that comes over is called Singlings, or Low Wines. It is concentrated or doubled by a second distillation, by which Raw Corn Spirit is obtained. Towards the end of the distillation the distilled product acquires an unpleasant odour and taste from the presence of volatile oil, and is called Faints. Raw corn spirit is sold by the distiller to the rectifier at 11 or 25 per cent. over proof, in the language of Sikes’s hydrometer.

STAGE 3. RECTIFICATION.—The object of the rectifier is to deprive ardent spirit of its volatile oil and water. This is effected by re-

*Phil. Trans. For 1811 and 1812.
peated distillations, and by the use of pearlash (carbonate of potash),
which, by its powerful affinity for water, checks the rise of this fluid
in distillation. In this way is procured the liquid called Rectified
Spirit (Spiritus rectificatus, L. E. D.), which is sold by the rectifier
to the chemist or apothecary.

1. Corn Spirit Oil; Oil of Grain; Potato Spirit Oil; Fuselol; Hydrate of
Amile; Amile Alcohol; Bikhydrate of Amiline.—All ardent spirits contain a vola-
tile oil which the Germans call Fuselol. In 1825, Pellatian described
that obtained from Potato Spirit, and which has been subsequently examined, in 1834,
by Dumas, and in 1839, by Cahours. The oil from corn spirit was described
several years ago by Buchner. It has been long known to Messrs. Bowerbank,
rectifiers, of London, who obtain it in the rectification of corn spirit. From
them I procured it several years ago, under the name of oil of grain; and, in
1836, noticed it in my lectures. In 1839, I gave a short description of its pro-
erties in the first edition of this work. It has since been more completely
examined by Dr. Apjohn. Under the name of Oleum siticum, Mulder described
a peculiar oil, which he obtained from corn spirit.

Oil of grain, as I received it from Messrs. Bowerbank, is a limpid, transparent
liquid, of a pale yellow colour, and having a very nauseous odour and an acrid
taste. The inhalation of its vapour produces an unpleasant and persistent
sensation in the throat. When washed with water (to remove the alcohol), and
subsequently distilled from chloride of calcium (to deprive it of water), it is quite
colourless, and had, according to my experiments, a sp. gr. of 0.813 at 50° F.
[0.813 at 60°, Apjohn]. It boils at about 268° F. Dr. Apjohn failed to conceal
it at — 6° F.; but Cahours congealed the oil from potato spirit at — 4° F. It
burns in the atmosphere with a flame like that of light carburetted hydrogen
gas [with a bluish white flame, Cahours]. It dissolves iodine; and, according to Dr.
Apjohn, is a good solvent for fats, resins, and camphor. It is not miscible with
water, which, however, sparingly dissolves it. Neither is it miscible with
liquor ammonie, nor with liquor potassa. It dissolves in nitric acid, but acquires
a slightly yellowish red tinge; and, when the mixture is heated, violent reaction
takes place: nitrous fumes mixed with nitric ether are so rapidly evolved, that, if
the experiment be performed in a tubulated retort, the stopper is sometimes driven
out with considerable violence. When mixed with oil of vitriol, a violet or
blood-red-coloured thick liquid, with the evolution of a mint-like odour, is pro-
duced, and, according to Cahours, sulphaamulic acid (bisulphate of oxide of amile
C10H11 + O + 2 SO3 + Aq.) is formed. When distilled with dry phosphoric acid
it yields, according to the same authority, a carbo-hydrogen, called amiles
(C10H10). Potassium rapidly decomposes it with the evolution of hydrogen. If
it be heated with fused potash, hydrogen is disengaged, and a compound of pot-
as and valerianic acid (C10 H9 O3 + Aq.) is formed.

This oil is composed of carbon, hydrogen, and oxygen. Cahours regards it as
the hydrated oxide of a hypothetical base, called amile or amyle (C10 H11), and
Liebig has adopted his views.

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Atoms.} & \text{Eq.} & \text{Wt.} & \text{Per Ct.} & \text{Apjohn.} & \text{Dumas.} & \text{Cahours.} \\
\hline
\text{Carbon} & 10 & 60 & 68.18 & 68.13 & 68.6 & 68.90 \\
\text{Hydrogen} & 12 & 12 & 13.04 & 13.06 & 13.6 & 13.58 \\
\text{Oxygen} & 2 & 16 & 18.18 & 18.54 & 17.8 & 17.32 \\
\text{Corn Spirit} & 1 & 88 & 100/00 & 100/00 & 100/00 & 100/00 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{Or.} & \text{Atom. Eq.Wt.} \\
\hline
\text{Amile} & 1 & 81 \\
\text{Oxygen} & 1 & 8 \\
\text{Water} & 1 & 8 \\
\text{Hydrate of Oxide of Amile} & 1 & 8 \\
\hline
\end{array}
\]

4. Ibid. t. xxxi. p. 81.
5. Reportarium, xxiv. 279.
8. Pharmaceutisches Central-Blätt für 1837, S. 897.—Sitticus, or or pertaining to
corn.
ALCOHOL.

formed by Messrs. Bowerbank, that they obtain from 500 gallons of corn at one gallon of oil, which they employ as a substitute for lamp oil.

ANTHOC ACID AND ΞANTHIC ETHER.—The oily liquid obtained in the

PERTIES OF RECTIFIED SPIRIT.—The liquid sold by rectifiers as spirit (Spiritus rectificatus, L. E. D.) varies from 54 to 60, 64 per cent., over proof; in the language of Sikes's hydro-

Hatters employ that at 54 or 56; varnish-makers that at 58

., over proof. The London College fixes the sp. gr. at 0'888

.; the Edinburgh College at 0'888, or under, at 60° F.; the

College at 0'844 at 51° F., or 0'840 at 60° F.

y.—Rectified spirit, besides having the sp. gr. above men-

should be colourless, transparent, and not rendered turbid on

ition of water. "In taste and smell it resembles wine,"

Its freedom from other substances than alcohol and water
determined partly by the purity of its odour, by the absence
acid or alkaline reaction, and by its easy and complete vola-

It is frequently contaminated with the oil of corn spirit; of

ence of which there are two tests, sulphuric acid and nitrate

If colourless oil of vitriol be added to rectified spirit, it

red tinge (see p. 348) if the oil be present. According to Vogel,

silver is a more delicate test for the oil; if it be mixed with

exposed to solar light, it becomes red if any oil be present, it

does no change of colour if the spirit be pure. The follow-

the directions of the Edinburgh College for the application of :

fluidounces [of rectified spirit] treated with 25 minims of solution of

er silver [Ph. Ed.], exposed to bright light for twenty-four hours, and then

ough a filter purified by weak nitric acid, so as to separate the black

chich forms,—undergo no further change when again exposed to light

e of the test."

peculiar odour which spirit obtained from brandy or whiskey

depends on a volatile oil, which "is best removed, on the

ale, by rectification with a little caustic potash (Göbel, Liebig),

gaining the spirits with freshly-ignited pine charcoal a."

ARATION OF PROOF SPIRIT.—The sp. gr. of proof spirit

tor, L. E. D.) is fixed by the laws of the kingdom at

0° F. The Dublin College fixes it at 0'923 at 51° F., or

60° F. Proof spirit is usually prepared, by chemists and

aries, by mixing rectified spirit with water. The proportions

ctified Spirit [sp. gr. 0'838] Ov. [f3xxij. E.; 5½ parts, D.];

illed Water, Oij. [f3xij. or a sufficiency, E.; 3 parts, D.]

ts of its goodness are the same as for rectified spirit.

ARATION OF ALCOHOL. Alcohol (L. E. D.) is prepared by the

from the rectified spirit purchased of the rectifier. It is

by adding chloride of calcium, carbonate of potash, or well-

me, to the spirit, which is then submitted to distillation. The

a Turner's Elements of Chemistry, p. 829, 7th edit. Lond. 1840.
salts or lime retain the water, while the alcohol distils over. The following are the directions of the British colleges:

The London College orders Rectified Spirit, Cong. j.; Chloride of Calcium, lbj. Put the chloride of calcium into the spirit, and when it is dissolved, let seven pints and five fluidounces distil.

The Edinburgh College directs "Rectified Spirit, Oij.; Lime well burnt, xxvij. Break down the lime into small fragments: expose the spirit and lime together to a gentle heat in a glass matras till the lime begins to slake: withdraw the heat till the slaking is finished, preserving the upper part of the matras cool with damp cloths. Then attach a proper refrigeratory, and, with a gradually-increasing heat, distil off seventeen fluidounces. The density of this alcohol should not exceed 0’796: if higher, the distillation must have been begun before the slaking of the lime was finished."

The Dublin College takes of Rectified Spirit, Cong. j. [wine measure]; Pearashes, dried, and still hot, lbiij.; Muriate of Lime, dried, lbj. Add the pearashes in powder to the spirit, and let the mixture digest in a covered vessel for seven days, shaking it frequently. Draw off the supernatant spirit, and mix it with the muriate of lime; lastly, distil, with a moderate heat, until the mixture in the retort begins to thicken. The sp. gr. of this liquor should be 0’810.

Properties of Alcohol.—Alcohol is a limpid, colourless, inflammable liquid, having a peculiar and penetrating odour, and a burning taste. Its sp. gr., at 60° F., is 0’7947; at 65° F., it is 0’792—0’791. It is obvious, therefore, that the alcohol of the British colleges is a mixture of alcohol, properly so called, and water.

No means of solidifying it are at present known. It boils at 179° F.; every volume of the boiling liquid gives 488’3 volumes of vapour, calculated at 212° F.

It is very combustible. In atmospheric air it burns with a pale blue flame, giving out a very intense heat, and generating carbonic acid and water, but depositing no soot, unless the supply of oxygen be deficient. The colour of the flame may be variously tinted—as yellow by chloride of sodium, whitish violet by chloride of potassium, green by boracic acid or a cupreous salt, carmine red by chloride of lithium, crimson by chloride of strontium, and greenish yellow by chloride of barium.

<table>
<thead>
<tr>
<th>Before Combustion</th>
<th>After Combustion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol vapour</td>
<td>23</td>
</tr>
<tr>
<td>2 eq. Oxygen</td>
<td>16</td>
</tr>
<tr>
<td>2 eq. Oxygen</td>
<td>16</td>
</tr>
<tr>
<td>1 eq. Aq. Vap.</td>
<td>9</td>
</tr>
<tr>
<td>1 eq. Aq. Vap.</td>
<td>9</td>
</tr>
<tr>
<td>1 eq. Aq. Vap.</td>
<td>9</td>
</tr>
</tbody>
</table>

One volume of alcohol vapour requires, for its complete combustion, three volumes of oxygen gas, and yields two volumes of carbonic acid gas and three volumes of aqueous vapour.

Alcohol has a strong affinity for water: hence it abstracts this fluid from the atmosphere, and precipitates from their watery solution those salts (e.g., sulphate of potash) which are not soluble in spirit: while, on the other hand, water precipitates from their alcoholic solution those substances (e.g., resin and oil) not soluble in water. By the mixture of alcohol and water, heat is evolved, while air-bubbles are so copiously developed, that for a few moments the liquid appears turbid. When cold, the resulting compound is found
sessed a greater density than the mean of its constituents; but condensation varies with the proportions of alcohol and water used, the sp. gr. of the resulting compound can be ascertained experiment only. The maximum condensation is obtained by using 54 vols. of alcohol with 49.77 vols. of water: the resulting fluid measures 100 vols., so that the condensation is 3.77. If regard this as a definite compound of alcohol and water, its position may thus be stated:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>46</td>
<td>54.00</td>
<td>42.91</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>54</td>
<td>49.77</td>
<td>49.77</td>
</tr>
</tbody>
</table>

Ratio of Alcohol...... 1 50 100 100/00 92.68
[condensation 3.77]

Alcohol combines with certain salts (as the chlorides and nitrates) to form definite compounds, which have been termed alcoholates, in which alcohol appears to act as a substitute for the water of crystallization.

Alcohol is a solvent of many organic substances, as volatile oil, oil, resin, extractive, most varieties of sugar, many nitrogenous acids, the vegetable alkalis, urea, caseum, gliadine, leucine, mel, and osmazome. It prevents the putrefaction of animal substances, and is, in consequence, extensively employed in the preservation of anatomical preparations. Its efficacy is imperfectly understood. It acts, in part at least, by excluding air, and water,—the two powerful promoters of putrefaction; for animal substances are immersed in spirit, this fluid absorbs water from the tissue which, in consequence, shrivels up, thus prevents putrefaction, by removing one of the essential causes to its production, namely, the presence of water. Its attraction for water, and its power of coagulating albuminous substances, properties which probably assist powerfully in rendering it an antiseptic. Alcohol and rectified spirit of wine give greater firmness to the animal tissues. The latter property is objectionable in the preservation of some morbid specimens, as gelatiniform (cancer gelatiniforme or aréolaire of Cruveilhier,—the matière of Laennec). A mixture of one part rectified spirit and three parts of water, however, preserve specimens of the last-mentioned disease in a transparent condition.

Characteristics.—Alcohol and ardent spirits are recognised by their inflammability, odour, taste, and miscibility with water. They dissolvet camphor, resin, &c. In order to detect alcohol in liquids supposed to contain it, let the suspected liquor be submitted to distillation with gentle heat (as from a vapour or water-bath), and to the distilled liquor add dry carbonate of potash, to abstract the water. The alcohol on the surface of the alkaline solution, and may be recognised by the characters above mentioned.

Composition.—The elementary constituents of alcohol are carbon, hydrogen, and oxygen.
Chemists are not agreed as to the manner in which these constants are grouped. By some, these elements are regarded as forming an equivalent of oleifiant gas, and one equivalent of water; others consider alcohol to be a compound of one equivalent of a $\frac{1}{2}$ carbo-hydrogen etherine; tetarto-carbo-hydrogen; quadri-hydrocarbonuret), an equivalent of water; while some view this liquid as a hydrate of a $\frac{1}{2}$ carbo-hydrogen ethule e; ethereum), or as the hydrate of the ethule. The latter opinions involve the necessity of assuming an equivalent of alcohol to be 46; that is, double the amount above. The following table illustrates these views:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>2</td>
<td>12</td>
<td>52.18</td>
<td>51.98</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3</td>
<td>3</td>
<td>13.04</td>
<td>13.70</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>8</td>
<td>34.78</td>
<td>34.32</td>
</tr>
<tr>
<td>Alcohol</td>
<td>1</td>
<td>23</td>
<td>100.00</td>
<td>100.29</td>
</tr>
</tbody>
</table>

Chemists usually adopt the proportionate to the quantity of alcohol contained therein; and, therefore, a ready mode of estimating this is most desirable. The following method is usually adopted. The ordinates on spirits, is called Sikes's meter (fig. 59). Spirit having the sp. gr. of the liquid by an instrument called the hydrometer, with one of its ballast weights (a). If at the end of the combustion the gunpowder, according to the quantity of gunpowder, according to the quantity of

* Ethule, or ethule (from ether, and σής, the material or stuff from which any thing is made).
ALCOHOL.

A sp. gr. of proof spirit: this has been done, and proof spirit (Spiritus Fr. Ph. L.) is defined, by act of parliament, to be such, that at temperature of 51° F., thirteen volumes of it weigh exactly as 1 as twelve volumes of water. According to this definition, sp. gr. at 60° F. is 0.920, and spirit of this strength consists of

<table>
<thead>
<tr>
<th>By Weight</th>
<th>Sp. Gr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>49</td>
</tr>
<tr>
<td>Water</td>
<td>51</td>
</tr>
<tr>
<td>Proof spirit</td>
<td>100</td>
</tr>
</tbody>
</table>

A sp. gr. of spirit which is of the strength of 43 per cent. over proof at the least, is recognized by the legislature as spirits of wine. All spirit under this strength is in trade as plain spirit. Distillers are not permitted to sell out spirits of other strengths than 25 or 11 per cent. above or 10 per cent. below proof. Corn spirit, therefore, is sold at 25 or 11 per cent. above proof. Compound spirits (as Gin) are not allowed to be kept or sold out stronger than 17 per cent. proof; but Gin, as sold by the rectifier, is usually 22 per cent. under proof. Gin or Colonial spirits (not being compounded colonial spirits) must not be or sold out of less strength than 17 per cent. under proof. Rum and Brandy, commonly sold, are 10 per cent. under proof.

A series of carefully drawn up tables, showing the relation which exists between the sp. gr. of spirit of different strengths, and the divisions of Sikes's hydrometer, is a great desideratum. Mr. L. T. B. has published some tables; but several of his statements do not coincide with experiments which I have made on the subject. Following are extracts from his work:

Sikes's Hydrometer.

<table>
<thead>
<tr>
<th>Sp. Gr. at 60° F.</th>
<th>Sp. Gr. at 60° F.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2 per centum</td>
<td>0.3095</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3231</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3238</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3290</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3277</td>
</tr>
<tr>
<td>0.6</td>
<td>0.3266</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3215</td>
</tr>
<tr>
<td>0.8</td>
<td>0.3206</td>
</tr>
<tr>
<td>0.9</td>
<td>0.3294</td>
</tr>
<tr>
<td>1.0</td>
<td>0.3275</td>
</tr>
<tr>
<td>1.1</td>
<td>0.3260</td>
</tr>
<tr>
<td>1.2</td>
<td>0.3251</td>
</tr>
<tr>
<td>1.3</td>
<td>0.3241</td>
</tr>
<tr>
<td>1.4</td>
<td>0.3232</td>
</tr>
<tr>
<td>1.5</td>
<td>0.3225</td>
</tr>
<tr>
<td>1.6</td>
<td>0.3220</td>
</tr>
<tr>
<td>1.7</td>
<td>0.3215</td>
</tr>
<tr>
<td>1.8</td>
<td>0.3210</td>
</tr>
<tr>
<td>1.9</td>
<td>0.3205</td>
</tr>
<tr>
<td>2.0</td>
<td>0.3200</td>
</tr>
</tbody>
</table>

Sikes's Hydrometer.

<table>
<thead>
<tr>
<th>Sp. Gr. at 60° F.</th>
<th>Under proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof</td>
<td>0.9200</td>
</tr>
<tr>
<td>5 per centum</td>
<td>0.9259</td>
</tr>
<tr>
<td>10</td>
<td>0.9218</td>
</tr>
<tr>
<td>11</td>
<td>0.9229</td>
</tr>
<tr>
<td>13</td>
<td>0.9276</td>
</tr>
<tr>
<td>17</td>
<td>0.9296</td>
</tr>
<tr>
<td>20</td>
<td>0.9196</td>
</tr>
<tr>
<td>22</td>
<td>0.9448</td>
</tr>
<tr>
<td>23</td>
<td>0.9406</td>
</tr>
<tr>
<td>25</td>
<td>0.9476</td>
</tr>
<tr>
<td>30</td>
<td>0.9522</td>
</tr>
<tr>
<td>35</td>
<td>0.9623</td>
</tr>
<tr>
<td>50</td>
<td>0.9073</td>
</tr>
<tr>
<td>60</td>
<td>0.9734</td>
</tr>
<tr>
<td>70</td>
<td>0.9790</td>
</tr>
<tr>
<td>80</td>
<td>0.9834</td>
</tr>
<tr>
<td>90</td>
<td>0.9922</td>
</tr>
<tr>
<td>100 (water)</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

A sp. gr. of spirit may be readily ascertained by Lovi's beads, or by a specific gravity bottle.
Table of the Specific Gravities of Mixtures of Spirit (0.825 at 60° F) and Water at 60° F.

<table>
<thead>
<tr>
<th>Temperature 60° F.</th>
<th>Sp. gr.</th>
<th>Temperature 60° F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirit 100 + Water 0</td>
<td>0.82500</td>
<td>Water 100 + Spirit 95</td>
</tr>
<tr>
<td>100 + 5</td>
<td>0.83599</td>
<td></td>
</tr>
<tr>
<td>100 + 10</td>
<td>0.84568</td>
<td>100 + 90</td>
</tr>
<tr>
<td>100 + 15</td>
<td>0.85430</td>
<td>100 + 85</td>
</tr>
<tr>
<td>100 + 20</td>
<td>0.86208</td>
<td>100 + 80</td>
</tr>
<tr>
<td>100 + 25</td>
<td>0.86918</td>
<td>100 + 75</td>
</tr>
<tr>
<td>100 + 30</td>
<td>0.87508</td>
<td>100 + 70</td>
</tr>
<tr>
<td>100 + 35</td>
<td>0.88169</td>
<td>100 + 65</td>
</tr>
<tr>
<td>100 + 40</td>
<td>0.88720</td>
<td>100 + 60</td>
</tr>
<tr>
<td>100 + 45</td>
<td>0.89232</td>
<td>100 + 55</td>
</tr>
<tr>
<td>100 + 50</td>
<td>0.89707</td>
<td>100 + 50</td>
</tr>
<tr>
<td>100 + 55</td>
<td>0.90144</td>
<td>100 + 45</td>
</tr>
<tr>
<td>100 + 60</td>
<td>0.90549</td>
<td>100 + 40</td>
</tr>
<tr>
<td>100 + 65</td>
<td>0.90927</td>
<td>100 + 35</td>
</tr>
<tr>
<td>100 + 70</td>
<td>0.91287</td>
<td>100 + 30</td>
</tr>
<tr>
<td>100 + 75</td>
<td>0.91622</td>
<td>100 + 25</td>
</tr>
<tr>
<td>100 + 80</td>
<td>0.91933</td>
<td>100 + 20</td>
</tr>
<tr>
<td>100 + 85</td>
<td>0.92225</td>
<td>100 + 15</td>
</tr>
<tr>
<td>100 + 90</td>
<td>0.92499</td>
<td>100 + 10</td>
</tr>
<tr>
<td>100 + 95</td>
<td>0.92758</td>
<td>100 + 5</td>
</tr>
<tr>
<td>100 + 100</td>
<td>0.93002</td>
<td>100 + 0</td>
</tr>
</tbody>
</table>

Another mode of judging of the strength of spirits is the phial, technically called the bead; the preuve d'Hollande of the French consists in shaking the spirit in a phial, and observing the size of the bubbles, and the bursting of the bubbles or beads as they are termed, larger and more numerous the beads, as well as the more quickly they break, the stronger the spirit.

Hitherto chemical analysis has been of little avail in determining the strength of spirit, at least for commercial purposes. For, on the one hand, we are yet in want of an accurate method of determining the relative quantities of alcohol and water in mixtures of these spirits, while, on the other, the combustion of spirit by the black oxide of copper, and the estimation of the quantity of alcohol by the caustic acid produced, is impracticable for ordinary purposes.

Physiological Effects. a. On Vegetables.—Alcohol acts on the human body as a rapid and fatal poison. Its effects are analogous to those of the cyanic acid.

β. On Animals.—Leeches immersed in spirit die in two or three minutes. Their bodies are shrivelled or contracted, and before they make but few movements; the head and tail of the animal are drawn together. Fontana found, that when half the body of a leech was plunged in spirit, this part lost all motion, whilst the other end continued in action. The same experimentalist observed, that when killed frogs, when administered by the stomach (in doses of 40 or 50 cubic centimeters injected beneath the skin), or when applied to the brain or...
v. Plunging the heart of this animal into spirit caused its motion to cease in twenty seconds. Applied to the right crural nerve of a frog, rendered the pulsations of the heart less frequent, and shed sensibility and mobility. Fontana states, that turtles were by spirit administered by the stomach or by the anus, or injected into the skin: before death, the animal became motionless: applied heart of these animals it destroyed the contractility of this organ.

Some very interesting experiments were made with spirit on by Flourens. This distinguished physiologist administered six of alcohol to a sparrow, whose skull he had laid bare. In a minute the animal began to be unsteady both in walking and After some time a dark-red spot appeared on the skull, in the cerebellum, and became larger and deeper-coloured in the alcohol more powerfully affected the animal. I have alcohol to birds, but have hitherto been unable to discover the changes there stated. In some other experiments, Flourens showed that alcohol produced the same effects on the movements of the cerebellum occasioned, but that when alcohol administered the animal lost the use of his senses and intellects; whereas, when the cerebellum was removed, no alcohol given, he preserved them. From these and other observations as is of opinion, that alcohol, in a certain dose, acts specifically on the cerebellum, and that in larger doses it affects other parts also. In man, he thinks the physical action of alcohol on the limb to be absolutely the same as a mechanical lesion.

Effect of alcohol on fishes is analogous to that on other animals. Lebeau added to water, in which are contained some minnows, Phoxinus, Linn., the little animals make a few spasms, and become incapable of retaining their proper position in the water, but float on their sides or back. If removed into pure water they soon recover.

Mammals, on which the effects of alcohol have been tried, are rats, horses, rabbits, and guinea-pigs. The principal experimenters are, Courtenay, Fontana, Viborg, Brodie, and Orfila. Results of their experiments may be thus briefly expressed:—

Rachms of alcohol, injected into the jugular vein of a dog, stopped the blood, and caused instant death (Orfila). Introduced into stomach of cats, dogs, or rabbits, it produces an apoplectic syncope (Brodie and Orfila): this state is preceded, according to Brodie, by a strong excitement of the brain. The same experimen-
talist found that alcohol acts with less energy when injected into the cellular texture than when introduced into the stomach; from which he infers, that its first effects are the result of the action which it exerts on the extremities of the nerves; though he admits that ultimately it becomes absorbed. On examining the bodies of animals killed by introducing alcohol into the stomach, this viscus has been found in a state of inflammation.

γ. On Man.—The effects of alcoholic liquors on man vary with the strength of the liquid, the substances with which the alcohol is combined, the quantity taken, and the constitution of the patient.

αα. The local effects of alcohol or rectified spirit are those of a powerfully irritant and caustic poison. To whatever part of the body this agent is applied, it causes contraction and condensation of the tissue, and gives rise to pain, heat, redness, and other symptoms of inflammation. These effects depend partially or wholly on the chemical influence of alcohol over the constituents of the tissues: for the affinity of this liquid for water causes it to abstract the latter from soft living parts with which alcohol is placed in contact; and when these are of an albuminous or fibrinous nature, it coagulates the liquid albumen or fibrin, and increases the density and firmness of the solid albumen or fibrin. The irritation and inflammation set up in parts to which alcohol is applied, depends (in part) on the resistance which the living tissue makes to the chemical influence of the poison: in other words, it is the reaction of the vital powers brought about by the chemical action of alcohol. But, besides the local influence of this liquid dependent on its affinity, we can hardly refuse to admit a dynamical action (vide p. 103), in virtue of which it sets up local irritation and inflammation, independent of its chemical agency. The coagulation of the blood contained in the vessels of the part to which this liquid is applied (an effect which Orfila observed when he killed an animal by injecting alcohol into the cellular tissue of the thigh of a dog), depends on the chemical influence of the poison.

ββ. The remote effects of ardent spirits on man may be conveniently considered in the order of their intensity; and for this purpose we may divide them into three degrees or stages.

1. First or mildest degree. Excitement.—This is characterised by excitement of the vascular and nervous systems. The pulse is increased in frequency, the face flushed, the eyes animated and perhaps red, the intellectual functions are powerfully excited, the individual is more disposed to joy and pleasure; cares disappear; the ideas flow more easily and are more brilliant. At this period the most violent protestations of love and friendship are frequently made; there is a strong disposition to talk, and various indiscretions are oftentimes com-
mitted (In vivo veritas). This degree of effect I presume to be the condition to which all persons aspire in drinking: the unfortunate drinks to drown his cares; the coward to give him courage; the bon-vivant for the sake of enjoying the society of his friends; the drunkard from mere sensuality. None, perhaps, would wish to go beyond this, yet many, when they have got thus far, exceed their intended limit.

2. Second Degree. Intoxication or Drunkenness.—The essential characteristic of this stage is a disordered condition of the intellectual functions and volition; manifested by delirium, varying in its characters in different individuals, and by an incapability of governing the action of the voluntary muscles. This state is accompanied with excitement of the vascular system, and frequently with nausea and vomiting: it is followed by an almost irresistible desire for sleep, which usually continues for several hours, and is attended with copious perspiration. When the patient awakes he complains of headache, lashing of food, great thirst, and lassitude: the tongue is furled and the mouth clammy.

During a paroxysm of drunkenness, certain peculiarities are observed in the character of the delirium in different individuals. These appear to depend on what is commonly denominated temperament. Mr. Macnish has offered a classification of drunkards, founded on these peculiarities. He describes the sanguineous drunkard, the melancholy drunkard, the surly drunkard, the phlegmatic drunkard, the nervous drunkard, and the choleric drunkard.

3. Third Degree. Coma or True Apoplexy.—This condition is usually observed when excessive quantities of spirit have been swallowed in a short time. According to Dr. Ogston, the patient is sometimes capable of being roused; the pulse is generally slow, the pupils are occasionally contracted, but more commonly dilated, and the breathing is for the most part slow: but exceptions exist to all these statements. Convulsions are rare: when they occur, the patients are usually young. In some cases actual apoplexy (with or without sanguineous extravasation) is brought on. The immediate cause of death appears to be either paralysis of the muscles of respiration, or closure of the glottis.—(Vide pp. 178 and 179.)

Consequences of Habitual Drunkenness.—The continued use of spirituous liquors gives rise to various morbid conditions of system, a few only of the most remarkable of which can be here referred to. One of these is the disease known by the various names of delirium tremens, d. potorum, cinomania, &c., and which is characterised by delirium, tremor of the extremities, watchfulness, and great frequency of pulse. The delirium is of a peculiar kind. It usually consists in the imagined presence of objects which the patient is anxious to seize or avoid. Its pathology is not understood. It is sometimes, but not constantly, connected with, or dependent on, an inflammatory condition of the brain or its membranes. Sometimes it is more allied to nervous fever. Opium has been found an important agent in relieving it.

Insanity is another disease produced by the immoderate and habitual use of spirituous liquors. In 110 cases of this disease, occurring in male patients admitted into the Hanwell Asylum in 1840, no less than 31 are ascribed to intemperance, while 34 are referred to combined causes, of which intemperance is stated as one. It is remarkable, however, that of 70 female patients, admitted during the same year, only four cases are ascribed to intemperance.

1 See p. 188.
3 Report of the Resident Physicians [Dr. Coozley] of the Hanwell Lunatic Asylum, presented to the Court of Quarter-Sessions at the Middlesex Sessions, 1840.
Disease of the liver is frequently met with in drunkards, who use ardent spirits. It is generally of the kind termed, by Baillie, common tubercle of the liver; by Dr. Elliotson, the gin liver; by others, granulated, lobulated, mamellated, or cirrhous liver. Laennec calls it cirrhosis (from κύρης, yellowish), in reference to its usual tawny, yellow colour. A beautiful representation of it is given by Cruveilhier. Dr. Carswell has described it as consisting in atrophy of the lobular structure of the liver, produced by the presence of a contractile fibrous tissue. It is not, therefore, a disease depending on the formation of a new tissue. The ascites, which so frequently accompanies it, arises from the compression to which the portal vessels are subjected by the fibrous tissue; and the jaundice, another frequent effect of it, doubtless depends on compression of the gall ducts. Some excellent remarks on this disease have been made by the late Dr. Hope.

Stomach affections are common results of dram-drinking. Persons addicted to the use of ardent spirits suffer with loss of appetite, and are usually dyspeptic; and chronic inflammation of the stomach, or even a cirrhous state of the pylorus, has been said to be occasionally produced by hard drinking.

Dram-drinkers are sometimes affected with granular disease of the kidneys, first described by Dr. Bright, and which is generally attended by albuminous urine. Dr. Hope regards this state as corresponding to the granular liver just described.

Peculiarities of Intoxication from Spirit.—Different kinds of ardent spirits present some peculiarities in their operation on the system, which will be noticed hereafter (see Brandy, Rum, Gin, Whiskey, and Arrack).

The effects of spirit agree, in a considerable number of circumstances, with those of wine, but present some peculiarities. Spirit more speedily induces excitement, which, however, is of shorter duration, being more rapidly followed by collapse, relaxation, or debility. Death is by no means an infrequent consequence of deep intoxication from spirit. Dram-drinkers suffer usually with loss of appetite, especially in the morning, when they are troubled with vomiting. Moreover they are usually thin, wasted, and emaciated. Winebibbers, on the other hand, often enjoy an unimpaired appetite, and are frequently plump or corpulent, plethoric individuals. Liver disease, from intemperance, is said to be peculiar to those who take ardent spirits. Organic disease of the stomach is also a consequence of spirit drinking.

A somewhat similar distinction holds good between the effects of spirit and those of malt liquors. The latter possess nutritive properties in addition to narcotic powers: hence we frequently observe that the beer toper is a plethoric, corpulent individual.

10 Pathological Anatomy, art. Atrophy.
11 Principles and Illustrations of Morbid Anatomy. Lond. 1834.
12 See also Dr. Christieon On Granular Degeneration of the Kidneys, p. 110. Edinb. 1839.
13 Hogarth, in his Beer Alley and Gin Lane, has well represented the differences between drunkards devoted to malt liquors, and those given to the use of spirit. The first are plump, rubicund, and bloated; the latter are pale, tottering, emaciated, and miserable.
he effects of opium are readily distinguished from those of spirit. An insensibility has not come on. The sleep which both these substances commonly induce is not usually preceded, in the case of men, by delirium, thickness of voice, and peculiar difficulty of respiration. When delirium is produced by this drug (opium) it is of the ecstatic kind. "There is more poetry in its visions—more mental grandeur—more range of imagination." But an insensibility is present the diagnosis is not always easy. The ur of the breath is in these cases an important diagnostic. Moreover, the pupil is usually (though not invariably) dilated by it, whereas it is contracted by opium.

Iodus Operandi.—That alcohol becomes absorbed is proved by fact, that it has been found in the blood, in the urine, the breath, the bile, the fluid of the serous membranes, the brain, and the liver. Jedermann and Gmelin \(^b\) recognised the odour of it in the blood he splenic vein, though they were unable to detect it in the chyle. Similar observation is reported by Magendie \(^c\). Dr. Percy \(^d\) also found it in the blood of the animals to whom he had administered it. Likewise detected it in the urine and the bile. Moreover, the ignition of the odour of alcoholic liquors in the breath of individuals who have swallowed them, as well as their detection by their smell in the fluid contained in the ventricles of the brain, in the peritoneum, \&c., prove indisputably that alcohol becomes absorbed.

Cooke \(^e\) states, on the authority of Sir A. Carlisle, that in one case the fluid of the ventricles of the brain had the smell, taste, and inflammability of gin. Dr. Christison \(^f\) has questioned the correctness of this observation, on the ground that gin of sufficient strength to take could not enter the blood-vessels without coagulating the blood. The objection appears to me to be groundless; for I find that a small quantity of undiluted commercial gin may be added to white wine without causing either coagulation or the slightest opacity. Dr. ton \(^g\) has confirmed the testimony of Carlisle, and states, that in a case he found about four ounces of fluid in the ventricles, having the physical qualities of alcohol. Dr. Percy \(^h\) has recently set the stition at rest, and satisfactorily proved the accuracy of the above accounts, by his experiments on animals. He appears to think that an peculiar affinity exists between the substance of the brain and spirit; more especially as, after analysing a much larger quantity of fluid than can possibly exist in the cranium, he could generally obtain much more alcohol from the brain than from this quantity of fluid. He was unable to determine whether or not the fluid of the ventricles contained any alcohol. Dr. Percy also detected alcohol

\(^b\) Über die Wege auf welche Substanzen aus dem Magen ins Blut gelangen. Heidelberg, 1828.
\(^c\) Elements. Compend. of Physiology, by Dr. Milligan. p. 248. 1823.
\(^d\) An Experimental Inquiry concerning the presence of Alcohol in the Ventricles of the Brain.
\(^e\) Poisoning with spirituous liquors, together with Experiments illustrative of the Physiological Action of Alcohol. Lond. 1839.
\(^f\) Treatise on Nervous Diseases, 1. 222. Lond. 1829.
\(^g\) Treatise on Poisons, p. 853. 3rd ed.
\(^h\) Edin. Medical and Surgical Journal, vol. xi.
Op. supra et al.
in the liver, and has endeavoured to connect this fact with the frequent occurrence of hepatic disease in drunkards.

MORBID APPEARANCES.—On examining the bodies of individuals who have been poisoned by ardent spirits, redness and inflammation of the stomach are sometimes, but not invariably, found. In old drunkards the mucous membrane of the stomach is often injected and thickened. Congestion of the cerebral vessels, with or without extravasation of blood or effusion of serum, is not unfrequently observed. Traces of spirit may or may not be found in the stomach, according to the rapidity with which death has been produced. The odour of spirit may perhaps be recognised in various parts of the body, especially in the brain and the serous cavities.

Uses.—Spirit of wine is employed both for medicinal and pharmaceutical purposes.

1. **MEDICINAL USES.**—Spirit is used both internally and externally:

 a. **Internally.**—Spirit of Wine is rarely administered internally; for when ardent spirit is indicated, Brandy, Gin, or Whiskey, is generally employed. The separate uses of each of these will be noticed presently: at present, therefore, I shall confine myself to some general remarks on the internal employment of spirit. I may observe, however, that Brandy is the ardent spirit usually administered for medicinal purposes; and, unless otherwise stated, is the spirit referred to in the following observations.

 As a *stomachic stimulant*, spirit is employed to relieve spasmodic pains and flatulence, to check vomiting (especially sea-sickness), and to give temporary relief in some cases of indigestion, attended with pain after taking food. As a *stimulant and restorative*, it is given with considerable advantage in the latter stages of fever. As a *powerful excitant*, it is used to support the vital powers, to prevent fainting during a tedious operation, to relieve syncope and languor, and to assist the restoration of patients from a state of suspended animation. In *delirium tremens* it is not always advisable to leave off the employment of spirituous liquors at once, since the sudden withdrawal of the long-acustomed stimulus may be attended with fatal consequences. In such cases it is advisable to allow, temporarily, the patient the moderate use of the particular kind of spirit which he has been in the habit of employing. In *poisoning by foxglove and tobacco*, spirit and ammonia are used to rouse the action of the heart. In *mild cases of diarrhoea*, attended with griping pain, but unaccompanied by any inflammatory symptoms, a small quantity of spirit and water, taken warm, with nutmeg, is often a most efficacious remedy.

 b. **Externally.**—Spirit of wine is used externally for several purposes, of which the following are the principal:—As a *stypic*, to restrain hemorrhage from weak and relaxed parts. It proves efficacious in two ways:—it coagulates the blood by its chemical influence on the liquid albumen and fibrin, and it causes the contraction of the mouths of the bleeding vessels by its stimulant and astringent qualities. Sponge or soft linen, soaked in spirit and water, has been ap-
plied to the mouth of the uterus in uterine hemorrhage. Spirit is used to harden the cuticle over tender and delicate parts. Thus, brandy is sometimes applied to the nipples, several weeks before delivery, in order to prevent the production of sore nipple from suckling in individuals predisposed to it. Spirit is also applied to the feet, when the skin is readily blistered by walking. The efficacy of spirit, in hardening the cuticle, depends, in part, on its chemical influence. Spirit gargles have been found serviceable in checking the tendency to inflammation and swelling of the tonsils. As a stimulant application, warm rectified spirit has been applied to burned or scalded parts, on the principles laid down for the treatment of these cases by Dr. Kentish. Properly diluted, spirit has been employed as a wash in various skin diseases, and in ulcers of bed-ridden persons, and as a collyrium in chronic ophthalmia. Frictions with rectified spirits have been used in the abdominal region, to promote labour pains; on the chest, to excite the action of the heart, in fainting or suspended animation; on the hypogastric region, to stimulate the bladder, when retention of urine depends on inertia, or a paralytic condition of this viscous; on various parts of the body, to relieve the pain arising from bruises, or to stimulate paralyzed parts.

The inhalation of the vapour of rectified spirit has been recommended to relieve the irritation produced by the inspiration of chlorine; but I have tried the practice on myself without benefit. The readiest mode of effecting it is to drop some spirit on a lump of sugar, and hold this in the mouth during inspiration.

Diluted spirit has been used as an injection for the radical cure of hydrocele. A mixture of wine and water, however, is commonly employed in this country.

Spirit has been used to form cold lotions (see p. 31). As the efficacy of it depends on its evaporation, it should be applied by means of a single layer of linen, and not by a compress. Evaporating lotions are applied,—to the head in cephalalgia, in phrenitis, in fever, in poisoning by opium, &c.; to fractures of the extremities; to parts affected with erysipelatous inflammations, &c.

Antidotes.—The first object in the treatment of poisoning by spirituous liquors is to evacuate the contents of the stomach. This is best effected by the stomach-pump; emetics being frequently unsuccessful. Stimulants are then to be employed: the most effectual are the injection of cold water into the ears, cold affusion to the head and neck, warmth to the extremities, when these are cold, and the internal use either of ammonia, or of the solution of the acetate of ammonia, both of which agents have been found useful in relieving vapor. The cerebral congestion often requires the cautious employment of local blood-letting, and the application of cold to the head. If the patient appear to be dying from paralysis of the respiratory

muscles, artificial respiration should be effected: if from closure of
the larynx, tracheotomy may be performed (see pp. 178 and 179.)

1. SPIRITUS VINI GALICII, L.; Brandy; Eau-de-vie.—This is an
ardent spirit obtained by the distillation of wine. Its properties are
subject to some variation, arising from different growths of the vine.
"the brandies of Languedoc, Bordeaux, Armagnac, Cognac, Amia-
Saintonge, Rochelle, Orleans, Barcelona, Naples, &c. being each re-
cognisable by an experienced dealer." The most celebrated of the
French brandies are those of Cognac and Armagnac. Genuine
brandy has an agreeable, vinous, aromatic odour. Both its flavour
and odour, however, are peculiar. Pale brandy has a very slight
brownish yellow tint, derived from the cask in which it has been kept.
The high coloured brandy, usually found in the shops of this country,
is artificially coloured (before its arrival in this country) by burnt
sugar (caramel); which is said to render the spirit mellow and more
palatable." Saunders wood is also stated, by the same authority, to
be frequently used as a colouring ingredient.

The constituents of brandy are alcohol, water, volatile oil, a minute
portion of acetic acid, a little acetic ether, ananthic ether, colouring
matter, and tannin. The latter is said to be derived from the cask in
which the spirit has been preserved: but I find that the high
coloured brandies react more powerfully on the salts of iron than
pale brandy: whence I conclude that some astringent matter has
been added to them.

Brandy when just imported is usually above proof. I found
sample of pale brandy, in bond, supplied me by my friend, Mr.
Gassiot, to be 1·5 over proof; and a coloured brandy, 2·2 over proof,
as indicated by Sikes's hydrometer. By keeping in the cask the
alcoholic strength is diminished. I am informed that brandy, as
usually sold, is 10 per cent. under proof. This would give, accord-
ing to Gutteridge's table, a sp. gr. of 0·9318. But Soubeiran
states, that the sp. gr. of eau-de-vie varies from about 0·902 to
0·941. Now according to Gilpin's tables a spirit having the sp. gr.
of 0·9802 is composed of equal parts of alcohol (sp. gr. 0·825) and
water. But Mr. Brande states that 100 parts by measure of brandy
contain 53·39 parts of alcohol, sp. gr. 0·825. The relative quantity
of spirit contained in this and other ardent spirits, in wine, and in
beer, have been already mentioned.

British Brandy is extensively manufactured, and sold as foreign
brandy. Dr. Ure gives the following formula for it:—"Dilute the
pure alcohol to the proof pitch; add to every hundred pounds weigh-
of it from half a pound to a pound of argol (crude winestone) dissolves
in water, a little acetic ether, and French-wine vinegar, some bruises

1 Brandy is a contraction for Brandy-wine (Brantwein, Germ.), which literally signifies Barley-wine (Vinan adustum).
2 Ure's Dictionary of Arts and Manufactures, p. 164. Loud. 1839.
3 McColloch's Dictionary of Commerce.
4 Nouveau Traite de Pharmacie, t. t. p. 143, 2nd éd.
5 See p. 71 and 347.
6 Dictionary of Arts and Manufactures, p. 165.
French plums, and flavour-stuff from Cognac; then distil the mixture with a gentle fire, in an alembic furnished with an agitator. The spirit which comes over may be coloured with nicely burned sugar (caramel) to the desired tint, and roughened in taste with a few drops of tincture of catechu or oak-bark."

Acrid matters (as Grains of Paradise) are sometimes added to brandy to give it an artificial strength. They may be readily detected by evaporation. Sugar, also, may be discovered in the same way. The residue of the evaporation of genuine brandy yields a green colour with the salts of iron, indicating the presence of tannin: and imitation brandy may be readily made to produce the same effect, by the addition of catechu, or some other astringent.

The general effects and uses of brandy are those of alcohol already described. From the ardent spirits in ordinary use it is distinguished by its cordial and stomachic properties; and it is, in consequence, the stimulant usually preferred for medicinal purposes.

Burnt Brandy is a popular remedy for diarrhea.

2. **MISTURA SPIRITUS VINI GALICCI, L.** (Brandy, Cinnamon Water, of each, 3dvi. : the yolks of two Eggs; Purified Sugar, ss ; Oil of Cinnamon, miiij. Mix.)—This mixture is an imitation of a well-known compound, termed _Egg-Flip_. It is an exceedingly valuable stimulant and restorative; and is employed in the latter stages of low fever, and in extreme exhaustion from uterine and other hemorrhages. The close of it is from 5 to 6, or 7.

3. **SPIRITUS SACCHARI; Rum.**—This is an ardent spirit obtained both in the West and East Indies, by distillation from the fermented skimmings of the sugar boilers, the drainings (called _molasses_) of the pots and hogheads of sugar, the washings of the boilers, and the lees or spent wash of former distillations, called _dunder_. It is imported into this country in puncheons. In some parts of the West India islands it is customary to put slices of pine-apples in the puncheons of rum: hence the designation _pine-apple rum_.

The term _Taffia_, or _Taffia_, is applied to a spirit obtained, by distillation, from the fermented juice of the sugar-cane. It is, therefore, _Cane Spirit_ (Spiritus Sacchi Sacchari).

Good rum is transparent and of a brownish tint. Its depth of colour, however, varies considerably. The peculiar flavour of rum depends on _volatile oil_. The quantity of _alcohol_ (sp. gr. 0.825) in 100 vols. of rum is, according to Mr. Brande, about 53°68 vols. As sent out, its strength is 10 per cent. under proof, in the language of Sikes's hydrometer. _Jamaica rum_ is more highly esteemed than the Leeward Islands rum.

The general effects and uses of rum are similar to those of alcohol

*The terms _Egg-flip_, _Egg-kot_, or simply _Flip_, are applied to a preparation of ale with egg and alcohol spirit (see Dr. Kitchener's _Cook's Oracle_).

* Dunder, from the Spanish _redditura_, to overflow.

* _Berti and De Lemos, Diet. de Med. d. Med. 3. vi. p. 150._
already described 9. It is considered more heating and sud-
taneous than the other kinds of ardent spirit, to which it has been popu-
thought preferable in coughs, catarrhs, and rheumatism.

4. SPIRITUS FRUMENTI COMPOSITUS; Compound Corn Spirit.—
spirit manufactured in British islands is usually obtained by
stillation from fermented infusions of corn. The ardent spirits kno-
wn as Gin, Whiskey, and the various Compounds7, are corn spirit
ferently flavoured.

Gin owes its peculiar flavour to the Juniper, whence it is
quently denominated Spiritus Juniperi. It is not allowed to be
out stronger than 17 per cent. under proof; but it is usually sold
the trade at 22 per cent. under proof. The retail dealer alwa-
duces its strength, and flavours it with sugar. Frequently also
additions are made to it. Gin possesses the general propert-
cohol. On account of the oil of juniper which it holds in so-
it is more powerfully diuretic than brandy and rum; and hence
a popular remedy in dropsical and other affections, where an aug-
tation of the renal secretions is considered desirable. Moreover, it
frequently used to promote menstruation. It is the ordinary in-
cating spirit of the lower classes in this metropolis. At the Long
Hospital, gin is frequently administered medicinally, as a subst-
for brandy, to patients who have been accustomed to its use.

Whiskey agrees in most of its properties with gin; from
which differs in its peculiar smoky flavour and odour: these it ac-
from the malt, which is dried by turf fires. It is the national
of Ireland and Scotland.

5. ARRACK, or RACK.—This is a spirit obtained in various parts
the East. In Batavia, it is procured by distillation from fer-
infusions of rice, whence it has been termed Rice Spirit (Spir
Oryzae). In Ceylon *, it is obtained by distillation from fer-
nut toddy (by some called Palm wine).

“Pine apples, steeped in it, impart a most exquisite flavour t

9 "They talk of a common experiment here [Jamaica], that any Animal’s Liver put into
rows soft, and not so in Brandy, whence they argue this last less wholesome than that, be
Experiment, if true, proves no such thing. I think it may be said to have all good and bad in
of Brandy, or any fermented or vinous spirit.”—(Sloane’s Jamaica, vol. i. p. xxi. Lond. 170
By spirit dealers, British compounded spirits are denominated Compounds, while For-
pounded spirits are called Liqueurs. Both class of liquors are sweetened spirits.

The following list of Compounds, usually kept at the gin-shops of this metropolis, has be-
ded me by the proprietor of one of these establishments —

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Under Proof</th>
<th>Compounds</th>
<th>Under Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gin</td>
<td>17</td>
<td>Tent</td>
<td></td>
</tr>
<tr>
<td>Gin</td>
<td>22</td>
<td>Aniseed</td>
<td></td>
</tr>
<tr>
<td>Mint (Peppermint)</td>
<td>64</td>
<td>Caraway</td>
<td></td>
</tr>
<tr>
<td>Cloves</td>
<td></td>
<td>Lovage</td>
<td></td>
</tr>
<tr>
<td>Bitters</td>
<td></td>
<td>Usquebaugh (X)</td>
<td></td>
</tr>
<tr>
<td>Raspberry</td>
<td></td>
<td>Rana Shrub</td>
<td></td>
</tr>
<tr>
<td>Noyeau</td>
<td></td>
<td>Orange Cordial (X)</td>
<td></td>
</tr>
<tr>
<td>Cinnamon</td>
<td></td>
<td>Citron ditto (X)</td>
<td></td>
</tr>
</tbody>
</table>

spirit; and, by age, it becomes a delicious liqueur, which is unrivalled in the world for making nectarial punch.” In England, arrack is never employed for medicinal purposes. In its general properties it agrees with the other ardent spirits; but is said to be distinguished by its stimulating and narcotic properties. It is sometimes used in this country to impart an agreeable flavour to punch. A mock arrack is made by dissolving twenty grains of benzoic acid in two pounds of rum.

2. **Pharmaceutical Uses of Alcohol.** — The alcohol of the Pharmacopœia (sp. gr. 0.815) is not employed in the preparation of any officinal substances, but it is a valuable agent in chemical analysis, and is used in determining the purity of certain medicinal substances; as iodine, iodide of potassium, the vegetable alkalis, castor oil, &c. Rectified and proof spirits are most extensively employed in officinal pharmacy: as in the formation of Tinctures, Spirits, Ethers, Etherial Oil, and Resinous Extracts, and in the manufacture of the Vegetable Alkalis. Lastly, spirit is added to various preparations to assist in preserving them.

1. **Tincture, L. D.; Tinctures, E.; Alcoolés.** — These are solutions of vegetable, animal, or mineral substances, in proof or rectified spirit. They are preparations of substances whose active principles are imperfectly or not at all soluble in water, or whose aqueous solutions readily undergo decomposition.

Some are prepared by solution merely; as the Tinctura Iodinii composita, Ph. L.; Tinctura Camphora, Ph. Ed.; and Tinctura Ferri Sesquichloridi.

Some of the vegetable tinctures are prepared by adding rectified spirit to the expressed juices of plants. These preparations are frequently denominated preserved vegetable juices. They have been long in use on the continent. In 1833, Mr. Squire began to manufacture them. More recently, Mr. Bentley has directed the attention of the profession to them.

Mr. Squire states, that on an average the juice of the young plant just coming into flower, will yield only two-thirds of the amount of extract which is obtained from the same quantity of juice from the matured plant (“when more than half the flowers are fully blown”), and the strength of the product is also inferior. He also asserts that the leaves only should be used; and in the case of biennial plants, those of the second year’s growth should exclusively be employed.

The mode of obtaining these preparations is as follows:—The leaves being bruised in a marble mortar, are placed in a powerful press. The expressed juice is allowed to stand for twenty-four hours, by which a considerable quantity of feculent matter is deposited. Rectified spirit [56 over proof] is then added, in the proportion of four fluidounces to every sixteen fluidounces of the juice, which is quite sufficient to render the preservation complete, and throw down any

2. *On the Best Method of obtaining the more powerful Vegetable Preparations for Medical Use.*
3. *On the Use of Ethers.*
4. *On the article Hyoscyanus,* for an account of the relative quantities of juice and extract yielded.
5. The leaves and stalks.
mucilage which may be mechanically suspended. After standing for two or four hours the liquor is be filtered. Mr. Squire employs one measure of spirit to two measures of juice.

These preserved expressed juices are superior preparations to tinctures prepared by digestion from the same parts of either fresh or dried plants. In some cases (e.g. Aconite), tinctures prepared with rectified spirit from the dried roots, by digestion, are greatly superior in activity to the preserved juices of the leaves.

The ordinary method of preparing tinctures is by maceration and digestion.

Tinctures are usually made by reducing the solid ingredients to small fragments, coarse powder, or fine powder, macerating them for seven days or upwards in proof spirit or rectified spirit, straining the solution through fine calico, and finally expressing the residuum strongly to obtain what fluid is retained in the mass. — Ph. E.

All Tinctures should be prepared in stoppered glass vessels, and frequently shaken during maceration.—Ph. Lond.

The tinctures which are made with resinous substances can in general be well prepared in any other way than by digestion. This remarks applies to Tinctura Aloe, Tinctura Asafetida, Tinctura Benzoini composita, Tinctura Guaiaci, and Tinctura Balsami Tolutani.

Another and more expeditious method of preparing tincture by percolation or lixiviation (procédé ou méthode de déplacement) and which is also applicable to the preparation of ethereal, as well as alcoholic, tinctures, and of infusions. The principle of the method has been adopted by the Scotch brewers; the process being called by them sparging. It has also been used in the preparation of coffee. It was first employed for pharmaceutical purposes by Boullay. In the preparation of tinctures its principal advantages are expedition, economy, and uniformity of strength. It is more troublesome, requires more skill and attention, and is equally applicable to all substances. It answers best for those tinctures made with woody and fibrous parts, as roots, barks, wood, leaves, fruits, seeds, and insects. The Tinctures of Catechu, Myrrh may also be prepared in this way. The Edinburgh Colophony offers the following remarks on this mode of preparation:

A much superior method, however, has been lately introduced, which answers well for most tinctures, namely, the method of displacement by percolation. According to this process, the solid materials, usually in coarse or moderate fine powder, are moistened with a sufficiency of the solvent to form a thick paste. In twelve hours, or frequently without any delay, the mass is put into a cylinder of glass, porcelain, or tinned iron, open at both ends, but obstructed at the lower end by a piece of calico or linen, tied tightly over it as a filter; and the pulp being packed by pressure, varying as to degree with various articles, the remainder of the solvent is poured into the upper part of the cylinder, and allowed gradually to percolate. In order to obtain the portion of the fluid which is kept in the

1 Bentely, op. supra cit.
2 Journal de Pharmacie, t. xix. p. 303.
daum, an additional quantity of the solvent is poured into the cylinder, until the
nature, which has passed through, equals in amount the spirit originally pre-
scribed: and the spirit employed for this purpose is then recovered for the most
art by pouring over the residuum as much water as there is of spirit retained in
which may be easily known by an obvious calculation in each case. The
method by percolation, where applicable, will be found much more convenient
and expeditious than the mode hitherto commonly followed, and it exhausts the
old materials in general much more completely. As considerable practice,
however, is required for managing the details in different cases, more especially
in regard to the degree of firmness with which they are to be packed in the
glass; we have thought it right to direct that the method of maceration, may
be followed as an alternative. But the method of percolation is now preferred by
all who have made sufficient trial of it to apply it correctly."

The percolator is best made of tin plate or zinc. A simple tube
of glass, porcelain, or tinned iron), as stated by the Edinburgh
College, answers for an extemporaneous percolator. It is fitted into
the mouth of a wide-mouthed bottle by means of a cork (fig. 60), in
which is a small aperture to allow of the escape of air. One of the
most convenient percolators is that proposed by Boullay. It is a
simple cylinder of equal diameter, and terminating inferiorly in a
cone or funnel. Mr. Deane's percolator⁴ (fig 61) is a modification of
his: its lower end, c n, has a smaller circumference than its upper
end, a b; is flat, and communicates with a tube, to which a stop-cock
is fitted. Soubeiran⁵ has adapted to Boullay's percolator a tin re-
ceiver, to which is fitted, at the most depending part, a stop-cock, by
which the tincture may be drawn off (fig. 62).

Fig. 60.

Fig. 61.

Fig. 62.

Fig. 62. Tincture Percolators.

The size of the percolator must, of course, vary according to circum-
stances. The smallest may be half an inch in diameter and four
inches long. Large ones are six inches in diameter and eighteen

⁴ *Pharmaceutical Transactions, part ii.*

⁵ *Nouveau Traité de Pharmacie, t. i. p.iii. 2nd ed.*
inches long. They should be furnished with two diaphragms (perforated metallic disks, fig. 61, e, f), between which the ingredients are placed. When small percolators are used, a little cotton-wool, or even tow, may be substituted for the lower diaphragm,—or a piece of calico or linen may be tied over the end of the tube, as directed by the Edinburgh College. The lower extremity of the percolator should be furnished with a stop-cock (see figs. 61 and 62), for regulating the discharge of the fluid.

Considerable skill and experience are required in packing the ingredients. Indeed, the principal art of percolating has reference to this part of the process. Substances, as Rhubarb and Gentian, which yield a large quantity of mucilage, and are to be acted on by water, must be employed in the form of a very coarse powder, and should be placed loosely in the percolator, in order to allow them to swell. With alcohol or ether, however, the tissues swell less, the mucilaginous matter is not dissolved, and the percolation is readily effected even with a finer powder and closer packing.

Boissay imagined that one liquid may be employed to displace another liquid, without the two liquids becoming mixed: hence he called the process the displacement method. The Edinburgh College, I presume, has adopted his opinion, since it directs the mixture to be displaced by spirit, and the spirit by water. But Guillermont has shown that this displacement cannot be effected without a certain degree of mixture.

2. SPIRITUS, L. D. Spirits, E. Alcoolats.—These are alcoholic solutions of volatile substances (usually of a vegetable nature) obtained by distillation. Some of them are prepared with rectified spirit (e.g. Spiritus Rosmarini), but most of them with proof spirit. Several of the spirits which owe their peculiar flavour and odour to volatile oil may be, and usually are, imitated by dissolving the oil in the spirit without the aid of distillation; and, for all therapeutical purposes, they are equally effective.

2. Æther sulphuricus, L. E. D.—Sulphuric ether.

History and Synonymes.—This liquid is said to have been known to Raymond Lully, who lived in the 18th century; and to Basil Valentine, in the 15th century. In 1540, Valerius Cordus described the method of making it. He termed it Oleum Vitrioli dulce. The Germans call it Vitriolic Naphtha (Naphtha Vitrioli).

Natural History.—It is always an artificial product.
SULPHURIC ETHER.

Preparation.—All the British Colleges give directions for the preparation of sulphuric ether.

The *London College* orders of Rectified Spirit, lbij.; Sulphuric Acid, lbij.; Carbonate of Potash, previously ignited, 3ij.; pour two pounds of the spirit into a glass retort, add the acid to it, and mix. Afterwards place it on sand, and raise the heat so that the liquor may quickly boil, and the Ether pass into a receiving vessel cooled with ice or water. Let the liquor distil until some heavier portion begins to pass over. To the liquor which remains in the retort, after the heat has subsided, pour the remainder of the spirit, that ether may distil in the same manner. Mix the distilled liquors, then pour off the supernatant portion, and add to it the Carbonate of Potash, shaking them frequently during an hour. Lastly, let the ether distil from a large retort, and be kept in a stoppered vessel.

The directions of the *Edinburgh College* are as follows:—"Take of Rectified Spirit, f3x. Sulphuric Acid, f3x. Pour twelve fluidounces of the spirit gently over the acid contained in an open vessel, and then stir them together briskly and thoroughly. Transfer the mixture immediately into a glass matrass connected with a refrigeratory, and raise the heat quickly to about 250°. As soon as the ethereal fluid begins to distil over, supply fresh spirit through a tube into the matrass in a continuous stream, and in such quantity as to equal that of the fluid which distils over. This is best accomplished by connecting one end of the tube with a graduated vessel containing the spirit, passing the other end through a cork fitted into the matrass,—and having a stop-cock on the tube to regulate the discharge. When forty-two ounces have distilled over, and the whole spirit has been added, the process may be stopped. Agitate the impure ether with sixteen fluidounces of a saturated solution of muriate of lime, containing about half an ounce of lime recently slaked. When all odour of sulphurous acid has been thus removed, pour off the supernatant liquor, and distil it with a very gentle heat, so long as the liquid which passes over has a density not above 0·763. More ether of the same strength is then to be obtained from the solution of muriate of lime. From the residuum of both distillations, a weaker ether may be obtained in small quantity, which must be rectified by distilling it gently again."

The *Dublin College* directs Sulphuric Ether to be prepared from the *Liquor Ethereus Sulphuricus*, which is ordered to be made thus:—Take of Rectified Spirit, Sulphuric Acid, of each f3xxij. by weight. Pour the spirit into a glass retort adapted to bearing a sudden heat, and then pour on the acid in an unbroken stream; mix them gradually, and let twenty ounces by measure of the liquor be distilled with a sudden and sufficiently strong heat, into a receiver kept cold. If sixteen ounces of rectified spirit be poured upon the acid remaining in the retort, sulphuric ethereal liquor will again come over by distillation.

Take of this Sulphuric Ethereal Liquor, f3xx.; Carbonate of Potash, dried and powdered, 3ij. Mix them, and, from a very high retort, distil, by a very gentle heat, twelve ounces by measure into a receiver kept cold. The sp. gr. of the liquor should be to that of distilled water as 0·765 to 1·000.

Theory of Etherification.—In order to convert two equivalents or 46 parts of alcohol into one equivalent or 37 parts of ether, we must abstract one equivalent or 9 parts of water.

<table>
<thead>
<tr>
<th></th>
<th>Carbon</th>
<th>Hydrogen</th>
<th>Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq</td>
<td>4 eq</td>
<td>6 eq</td>
<td>2 eq</td>
</tr>
<tr>
<td>Abstract 1 equivalent Water composed of</td>
<td>0 eq</td>
<td>1 eq</td>
<td>1 eq</td>
</tr>
<tr>
<td>1 eq</td>
<td>4 eq</td>
<td>5 eq</td>
<td>1 eq</td>
</tr>
</tbody>
</table>

But, though the change thus far appears very simple, there are some accessory reactions which make the theory of etherification exceedingly complicated, and about the precise nature of which chemists are not quite agreed.

That the sole or efficient cause of the conversion of alcohol into ether is not
the mere abstraction of the water, by the affinity of the sulphuric acid for the liquid, is proved by various circumstances, of which the following are some:—

a. Water may be abstracted from alcohol by alkalis and chloride of calcium, yet nothing like ether is the result.

b. Water passes over, during the whole process, along with the ether, with which the acid ought to combine in preference to dehydrating the alcohol.

c. Ether is not produced by the action of anhydrous sulphuric acid on alcohol.

d. Ether is never produced except by the aid of heat.

e. When the oil of vitriol is mixed with rectified spirit, the saturating power of the acid is diminished.

When oil of vitriol is added to rectified spirit, a new compound is formed, which contains, besides the elements of sulphuric acid, carbon, hydrogen, and oxygen.

As this new compound reddens litmus, and forms salts with bases, it has been regarded as an acid (sulpho-vinic acid\(^1\); ethereo-sulphuric acid\(^2\)). But as the sulphuric acid, by its union with the elements of the alcohol, has lost half its saturating power, the new compound is rather to be regarded as a supersalt (bisulphate of the oxide of ethule\(^3\)), combined with water; or as a double salt composed of sulphate of the oxide of ethule and sulphate of water. Carbo-hydrogen is the basic constituent of this salt, which, by the action of heat, is resolved into ether, sulphuric acid, and water.

On the ethule hypothesis, so ably advocated by Liebig, the following is an explanation of the changes attending the formation of ether:—

Alcohol is regarded as the hydrate of the oxide of ethule, and its equivalent is assumed to be 46. On the addition of oil of vitriol, two equivalents or 80 parts of anhydrous sulphuric acid combine with one equivalent or 37 parts of oxide of ethule (ether), contained in the alcohol, and form one equivalent or 117 parts of bisulphate of oxide of ethule (bisulphate of ether). The water of the alcohol and of the oil of vitriol unites with the bisulphate. By the heat, which is subsequently applied to the mixture, the hydrated bisulphate is resolved into ether, water, and sulphuric acid.

In the following diagram, the oil of vitriol (\(\text{SO}_3^+ + \text{HO}\)) is assumed to be the strongest procurable, and the alcohol to be uncombined with water:—

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>INTERMEDIATE COMPOUNDS</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Alcohol 46</td>
<td>1 eq. Water 9</td>
<td>1 eq. Water 18</td>
<td>1 eq. Water 144</td>
</tr>
<tr>
<td>2 eq. Oil of Vitriol 90</td>
<td>2 eq. Sulph. Acid 80</td>
<td>2 eq. Water 18</td>
<td>2 eq. Water 360</td>
</tr>
<tr>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
</tr>
</tbody>
</table>

\(^2\) Hennel, Philosoph. Trans. 1226 and 1229.
\(^3\) Liebig, in the Handwörterbuch der reinen und angewandten Chemie, von Dr. J. Liebig und Dr. T. C. Poggendorff, Bd. 1. S. 114. Braunschweig, 1857.
\(^*\) Liebig, in Turner's Elements of Chemistry, p. 531, 1st ed. 1840.
"If we consider each particle of the [hydrated] bisulphate of oxide of ethule as composed of ether [oxide of ethule], anhydrous sulphuric acid, and water, it is clear that the anhydrous acid, at the moment of its separation from the ether, must seize on all water, free or combined, in the vicinity of the ether. Thus, at the moment the ether becomes free, the anhydrous acid, also set free, prevents it from uniting with water to form alcohol. But when the gaseous ether passes through the undecomposed hydrated bisulphate of oxide of ethule, a certain proportion of the water of that compound must evaporate in the dry gas; and in these circumstances the ether and water do not combine together. The surface of the effervescing liquid has the temperature at which [hydrated] bisulphate of oxide of ethule is decomposed; but at this temperature, 284°, the water of that compound is gaseous. There are thus produced, simultaneously, water in the gaseous form by evaporation, and ether, also gaseous, by decomposition; which, as both are in the nascent state, unite to form alcohol. Thus the alcohol, always observed to distil over with the ether, is derived from the surface; and the ether and water, which distil over, proceed from the decomposition in the interior of the liquid. This explains why no ether is obtained when the liquid is not in brisk ebullition, no matter how high the temperature may be; it explains further, why more alcohol is obtained when a current of dry air passes through the liquid, since in that case the same decomposition goes on in the interior of the liquid as generally occurs at the surface." *17

During the distillation of ether the relative proportions of the ingredients are constantly varying; for the absolute quantity of hydrated bisulphate of ethule is continually diminishing, and thereby the relative quantity of oil of vitriol is increasing. In consequence of this, the boiling point of the liquid gradually rises. When it arrives at about 320°, new reactions take place between the oxide of ethule and the sulphuric acid. The principal products of these reactions are sulphurous acid, olefiant gas, water, and carbon. The subjoined diagram will explain how these are produced from the bisulphate of oxide of ethule:

<table>
<thead>
<tr>
<th>Material</th>
<th>Composition</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Bisulphate of Oxide Ethule 117</td>
<td>2 eq. Sulphuric Acid 80 1 eq. Oxygen 16</td>
<td>3 eq. Sulphuric Acid 64</td>
</tr>
<tr>
<td></td>
<td>1 eq. Oxygen</td>
<td>3 eq. Water 27</td>
</tr>
<tr>
<td></td>
<td>3 eq. Hydrogen</td>
<td>1 eq. Olefiant 14</td>
</tr>
<tr>
<td></td>
<td>3 eq. Hydrogen 21</td>
<td>2 eq. Carbon 12</td>
</tr>
<tr>
<td></td>
<td>3 eq. Carbon 12</td>
<td>2 eq. Carbon 12</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>117</td>
</tr>
</tbody>
</table>

These are not the only products of the reaction above referred to. In certain proportions of the ingredients, acetic acid \([C_4 H_4 O_2]\) is formed. With a great excess of [sulphuric] acid, traces of formic acid \([C_2 H_2 O_2]\) and carbonic oxide are produced. As long as olefiant gas comes off, carbonic acid cannot be detected. During this decomposition, sulphurous acid and olefiant gas are given off in equal volume. "Carbon and water are the elements of acetic acid, the formation of which must diminish the quantity of carbon in the 117. By the action of the sulphuric acid in excess on acetic acid, formic acid and sulphurous acid are formed; and by the action the sulphuric acid in excess on formic acid, carbonic oxide gas is

produced. It is probable that in this decomposition, the elements of sulphuric acid and of ether first arrange themselves as to form ethionic \([4 \text{SO}_3, \text{C}_4 \text{H}_5 \text{O}]\) or isethionic \([\text{S}_2 \text{O}_5, \text{C}_4 \text{O}_7 + \text{aq.}]\) acids. A small quantity of Light Oil of Wine is also produced. In the directions for the preparation of ether, given by London College, the process is directed to be stopped when some "heavier portion" begins to pass over. This heavier liquid is an aqueous solution of sulphurous acid.

On the small scale ether may be readily made in a tubulated glass retort, connected by Liebig’s condensing tube, with a cooled glass receiver. At Apothecaries’ Hall, London, it is made in a lea still, having a pewter head connected by about six feet of tin pipe with a very spacious condensing worm, duly cooled by a current of water; the receivers are of pewter with glass lids, and have a siphon tube to connect them with the delivering end of the worm-pipe. The still is heated by high-pressure steam carried through it in a contorted leaden pipe. A tube enters the upper part of the receiver for the purpose of causing alcohol to gradually run into the acid column.

Mitscherlich has shown how a given quantity of oil of vitriol may be made to convert an unlimited quantity of alcohol into ether, the whole of the alcohol which enters the retort passing off as ethyl alcohol and water. As, however, ether is usually prepared from hydromel, the superfluous water gradually dilutes the acid until ultimately it becomes too dilute to effect the conversion of alcohol into ether. The process of the Edinburgh Pharmacopoeia is an imitation of Mitscherlich’s principle.

The rectification of ether is intended to free it from alcohol, water, sulphurous acid, and oil of wine. It is ordered to be effected by the addition of carbonate of potash and re-distillation. In order to separate alcohol from ether, the readiest method is to shake the ether with twice its bulk of water; then pour it off, and remove the water, which the washed ether has dissolved, by adding some fine burned lime, and distilling the ether a second time.

Properties — At ordinary temperatures ether is a colourless, very limpid liquid, having a penetrating, peculiar, though somewhat fragrant odour; a hot, pungent taste, and a high refractive power. It is a bad conductor of electricity. Absolutely pure ether has been solidified by any degree of cold hitherto produced. (Thenard and Bussy). I have submitted it to the action of solid carbonic acid (whose temperature was probably 148° below the zero of Fahrenheit) without freezing it. But Fourcroy and Vanquelin, and more recently Liebig, state that it may be frozen at 46° below zero. The sp. gr. of pure ether at 68° F. is, according to Dumas and Boullé, 0.713. The ether of the shops contains a little alcohol, and its specific gravity varies from 0.733 to 0.765: in the London Pharmacopoeia its sp. gr. at 62° F. is fixed at 0.750. Ether is extremely volatile: when of sp.
SULPHURIC ETHER.

its boiling point (the mercury in the barometer standing at 30 \degree C., is about 98 \degree F.) In a vacuum, it boils at 40 \degree F. below zero. Evaporation of ether causes intense cold. The sp. gr. of ether was found, by Gay-Lussae, to be 2.586. Pure and recently distilled ether possesses neither acid nor alkaline properties; but, by exposure to air and light, it absorbs oxygen, by which acetic acid and peracetic acid are produced. The acetic acid is not immediately observed, but it combines with some undecomposed ether to form acetic acid.

Ether is very combustible: it burns in atmospheric air with a bluish-white flame, and forms carbonic acid and water. Its mixture with oxygen or atmospheric air forms a violently exothermic mixture. The house of an apothecary at Bern was blown up by the combustion of a lighted candle being taken into a cellar in a bottle of ether that had been broken. One volume of ether consumes, in burning, six volumes of oxygen gas; the proportion is four volumes of carbonic acid, and five volumes of aqueous vapour.

By the slow combustion of ether vapour, by means of a red hot platinum wire, acetic, formic, and lactic [aldehydic] acids are produced.

Ether is sparingly soluble in water: nine volumes of the latter dissolve one volume of the former. Ether, which has been washed with water, is a small portion of the latter liquid. Alcohol dissolves ether in any proportion.

Ether abstracts bichloride of mercury, terchloride of gold, and the chlorides of iron, from their watery solutions. It readily dissolves bromine and iodine; but the solutions, by keeping, undergo decomposition. It sparingly dissolves sulphur and phosphorus: the latter solution of phosphorus is luminous in the dark, when poured into water. It dissolves the volatile oils, most of the fatty and resinous substances, some of the vegetable alkalies, urea, and osmazome.

Characteristics—Sulphuric ether may be recognised by its composure, its yellowish white flame, its volatility, its peculiar odour, its complete solubility in alcohol, and its sparing solubility in water, in consequence of which, when mixed with water and agitated in a phial, the mixture speedily separates, on standing, into two layers.

It dissolves most resins: the solutions, evaporated on the plate of a water bath, leave a resinous film.

Composition—The following is the elementary composition of

<table>
<thead>
<tr>
<th>Before Combustion</th>
<th>After Combustion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Oxygen = 16</td>
<td>2 eq. Carb. Acid = 22</td>
</tr>
<tr>
<td>2 eq. Oxygen = 16</td>
<td>2 eq. Carb. Acid = 22</td>
</tr>
<tr>
<td>2 eq. Oxygen = 16</td>
<td>1 eq. Carb. Acid = 22</td>
</tr>
<tr>
<td>1 eq. Carb. Acid = 9</td>
<td>1 eq. Aq. Vap. = 9</td>
</tr>
</tbody>
</table>
Chemists are not agreed as to the manner in which these elements are associated. Ether has been considered, at different times, a dihydrate of olefiant gas,—a hydrate of etherine,—or as the oxide of ethule (etherium).

In this table olefiant gas is regarded as a $\frac{2}{3}$ carbo-hydrogen, etherine as carbo-hydrogen, and ethule as $\frac{3}{4}$ carbo-hydrogen.

PURITY.—The ether of commerce is usually contaminated with small quantities of either spirit or water, or both. These augment its sp. gr. but do not much affect its medicinal properties. The London College states that its sp. gr. should be 0.750; but this is too high. Edinburgh College fixes it at 0.735, or under. I think 0.740 would be sufficiently low. Ether which contains no alcohol does not coagulate the serum of the blood. Pure ether does not redden litmus, but ether of the shops usually does so slightly, either from being imperfectly prepared or being too long kept. Ten fluidounces of water should not dissolve more than one fluidounce of ether, the solution should be quite transparent. It should speedily and totally evaporate in the air. It should not become milky when mixed with water. “When agitated in a minium measure, with half a volume of concentrated solution of muriate of lime, its volume not lessened,” Ph. Ed.

Physiological Effects. a. On Vegetables.—Ether, like alcohol, acts as a powerful and rapid poison to plants.

b. On Animals.—The effects of it on dogs have been determined by Orfila*, who found that half an ounce introduced into the stomat and the oesophagus tied, caused attempts to vomit, diminished muscular power, insensibility, and death in three hours. Three drachms and a half injected into the cellular tissue of the thigh, caused death on the fourth day. Jäger† found that half an ounce of ether acted as a fatal poison to a crane; at the end of forty-eight hours its odor could be readily detected in the body. He made similar experiments with pigeons and ducks. One of the last-mentioned animals to altogether an ounce of ether, yet was not dead at the end of twenty-four hours.

c. On Man.—The operation of ether is analogous to that of alcohol, but is much more rapid and transient. Swallowed in moderate doses...
SULPHURIC ETHER.

It makes a powerful impression on the mouth, throat, and stomach; dilates spasm, and relieves flatulence: but, according to some observers, it augments neither the heat of the body nor the frequency of the pulse. Its first effects on the cerebral functions are those of an excitant, but the subsequent ones are those of a depressing agent. In somewhat larger doses it produces intoxication like that caused by alcohol. In excessive doses it occasions nausea, a copious flow of saliva, giddiness, and stupefaction.

The long and habitual use of ether diminishes the effect of this substance over the system, and, therefore, the dose must be proportionately increased. Dr. Christison mentions the case of an old gentleman who consumed sixteen ounces every eight or ten days, and had been in the habit of doing so for many years. Yet, with the exception of an asthma for which he took the ether, he enjoyed tolerable health. The chemist, Bucquet, who died of scirrhus of the colon, with inflammation of the stomach and of the intestines generally, took, before his death, a pint of ether daily, to alleviate his excruciating pains.

When the vapour of ether, sufficiently diluted with atmospheric air, is inhaled, it causes irritation about the epiglottis, a sensation of fullness in the head, and effects analogous to those caused by the protoxide of nitrogen (vide p. 156); moreover, persons peculiarly susceptible of the action of the one are also powerfully affected by the other. If the air be too strongly impregnated with ether, stupefaction ensues. In one case this state continued with occasional periods of intermission for more than thirty hours: for many days the pulse was so much lowered that considerable fears were entertained for the safety of the patient (op. cit.) In another case, an apoplectic condition, which continued for some hours, was produced.

Modus Operandi.—When ether is swallowed, it is rapidly absorbed, and subsequently thrown out of the system by the pulmonary surface. Magendie says, that ether introduced into the cavity of the peritoneum is discoverable in the expired air by its odour. Thrown into the cavity of the pleura, it produces speedy death, and its odour is very obvious when we approach the mouth of the animal. In the case of a man poisoned by laudanum, and to whom before death half an ounce of spirit of sulphuric ether was given, the ether was detected by its odour in the brain.

Uses.—Ether is employed both medicinally and for pharmaceutical purposes.

1. Medicinal Uses. a. Internal.—Ether is principally valuable as a speedy and powerful agent in spasmodic and painful affections, not dependent on local vascular excitement, and which are accompanied by a pale, cold skin, and a small, feeble pulse. If adminis-
tered during a paroxysm of spasmodic asthma, it generally gives relief, but has no tendency to prevent the recurrence of attacks. In cramp of the stomach, singultus, and flatulent colic, its happy effects are well established. It is sometimes highly advantageous in a paroxysm of angina pectoris. During the passage of urinary or biliary calculi, it may be used as a substitute for, or in combination with, opium, to overcome the spasm of the ducts or tubes through which the calculi is passing.

In the latter stages of continued fever, ether is sometimes admissible. It is employed to relieve the subsultus tendinum and hiccup. Desbois de Rochefort administered it in intermittent fevers. He gave it about half an hour before the expected paroxysm; it acted as a mild diaphoretic, and prevented the recurrence of the attack.

Headache of the kind popularly called nervous, that is, unconnected with vascular excitement, is sometimes speedily relieved by ether. I have found it beneficial principally in females of delicate habits. In such it occasionally gives immediate relief, even when the throbbing of the temporal vessels and suffusion of the eyes (symptoms which usually contra-indicate the employment of ether), would seem to shew the existence of excitement of the cerebral vessels.

In flatulence of stomach it may be taken in combination with some aromatic water. Against sea-sickness it should be swallowed in a glass of white wine. Durandé recommends a mixture of three parts ether and two oil of turpentine, as a solvent for biliary calculi. Bourdier employed ether to expel tape-worm. He administered it by the stomach and rectum, in an infusion of male fern, giving a dose of castor oil an hour after. In faintness and lowness of spirits, it is a popular remedy. In poisoning by hemlock and mushrooms, it has been employed. In asphyxia it has been used with benefit.

The vapour of ether is inhaled in spasmodic asthma, chronic catarrh, and dyspnœa, hooping cough, and to relieve the effects caused by the accidental inhalation of chlorine gas. It may be used by dropping some ether in hot water, and inspiring the vapour mixed with steam, or it may be dropped on sugar, which is to be held in the mouth. The inhalation of the vapour of the ethereal tincture of hemlock is occasionally useful in relieving spasmodic affections of the respiratory organs, and has been recommended in phthisical cases.

B. External.—The principal external use of ether is to produce cold by its speedy evaporation. Thus, in strangulated hernia it may be dropped on the tumour and allowed to evaporate freely: by this means a considerable degree of cold is produced, and, in consequence, the bulk of the part diminished, whereby the reduction of the hernia

* Mém. de la Société de Méd.
* J. Frank, Therapeutie, n. 70, 108.
is facilitated. Dropped on the forehead, or applied by means of a piece of thin muslin, ether diminishes vascular excitement, by the cold produced from its evaporation, and is exceedingly efficacious in headache and inflammatory conditions of the brain. In burns and scalds it may also be employed as a refrigerant. If its evaporation be stopped or checked, as by covering it with a compress, it acts as a local irritant, causing rubefaction, and, by long-continued application, vesication. It is used with friction as a local stimulant.

2. PHARMACEUTICAL USES.—Ether is employed in the preparation of the Compound Spirit of Sulphuric Ether. Ether, or its alcoholic solution, is also used to extract the active principles of certain drugs, as of Lobelia, Aloes, Musk, &c. The solutions are called Ethereal Tinctures (Tincture Ethereæ), or by the French pharmacologists Ethéroles. These may be conveniently prepared by percolation (see p. 366). Ether is of assistance in determining the purity of some medicinal substances, as of Aconitina and Veratrina, which are very soluble in it. It is also employed in toxicological researches, to remove Bichloride of Mercury from organic mixtures.

ADMINISTRATION.—It may be given in doses of from 4 to 5ij.;—a teaspoonful is the ordinary quantity. This dose may be repeated at short intervals. It is usually exhibited in some aromatic water, and frequently in combination with other antispasmodics and stimulants, as ammonia, valerian, &c. “It may be perfectly incorporated with water, or any aqueous mixture, by rubbing it up with spermacheti employed in the proportion of two grains for each fluidrachm of the ether f.”

ANTIDOTES.—In cases of poisoning by ether, the same treatment is to be adopted as before recommended in cases of poisoning by alcohol.

1. SPIRITUS ÆTHERIS SULPHURICI E. Spirit of Sulphuric Ether. Sulphuric Ether, Oj.; Rectified Spirit, Oij. Mix them. The density of this preparation ought to be 0·809. “It does not affect litmus paper, or render water muddy: when agitated with twice its volume of a concentrated solution of muriate of lime, 28 per cent. of ether separates by rest.”—Its medicinal properties are similar to, though somewhat less powerful than, those of ether, over which it has the advantage of being miscible with water in all proportions. The dose of it is 4 to 5ij. mixed with some diluent. It is used in the preparation of the Tinctura Lobeliae ethereae, E.

2. SPIRITUS ÆTHERIS SULPHURICI COMPOSITUS, L. Compound Spirit of Sulphuric Ether. (Sulphuric Ether, 4; sulphuric Ether, 4.)—This preparation is commonly called Hoffman’s Mineral Anodyne Liquor (Liquor anodynis mineralis Hoffmanii); being made in imitation of a preparation described by Hoffman, and which it is said he was taught by an apothecary of the name of Martmeier. This preparation is sometimes employed as an adjunct to laudanum, to prevent the nausea which the latter
excites in certain habits. Its dose is from 3ss. to 3sij. in any proper vehicle.

3. OLEUM ÆTHEÆUM, L.—ETHEREAL OIL.

(Liquor Etheræus Oleæus, D.)

HISTORY AND SYNONYMES.—This liquid is commonly termed heavy oil of wine, or simply oil of wine. Dumas¹ says it was known to Paracelsus, who designated it sweet oil of vitriol. Modern writers have given it various appellations founded on its supposed composition. Thus according to Mr. Hennell² it is a sulphate of hydrocarbon,—Dumas³ calls it sulphatic ether,—others a double sulphate of ether and hydrocarbon,—while Liebig⁴ terms it sulphate of oxide of ethyl and etherole ⁵.

PREPARATION.—The following directions for procuring it are given in the London Pharmacopœia:—

"Take of Rectified Spirit, lb. ij.; Sulphuric Acid, lb. iv.; Solution of Potash, Distilled Water, of each f 3ij.; or as much as may be sufficient. Mix the ingredients cautiously with the spirit. Let the liquor distil until a black froth arises; then immediately remove the retort from the fire. Separate the lighter superfluous liquor from the heavier one, and expose the former to the air for a day. Add to it the solution of potash first mixed with water, and shake them together. Lastly, when sufficiently washed, separate the ethereal oil which subsides."

The Dublin College gives the following directions for its preparation:—"Take what remains in the retort after the distillation of sulphuric ether. Distil down to one half, with a moderate heat."

The process of the London Pharmacopœia is that followed at Apothecaries' Hall, London. Mr. Hennell informs me that 88 lbs. avoid. of Rectified Spirit, and 64 lbs. avoid. of Oil of Vitriol, yielded in one operation 17 ounces of oil of wine. There is therefore, an immense loss in the operation.

THEORY OF THE PROCESS.—When oil of vitriol and alcohol are mixed, bisulphate of oxide of ethene (C₄H₅O₂SO₃) and water are formed (see p. 370). Under the influence of heat the bisulphate suffers decomposition; but the reactions vary with the temperature. When the sulphuric acid is greatly in excess, and the boiling point of the liquid has attained 320° F., the principal products of the decomposition are sulphurous acid, olefiant gas (carbo-hydrogen), water, and carbon (see p. 371). At this period of the process heavy oil of wine is also produced in small quantity. Its formation may be accounted for by supposing that two equivalents of the bisulphate of oxide of ethene and water react on one another, and that the carbon hydrogen (C₄H₄ = 1 eq. Etherole) of the one is substituted for the water of the other; the products being heavy oil of wine (oleum Æthereum, Ph. L.) sulphuric acid, and water.

¹ Traité de Chimie, t. 2d, p. 543.
² Philosophical Transactions, 1826.
³ Op. supra cit.
⁵ The term etherole is applied to a 3 carb-hydrogen, better known as Light Oil of Wine.
ETHEREAL OIL.

Composition.

<table>
<thead>
<tr>
<th>Products</th>
<th>1 eq. Oil Ethereal</th>
<th>1 eq. Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>126</td>
<td>1 eq. Water</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Toluene</th>
<th>1 eq. Sulfate of Oxide Ethane</th>
<th>1 eq. Carb.</th>
<th>4 eq. Ethyl Alcohol</th>
<th>4 eq. Ether</th>
<th>1 eq. Ether Alcohol</th>
<th>1 eq. Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>226</td>
<td>1 eq. Oxygen</td>
<td>1 eq. Hydr.</td>
<td>8 eq. Water</td>
<td>9</td>
<td>2 eq. Water</td>
<td>1 eq. Sulphur Acid</td>
</tr>
<tr>
<td>292</td>
<td>1 eq. Water</td>
<td>9</td>
<td>2 eq. Sulphur Acid</td>
<td>80</td>
<td>2 eq. Water</td>
<td>Acid 80</td>
</tr>
</tbody>
</table>

Substance termed by Liebig, Etherole (C4H10) is commonly denominated Oil of Wine. It was discovered by Hennell, who calls it Hydrocarbon from Wine, because it is obtained by boiling the heavy oil of wine with water. Colourless, oily liquid, of sp. gr. 0.917 to 0.920. When kept for some time at a lower temperature it deposits a crystalline matter called Etherine or Oil of Wine (C4H10), which is isomeric with etherole.

Properties. — Etherole is an oily liquid, usually having a fishy tint, though when quite pure it is said to be colourless. It has a peculiar aromatic odour, and a bitter taste. Its sp. gr., accord- ing to Mr. Hennell, is 1.05; but according to Serullas it is 1.13. It boils at 540° F. It is insoluble in water, but dissolves readily in alcohol and ether. It neither reddens litmus nor precipitates a solution of chloride of barium, so that the sulphuric acid contained in it can be completely neutralized. According to Mr. Hennell it dissolves a variable quantity of a 4 carbo-hydrogen, which separates in a crystalline form (etherine) when the oil is kept for some time, or when exposed to cold.

When etherole is slightly heated with water it yields a light oil (etherole), which floats on water, and bisulphate of oxide of alcohol, which is dissolved by the water.

Characteristics. — Etherole is recognised by its oily appearance, peculiar odour and taste, its slight solubility in, but greater specific gravity than, water, and its solubility in ether and alcohol. If it be put in a test tube it yields an inflammable vapour which burns with an effeminate gas, and a carbonaceous residue which contains sulphuric acid is proved by fusing with water, and testing by chlorine. Etherole, added to a solution of chloride of barium, gives no cloudiness; but, if we evaporate the mixture to dryness, a residue is found to contain sulphate of baryta.

Properties. — Three chemists have analysed etherole, namely, Hennell, Serullas, and Liebig. The results of two only of these analyses, those of Liebig and Serullas,

Liebig and Serullas.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid</td>
<td>2</td>
<td>80</td>
<td>55.173</td>
</tr>
<tr>
<td>Etherol</td>
<td>8</td>
<td>48</td>
<td>53.103</td>
</tr>
<tr>
<td>Ph.L.</td>
<td>9</td>
<td>9</td>
<td>6.207</td>
</tr>
<tr>
<td>Etherol</td>
<td>1</td>
<td>8</td>
<td>3.517</td>
</tr>
<tr>
<td>Etherol (Ph.L)</td>
<td>1</td>
<td>145</td>
<td>99.299</td>
</tr>
</tbody>
</table>

Hennell.

Philosophical Transactions, 1826, p. 217 and 218.
holding in solution carbohydrogen (etherine), and that he omitted to take into
calculation the elements of water which this oil contains.

According to Serullas and Liebig this oil is a double sulphate of
oxide of ethule (ether) and ethereal (carbohydrogen).

\[
\begin{array}{ccc}
\text{Atoms.} & \text{Eq. Wt.} & \text{Or.} & \text{Atoms.} & \text{Eq. Wt.} \\
\text{2 eq. Sulphric Acid} & 2 & 80 & \text{Sulphate of Oxide of Ethule (Ether)} & 1 & 77 \\
\text{1 eq. Oxide of Ethule (Ether)} & 1 & 37 & \text{Sulphate of Etherole (Carbon-} & 1 & 68 \\
\text{1 eq. Etherole (Carbohydrogen)} & 1 & 28 & \text{hydrogen)} & & \text{1 & 48} \\
\text{1 Sulphate of Oxide of Ethule} & 1 & 145 & \text{and Etherole.} & & \text{1 & 148}
\end{array}
\]

Dumas, however, regards it as true sulphatic ether \((SO_2, C\text{H}_4\text{H}_6\text{O})\),
holding in solution variable quantities of carbohydrogen.

Physiological Effects.—These have not been determined. I gave
fifteen drops to a small rabbit; death took place within an hour.
The symptoms were indisposition to move, apparent tendency to sleep,
followed by incapability of supporting the erect position, occasional
convulsive movements, grating of the teeth, and insensibility. The
body was opened immediately after death: the heart was still beating,
and its right cavities were gorged with purple blood. Etherial oil,
therefore, acts on the nervous system in a somewhat analogous way
to ether.

Uses.—Etherial oil is used in the manufacture of the *Spiritus
Ætheris Sulphurici Compositus* of the Pharmacopeia (see p. 377).

“Dr. Hare,” in his *Chemical Compendium*, reports the opinion of
Drs. Physick and Dewees in favour of the efficacy of the officinal oil
of wine, dissolved in alcohol, in certain disturbed states of the system
as a tranquillizing and anodyne remedy.”

4. **SPIRITUS ÆTERIS NITRICI, L. E.—SPIRIT OF NITRIC
ETHER, OR SWEET SPIRIT OF NITRE.**

(*Spiritus Ætheris Nitrous, D.—Hyponitrous Ether, with four volumes
of Rectified Spirit, E.)

History.—The first traces of this preparation are to be found in the
writings of Raymond Lully, in the 18th century. Basil Valentine
in the 15th century, taught a much improved method of preparing it.
Nitric ether was first mentioned by Künkel, in 1681.

Spirit of nitric ether has been known by various names, such as
Dulcified Acid of Nitre (Acidum Nitri dulcificatum), Sweet Spirit of
Nitre (Spiritus Nitri dulcis), Spirit of Nitrous Ether (Spiritus Ætheris
Nitrosi), and Nitre Drops.

Preparation.—It is usually prepared by the action of nitric acid
on rectified spirit at one operation, as in the process of the *London
College*, which is that employed at Apothecaries’ Hall, London. Or

* United States Dispensatory.
* Dulk, *Die Preussische Pharmacopoe über, und erläutert, 2te Th. S. 704, 2te Aufl.* Leipzig, 1830.
* Ibid.
of water, and it is surrounded by cold water. The second aper-
f is connected, by means of a long wide tube, with a c oo l i n g apparatus or condenser. The starch and nitric acid eated in the water-bath; pure hyponitrates is disengaged, passing through the alcohol, instantly combines with the forming hyponitrates of oxide of ethule, which distils in a con-
as stream. This process is very productive. By means of the new ether is purified from alcohol, and by standing over de of calcium it is freed from water. The tube which connects stort with the two-necked bottle must have a length of two or feet, and must be surrounded with moist paper during the di-
on. If the alcohol be not carefully cooled, it becomes spone-
sly hot, and boils violently. From this moment the hyponitrates is no longer pure."

process of the Edinburgh College for the preparation of hyponitrates ether follows:—Take of Rectified Spirit, Oj. and $\frac{1}{3}vij$. Put fifteen fluidounces of the spirit, with a little clean into a two-pint matress, fitted with a cork, through which are passed a tube, terminating an inch above the spirit, and another tube leading to zeratory. The safety-tube being filled with pure nitric acid, add through it lily three fluidounces and a half of the acid. When the ebullition which arises is nearly over, add the rest of the acid gradually, half a fluidounce ne, waiting till the ebullition caused by each portion is nearly over before more, and cooling the refrigeratory with a stream of water, iced in the r. The ether thus distilled over being received in a bottle, is to be si first with a little milk of lime, till it ceases to redden litmus paper, and ith half its volume of concentrated solution of muriate of lime. The pure tious ether thus obtained should have a density of 0·899.

process of the Dublin College is as follows:—Take of Nitrate of Potash, d. dried, and coarsely powder, lb. iss.; Sulphuric Acid, lb. j.; Rectified $\frac{1}{8}xix$. Put the nitrate of potash into a tubulated retort placed in a bath water, and pour on it by degrees and at intervals, the sulphuric acid and rit, previously mixed and cooled after their mixture. Without almost any al heat, or at most a very gentle one (as of warm water added to the bath), ceral liquor will begin to distil without the application of fire; in a short e heat in the retort will increase spontaneously, and a considerable ebull will take place, which must be moderated by reducing the temperature of th with cold water. The receiver must also be kept cold with water or and furnished with a proper apparatus for transmitting the highly elastic (bursting from the mixture with great violence if the heat be too much ed) through a pound of rectified spirit contained in a cool phial. The

* Turner's Elements of Chemistry, 7th edit. p. 818.
etheral liquor thus spontaneously distilled, is to be received into a phial with a ground-glass stopper, and there must be added by degrees (closing the phial after each addition) as much very dry and powdered carbonate of potash as will suffice to saturate the excess of acid, using litmus as a test: this is effected by the addition of about a dram of the salt. In a short time the nitrous ether will rise to the surface, and is to be separated by means of a funnel.

If the ether be required very pure, distil it again to one half, from a water-bath at a temperature of 140°. Its specific gravity is, to that of distilled water, 0.900 to 1.000.

The theory of Liebig's process for making hyponitrous ether is simple. Starch deoxidizes nitric acid and evolves hyponitrous acid [the nitrous acid of Graham and continental chemists]. This being conveyed into alcohol, combines with the oxide of ethylene of the latter, and disengages the water.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Hyponitrous Acid</td>
<td>58</td>
</tr>
<tr>
<td>2 eq. Alcohol</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hyponitrous ether is, however, usually prepared by the action of nitric acid on alcohol; as in the Edinburgh and Dublin processes. The reactions are then more complicated, but vary with the strength of the acid and the temperature. They essentially depend on the deoxidation of the nitric acid by the hydrogen and carbon of the ethyle of part of the alcohol. As hydrogen has more affinity for carbon than for oxygen, it follows that in the earlier stages, and when the action is moderate, it is the hydrogen of the ethyl which is oxidized by the oxygen of the nitric acid. Thus, when we employ a dilute acid, or moderate the reaction by cold, the products are aldehyde (hydrated oxide of acetate *) water, and hyponitrous ether.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Alcohol</td>
<td>46</td>
<td>1 eq. Oxide Ethale</td>
</tr>
<tr>
<td>1 eq. Nitric Acid</td>
<td>54</td>
<td>1 eq. Oxide Ethale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 eq. Hydr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 eq. Ethale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 eq. Carbon</td>
</tr>
<tr>
<td>2 eq. Alcohol</td>
<td>46</td>
<td>1 eq. Oxygen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 eq. Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>146</td>
</tr>
</tbody>
</table>

When, however, the reaction is more energetic, as when strong nitric acid is employed, and the temperature is not moderated, the carbides as well as the hydrogen of the ethyle is oxidised by the oxygen of the acid, and several products, besides those above mentioned, are thus obtained. Carbonic (C O2) and oxalic (C2 O3) acids are formed by the oxidation of the carbon. Acetic (C4 H3 O3) and formic (C2 H2 O1) acids are also generated; besides acetate and formate of ethyl (Liebig). By the deoxidation of nitric acid there are obtained, besides hyponitrous acid already mentioned, nitrates, oxygen, oxides of nitrogen, protoxide of nitrogen and nitrogen (Thenard).

* Acetate, and the oxide of acetate, are hypothetical substances. Aldehyde is regarded as the hydrate of the hypothetical oxide of acetone.

Preparation of Spiritus Ætheris Nitrici.—The processes of all the Colleges differ from each other.

London College orders of Rectified Spirit, libij. ; Nitric Acid, xiv. Add gradually to the Spirit, and mix; then let 32 fluidounces distil.

Edinburgh College directs the pure hyponitrous ether (obtained by the above detailed) to be mixed with the remainder (i.e. fxxx.) of the rectified, or exactly four times its volume. Spirit of nitric ether ought not to t long, as it always undergoes decomposition, and becomes at length, strongly acid. Its density, by this process, is 0·847.

Directions of the Dublin College are as follows:—Add to the matter which a after the distillation of nitrous ether, the rectified spirit employed in operation for condensing the elastic vapour, and distil till the residuum be the greater heat of a warm bath. Mix the distilled liquor with the e liquor which remains after the separation of the nitrous ether, and add, as much well-dried carbonate of potash as shall be sufficient to saturate the predominant acid. This is made evident by the test of litmus. Lastly, as long as any drops come over by the medium heat of a warm bath. The f of this liquor is to that of distilled water as 0·850 to 1000. Nitrous spirit may also be prepared by adding two ounces of nitric acid to a measure of rectified spirit, and distilling twelve ounces with a proper t and the application of a gentle heat.

Apothecaries' Hall, London, this preparation is made in an enameware still, with a condensing worm of the same material. The still is heated by the slow application of steam to its outer e.

The theory of the process is essentially the same as that for preparing pure hyponitrous ether. The latter, when formed, distils over with rectified spirit, and constitutes the spiritus ætheris nitrici, Ph. L.

Properties of Hyponitrous Ether.—Pure hyponitrous ether, red by Liebig's process, is pale yellow, has a most fragrant smell of nes and Hungary wines, boils at 62°, and has the sp. gr. of 0·9475. It may be mixed with an alcoholic solution of potash without being brown (showing the absence of aldehyd): hyponitrite of a and alcohol are formed. Impure hyponitrous ether, prepared by ordinary processes, boils at 70° F., and has the sp. gr. 0·886. Its smell is like that of the former, but at the same time suf ring. Mixed with an alcoholic solution of potash it becomes dark (showing the presence of aldehyd), with the production of aldehyd. It is highly inflammable, burning with a bright . When kept it becomes acid, while nitric oxide gas is given off. Tendency to become acid is greater when air is admitted, and on the presence of aldehyd, which is oxidised by the oxygen of air, or of the hyponitrous acid. It is soluble in 48 parts of 1 and miscible, in all proportions, with ether and alcohol (Liebig). Following is the composition of the pure hyponitrous ether:—

 Ionic Bird (Lond. and Edinb. Phil. Mag. 1839, vol. xiv. p. 254) says, that while the ether mixed with alcohol only, oxalyllic [oxallic] acid (C2H2O4), but no oxalic acid is formed. states, that aldehyd is generated, but does not appear in the distilled liquid until the forma other has nearly or entirely ceased; the aldehyd and oxalic acid being nearly of simultaneou
of the Elements of Materia Medica.

<table>
<thead>
<tr>
<th>Atoms Eq. Wt.</th>
<th>Theory</th>
<th>Boullay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Oxygen</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atoms Eq. Wt.</th>
<th>Peroct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypnitrin Acid</td>
<td>1</td>
</tr>
<tr>
<td>Oxide of Ethane</td>
<td>1</td>
</tr>
</tbody>
</table>

Hypnitrin Ether 1 : 75 : 100/00 : 100/00
Hypnitrin of Oxide of Ethane : 73 : 100/00

B. Of Spiritus Ætheris Nitrici.—Spirit of nitric ether is a colourless, limpid liquor, having a fragrant ethereal odour, somewhat analogous to that of ripe apples, and a pungent, aromatic, sweetish acidulous taste. Prepared according to the London Pharmacopoeia its sp. gr. should not exceed 0.834; but the preparation of the Edinburgh Pharmacopoeia has a sp. gr. of 0.847. It is very volatile, producing much cold by its evaporation. It is very inflammable, and burns with a whitish flame. By keeping it usually becomes strongly acid; though I have had some kept for several years which possessed only slight acidity. It dissolves in alcohol and water in all proportions. "Hypnitrin ether may be separated from the alcohol, water, and uncombined acid, which the preparation of the pharmacopoeia contains, by digesting lime reduced to powder in it, and subjecting the mixture to distillation."

Characteristics.—It is principally distinguished by its peculiar odour, its inflammability, its lightness, and its miscibility with water. The spirit of nitric ether of the shops usually strikes a deep olive colour with the protosulphate of iron, thereby indicating the presence of binoxide or an acid of nitrogen; and produces, with tincture of guaiacum, a blue tint, which passes through various shades of green: this last effect depends on the presence of an acid of nitrogen. These effects are not invariably produced; for in some spirit of nitric ether which I have had for several years they do not take place.

Composition.—Spirit of nitric ether is a mixture of [impure] hypnitrin ether and rectified spirit. Prepared according to the Edinburgh Pharmacopoeia, its composition is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypnitrin Ether</td>
<td>1</td>
<td>0.888</td>
</tr>
<tr>
<td>Rectified Spirit</td>
<td>4</td>
<td>0.888</td>
</tr>
<tr>
<td>Spiritus Ætheris Nitrici, Ph. Ed.</td>
<td>5</td>
<td>0.847</td>
</tr>
</tbody>
</table>

Purity.—Few articles of the pharmacopia are more extensively adulterated than spirit of nitric ether. To prove how great a fraud must be practised with it, I may mention that, in July, 1840, Mr. Hennell informed me, that it was then selling in the trade at a price which was but just above that of the duty on the spirit used in manufacturing the genuine article. Wholesale dealers usually keep two, or even three, qualities of this preparation: the inferior ones being obtained by diluting the best with different quantities of water, or spirit of wine and water. Some years since large quantities of spirit of

the, flavoured with hypnotious ether, were imported from Ireland to London, under the name of spirit of nitric ether, in order to evade the duty payable on it as spirit of wine. Aldehyde and an acid nitrogen are accidental impurities frequently present. The goodness of Spirit of Nitric Ether is to be estimated in part by an attentive examination of the flavour, and by taking the specific gravity of this liquid. Prepared according to the process of the London Pharmacopoeia, its density is 0.834. A free acid (an acid of rogen) may be recognised by limnus, and by the effervescence produced on the addition of the alkaline carbonates. The Edinburgh Lege gives the following characteristics of the purity of spirit of nitric ether:—

Density, 0.847: it effervesces feebly, or not at all, with a solution of bicarbonate of potash. When agitated with twice its volume of muriate of lime, 12 cent. of ether slowly separates."

Two samples of spirit of nitric ether, prepared by Messrs. Howard & Co. of Stratford, I found to be 47.8 over proof, according to the hydrometer, indicating the sp. gr. to be about 0.85. But I led to separate the hypnotious ether by the use of a solution of carbonate of lime, as directed by the Edinburgh College.

Physiological Effects. a. On Vegetables.—Its effects on plants have not been ascertained.

3. On Animals.—I am not acquainted with any experiments made to determine its effects on animals generally. Veterinarians employ it as a diuretic on various occasions, and as a stimulant in the advanced stages of fever to rouse the exhausted powers of horses."

y. On Man.—The inhalation of its vapour is dangerous when too long continued, as is proved by the following case. A druggist’s aid-servant was found one morning dead in her bed, and death evidently arisen from the air of her apartment having been accidentally loaded with the vapour of this liquid from the breaking of three-gallon jar of it. She was found lying on her side, with her arms folded across the chest, the countenance and posture composed, the whole appearance like a person in a deep sleep. Taken internally in moderate doses it operates as a volatile stimulant and retic. According to the experiments of Alexander it acts mildly on the kidneys. It is believed to possess diaphoretic properties. Some pharmacologists it is described as being refrigerant,—a quality which it owes perhaps to the free acid which it usually contains. I am unacquainted with the effects of large doses, but they are probably analogous to, though less energetic than, those of other cereals.
Probably these effects arose from the preparation containing a considerable quantity of free acid.

Uses.—It is employed as a diuretic in some disorders of children and in mild dropsical complaints, as in the anasarca which follows scarlatina. It is given in conjunction with squills, acetate or nitrate of potash, or foxglove. As a refrigerant and diaphoretic, it is used in febrile complaints in combination with the acetate of ammonia and emetic tartar. As a carminative it is frequently useful in relieving flatulence and allaying nausea. On account of its volatility it may be applied to produce cold by its evaporation. Spirit dealers employ it as a flavouring ingredient.

Administration.—The usual dose of this liquid in febrile cases is f 3ss. to f 1/2ij or f 3/4ij. When we wish it to act as a diuretic, it should be given in large doses, as two or three tea-spoonfuls.

Antidotes.—In poisoning by the inhalation of the vapour of this compound, the treatment will be the same as that described for poisoning by carbonic acid gas.

5. Æther Hydrochlorïricus.—Hydrochloric Ether.

History and Synonymes.—In the Edinburgh Pharmacopoeia for 1785, was a preparation called Spiritus Satis dulcis. It was a solution of Hydrochloric Ether in rectified spirit. Very little, however, was known of the properties of this ether till Gehlen published a dissertation on the subject, in 1804. This ether has had various appellations, such as Chlorhydric Ether, Muriatic Ether, Marine Ether, and, hypothetically, Chloride of Ethule.

Preparation.—It is best obtained by saturating alcohol with hydrochloric acid gas (see p. 274), and distilling, by means of a water-bath, into a carefully cooled receiver.

By the reaction of one equivalent or 37 parts of hydrochloric acid (Chl. H) on two equivalents or 46 parts of alcohol (C H O + HO), we obtain one equivalent or 65 parts of hydrochloric ether (C H Cl), and two equivalents or 18 parts of water (2 HO).

Properties.—Hydrochloric ether is a colourless liquid, having a penetrating odour, and a taste somewhat sweetish. Its sp. gr. is 0.874 at 40° F. It boils at 51° F. This great volatility prevents its being kept in the shops. When pure it is quite neutral, dissolves in about 24 parts of water, does not precipitate nitrate of silver, and burns with a flame edged with green, producing vapours of hydrochloric acid. By the slow action of hydrate of potash on its chloride of potassium and alcohol are formed.

Its composition is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>1</td>
<td>24</td>
<td>36.9%</td>
<td>Ethule</td>
<td>1</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>2</td>
<td>5</td>
<td>7.49%</td>
<td>Chlorine</td>
<td>1</td>
</tr>
<tr>
<td>Chlorine</td>
<td>1</td>
<td>35</td>
<td>55.98%</td>
<td>Ethule Chloride</td>
<td>1</td>
</tr>
</tbody>
</table>

ACETIC ETHER.

387

BIOLOGICAL EFFECTS AND USES.—It is a highly diffusible spirit, like the other ethers, but is rarely employed alone; though been used as an antispasmodic.

ÆTHERIS HYDROCHLORICI: Æther Muriaticus Alcoholispiritus Muriatico-Æthereus; Spiritus Sulis dulcis; Spirit of chloride Ether; Spirit of Muriatic Ether; Dulcified Marine.

In the Edinburgh Pharmacopœia for 1735, this was ordered prepared by adding one part of muriatic acid to three parts of alcohol, digesting for some days, and then distilling by a sand. Or it may be prepared by dissolving hydrochloric ether in a volume of rectified spirit. Liebig says, that the spiritus muri-thercus, used on the continent, contains heavy muriatic ether, composition of which is not known. The action of spirit of muri ther seems to be similar to that of spirit of nitric ether. A ounce injected into the veins of a buck augmented the renal

An ounce and a half injected into the jugular vein of a dog agulated the blood, caused difficulty of breathing, and death.

been used in dyspeptic affections, connected with hepatic actions. In hectic fever, Berends ° found its continued use fatal. The dose of it is 3 to 5.

6. ÆTHER ACETICUS.—ACETIC ETHER.

2.

ORY.—It was discovered by Count de Lauroguais, in 1759.

PARATION.—It is prepared by submitting to distillation a mixture of 16 parts of dry acetate of lead, 4 1/2 of alcohol, and 6 of oil of vitriol, 10 parts of crystallized acetate of soda, 15 of oil of vitriol, of alcohol, at 80 or 85 per cent. The product is rectified with lime and chloride of calcium, to remove acid and water; and tivity of acetic ether, equal in weight to the alcohol, is obtained.

PROPERTIES.—Acetic ether is colourless, and has an agreeable of acetic acid and ether. Its sp. gr. is 0.89 at 60°. It boils 8.

It is soluble in 7 parts of water, and mixes with alcohol in every proportion. Oil of vitriol resolves it into ether and acid.

POSITION.—The composition of this ether is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88</td>
<td>100/00</td>
<td>1</td>
</tr>
</tbody>
</table>

ACETATE OF THE OXIDE OF ETHYL.

ETHYL ACID.

BIOLOGICAL EFFECTS AND USES.—Acetic ether is not used medicinally in this country. On the continent, however, it is occasionally employed. It is somewhat similar in its operation to the ethers; but is milder, more agreeable, and more diaphoretic.
It is used in nervous and putrid fevers, in cardialgia, spasm, vomiting, and asthenic affections of the stomach and alimentary canal. Dose, 1 ss. to 3 ss.

7. ACIDUM ACETICUM, L. E. D.—ACETIC ACID.

HISTORY.—Vinegar must have been known from the most remote periods of antiquity. It is mentioned, by Moses, 1490 years before Christ. Hippocrates employed it (σίκων) medicinally. Hannibal, passage over the Alps, is said to have softened the rocks by fire vinegar. Geber was acquainted with the purification of vinegar by distillation. Stahl, in 1729, obtained concentrated acetic acid by distillation of the acetates by the action of sulphuric acid.

NATURAL HISTORY.—Acetic acid is peculiar to the organic kingdom.

Acetic acid, free, or combined with potash, lime, or ammonia, is met with in the juices of many plants. Thus, Vauquelin found the acetates of potash and lime in the sap of the Elm; and Morin detected acetate of ammonia in the bark of Areca Catechu. Many vegetable substances yield it by decomposition. Acetic acid is said to have been detected in the gastric juice, the perspiration, the urine, the milk, and the blood. It is probable, however, that in most, if not all, of these cases, lactic acid was mistaken for acetic acid.

Gmelin says, acetic acid has been found in some mineral waters. If the observation be correct, the acid is probably to be referred to some decomposing organic matter accidentally present in the water. Geiger states, that acetate of potash is found in some mineral waters.

PREPARATION.—The acetic acid of commerce is obtained from various sources—vinegar and pyrogallic acid: the first is procured by distillation of wood, exciting the acetic fermentation in certain liquors, the other by distillation of wood.

1. ACETOUS FERMENTATION.—All liquids which are susceptible of acetic fermentation may be made to yield vinegar. A solution of saccharic matter (or some substance capable of producing sugar) is the essential ingredient. It is converted, by fermentation, first into alcohol, and subsequently into acetic acid.

The liquids employed in the manufacture of vinegar vary according to circumstances. In this country the vinegar of commerce is obtained from an infusion of malt, or of a mixture of malt and barley. In wine countries it is procured from inferior wines. In this enterprise, spirit, beer, a solution of sugar, and other liquids, are also susceptible of the acetic fermentation.

1. Malt Vinegar (Acethum, L.; Acetum Britannicum, or British Vinegar, E.)—This is prepared from malt, or a mixture of...
barley, which is mashed with hot water, as in the operation of brewing. The cooled wort is then transferred to a fermenting tun, where it is mixed with yeast, and undergoes fermentation. The wash is then introduced into barrels endways, tied over with a coarse cloth, and placed close to darkened chambers, artificially heated by a stove. Here it remains until the acetic fermentation is complete. This usually occupies several weeks, or even months. The proof is not yet fit for sale. It is introduced into large tuns furnished with bottoms, on which is placed rape (the residuary fruit which is used for making domestic wines). These rape-tuns are worked; one of them is quite filled with the vinegar from the first and the other only three-quarters full, so that the fermentation excited more easily in the latter than the former, and every portion of the vinegar is conveyed from one to the other, till it is completely finished, and fit for sale. Green twigs, ortings of the vine, recommended by Boerhaave, are employed, instead of rape, to flavour vinegar. Acetification was effected by placing the wash in barrels, 7-holes of which were loosely covered with tiles. These were then exposed to the sun and air for several months, acetification was perfect. But the introduction of stoved vats has nearly superseded this method.

Vinegar has a yellowish red colour, an agreeable acid taste, owes to acetic and partly to sulphuric acid, and a peculiar, g, pleasant odour, which it derives from acetic acid and her. Vinegar of four different degrees of strength are soldakers, and are distinguished as Nos. 18, 20, 22, and 24: the rich is the strongest, is also called proof vinegar, and is 1 to contain 5 per cent. of real acetic acid; but, according hillips, it does not usually contain more than 4.6 per cent. ounce (= 446 grs.) of the latter strength should saturate by 58 grs. of crystallized carbonate of soda. In the London opoea it is stated that one fluidounce should saturate 60 grs. lized carbonate of soda: the two grains extra being 1 for saturating the sulphuric acid permitted to be mixed with and for decomposing the sulphates of the water used in making. The Edinburgh College fixes the density of vinegar at from 1.006 to 1.012; but it is usually higher than 1. Phillips found it, in one sample obtained from a source, to be 1.019. Dr. T. Thomson found it to vary 1.35 to 1.0251. Vinegar is very liable to undergo decom-

under temperature is usually stated to be about 50° F.; but I suspect a much higher temperature. I found the heat of one of these chambers so great that I was unable to remain a few minutes. The proprietor of the establishment (one of the largest vinegar dealers in the metropolis) refused to allow me to inspect the thermometer hanging up in the shop. Information on this subject, consult Aikins’ Dictionary of Chemistry, vol. ii. p. 488. and Donovan’s Domestic Economy, vol. i. 1830, in Larmer’s Coloured Cyclopaedia. Phillips, Translation of the Pharmacopoeia, 4th ed. p. 91. Lond. 1841. Medical Gazette, N.S., vol. ii. for 1835-39, p. 687.
position: it becomes turbid, loses its acidity, acquires an unpleasant odour, and deposits a slippery gelatiniform substance. The mucilaginous coat or skin which forms on the surface of vinegar, and is called the mother of vinegar, appears to consist of myriads of exceedingly minute vegetables, having a globular form. The surface of vinegar is frequently covered by Mouldiness (Mucor Mucedo). The microscopic animals, called Vinegar Eels (Anquillata Aceti), are generated and nourished in vinegar. They may be destroyed by submitting the liquid in which they are contained to heat. Vinegar is also infested by a small fly (Musca cellaris).

Malt vinegar consists of water, acetic acid, acetic ether, colouring matter, a peculiar organic matter, commonly denominated mucilage, a small portion of alcohol and sulphuric acid. Vinegar makers are allowed to add one-thousandth part by weight of sulphuric acid. This may be detected by a solution of chloride of baryum, which forms a white precipitate (sulphate of baryta), insoluble in nitric acid. The quantity of sulphate of baryta thrown down from a fluidounce of vinegar, by the addition of a solution of chloride of baryum, should not exceed 114 grains (Ph. L). If the vinegar be free from copper, lead, tin, and other metallic matter, it yields no precipitate on the addition of hydrosulphuric acid (sulphuretted hydrogen). The presence of hydrochloric acid may be recognised by nitrate of silver, which produces a white precipitate (chloride of silver) with it, insoluble in nitric acid. The presence of nitric acid in vinegar may be recognised by boiling this liquid with indigo, which is rendered yellow by nitric acid. Or it may be detected by saturating the suspected acid with potash or soda, as evaporating to dryness: the residue deflagrates, when thrown on red hot coals, if nitric acid be present. In the London Pharmacopoeia the detection of nitric acid is directed to be effected by immersing a plate of silver in the suspected acid: if nitric acid be present, a solution of nitrate of silver will be obtained, which is recognised by a white precipitate (chloride of silver) caused by the subsequent addition of hydrochloric acid. Pepper, or other acrid substances, may be detected by neutralizing the vinegar with carbonate of soda, when their acrid taste becomes very obvious.

2. Wine Vinegar (Acetum Gallicum, or French Vinegar, E.; Acetum Vini, D.)—In wine countries, vinegar is obtained from interior wines. In France, wine vinegar is prepared in casks, which are placed in a stoved chamber, heated to between 68° and 77°. Each vat communicates with the air by two apertures. Every eight or ten days the liquor in the vats must be changed. Either red or white wine may be used, but the latter is generally employed.

* See some remarks on these animals by Professor Owen, in the Cyclopaedia of Anatomy & Physiology, vol. ii. p. 113. Lond. 1839.
* The Edinburgh College states, that "In four fluidounces [of British vinegar] complete power takes place with thirty minutes of Solution of Nitrate of Baryta," Ph. Ed. But Mr. F. (Lond. Med. Gaz. Aug. 2, 1830) has shown, that more than three times this quantity of nitrate is required.
Wine Vinegar is of two kinds, white and red, according as it is prepared from white or red wine. \textit{While wine vinegar} is usually prepared, as it keeps better. That which is made at Orleans is regarded the best. According to the Edinburgh Pharmacopoeia its density varies from 1.014 to 1.022. A sample of it, examined by Mr. Phillips, had a density of 1.016; and 100 minims of it saturated nearly 14 grains of crystallized carbonate of soda, while an equal quantity of glossy vinegar, exclusive of the sulphuric acid which it contains, saturated little more than 12 grains; consequently, the French is angrier than the English vinegar by nearly one-sixth.\footnote{London Medical Gazette, Aug. 3, 1839.}

The constituents of wine vinegar are very similar to those of malt vinegar. It contains a small quantity of bitartrate and sulphate of ash. Both these salts occasion precipitates with barytic solution; but that produced by the bitartrate is soluble in nitric acid.\footnote{Op. supra cit.} The Edinburgh College states that "Ammonia, in slight excess, gives a purplish muddiness, and slowly a purplish precipitate. Four fluidounces, complete precipitation takes place with 30 minims of Solution of Nitrate of Baryta," \textit{Ph. Ed.} But Mr. Phillips has shown that this quantity of nitrate is more than twice as much as is requisite.

3. \textit{Improved, German, or Quick Method of Vinegar-making.} — As tification is essentially the oxidation of alcohol, the German misters have contrived an improved method of effecting it, by which time necessary to the production of vinegar is greatly curtailed. consists in greatly enlarging the surface of the liquid exposed the air.

This is effected by causing a mixture of one part of alcohol at 80 per cent., four to six parts water, \(\frac{1}{4}\) to \(\frac{1}{2}\) of ferment, honey, or extract of malt, to trickle down through a mass of beech shavings steeped in vinegar, and contained in a vessel called a \textit{Vinegar Generator (Essigbildner)}, or \textit{Graduation Vessel}. It is an oak tub, narrower at the bottom than at the top, furnished with a loose lid or cover, below which is a perforated shelf (colander or false bottom), having a number of small holes loosely filled with packthread about six inches long, and prevented from falling through by a knot at the upper end. The shelf is also perforated with four open glass tubes, as air vents, each having their ends projecting above and below the shelf. The tub, at its lower part, is pierced with a horizontal row of eight equidistant round holes, to admit atmospheric air. One inch above the bottom is a siphon-formed discharge pipe, whose upper curvature stands one inch below the level of the air-holes in the side of the tub. The body of the tub being filled with beech chips, the alcoholic liquor (first heated between 75° F. and 83° F.) is placed on the shelf. It trickles slowly
through the holes by means of the packthreads, diffuses itself over the chips, slowly collects at the bottom of the tub, and then runs off by the syphon pipe. The air enters by the circumferential holes, circulates freely through the tub, and escapes by the glass tubes. As the oxygen is absorbed, the temperature of the liquid rises to 100° or 104° F., and remains stationary at that point while the action goes on favourably. The liquid requires to be passed three or four times through the cask before acetification is complete, which is in general effected in from twenty-four to thirty-six hours.

Theory of Acetification.—A remarkable distinction between the acetous and vinous fermentation is, that for the former to be perfectly established, the presence of atmospheric air (or of oxygen) is essential, while for the latter this is not necessary. During the acetous fermentation the alcohol is converted into acetic acid, by the absorption of atmospheric oxygen. Two equivalents or 46 parts of alcohol, with four equivalents or 32 parts of atmospheric oxygen, contain the elements of one equivalent or 51 parts of anhydrous acetic acid, and of three equivalents or 27 parts of water; or one equivalent or 60 parts of hydrous acetic acid, and two equivalents or 18 parts of water.

According to Liebig, however, the transformation of alcohol into acetic acid is not immediate and direct. The atmospheric oxygen first oxidizes part of its hydrogen, forming water and aldehyde; and the latter absorbing oxygen, is converted into acetic acid.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 eq. Atmospheric Oxygen = 22</td>
<td>2 eq. Oxygen = 16</td>
<td>2 eq. Water = 18</td>
</tr>
<tr>
<td>2 eq. Alcohol = 46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 eq. Hydrogen = 4</td>
<td>1 eq. Aldehyde = 4</td>
<td></td>
</tr>
<tr>
<td>3 eq. Carbon = 24</td>
<td>1 eq. Hydroxylum Aceticum 44</td>
<td></td>
</tr>
<tr>
<td>2 eq. Oxygen = 16</td>
<td>78</td>
<td>78</td>
</tr>
</tbody>
</table>

The student will observe that the theory of acetification above given does not account for the evolution of carbonic acid during the process, and which is generally considered to be accidental, and not essential to the formation of acetic acid.

2. By the Destructive Distillation of Wood.—By the destructive distillation of the hard woods (oak, beech, hornbeam, ash, and birch), in iron cylinders, an impure acid, called Pyroligneous Acid, is obtained. The woods should be dried during several months. The lighter woods, as fir, and old ship timber, do not pay to distil, as the acid product is too weak.

Sometimes the still is a cast-iron cylinder, placed horizontally in a furnace, the fire of which plays around the cylinder, as in fig. 64.

\(^1\) For further details consult Ure's Dictionary of Arts, pp. 4 and 617; Mitscherlich, Lehrbuch der Chemie, Bd. 1st, S. 549, 2nd Ed. Berlin, 1854; and Liebig, in Turner's Elements of Chemistry, p. 875, 7th ed.
Another form of still is used at a large manufactory in the neighbourhood of London. It is a short cylinder of large diameter, placed upright in the furnace. The wood, cut up into convenient lengths, is introduced into wrought-iron canisters, in each of which is a hole, to allow of the escape of volatile matters. By the aid of a crane, these canisters are raised and deposited in the cylindrical still, the top of which is then carefully closed and made air-tight by luting. The still communicates with a large iron pipe which passes successively through two tanks of cold water, in which it is variously convoluted, and terminates in an underground reservoir, where tar and an acid liquor are deposited. Condensable products are carbonic acid and some inflammable carbonic oxide, light carburetted hydrogen, and oleifant gas, escape. When no more volatile matter comes over, the still is closed, and the canisters being removed while still hot, the resins in them are carefully closed by damp sand, to exclude air. Tar obtained by the above process yields, on distillation, oil of a residuum called English asphalt, or pitch. Acid liquor, which rests on the tar in the reservoir, consists of oil, water, tar, and pyroxilic spirit. A light tarry matter floats on the top of it. By means of a pump, the acid liquor is introduced into a copper still, where it is subjected to distillation. The first runnings contain pyroxilic spirit. After this, a more diluted acetic acid, called pyroligneous acid, is obtained. The residue in the retort is English asphalt, or pitch. Pyroligneous acid thus obtained is mixed with cream of lime, mixture evaporated to dryness in shallow wrought-iron pans, forms a greyish mass, called pyrolignite of lime. If this be distilled with sulphuric acid, it yields an impure acetic acid which is used in the manufacture of acetate of lead, and for carbonate of lead by the Dutch process. Pyrolignite of lime be mixed with a solution of sulphate of soda, decomposition is effected, and sulphate of lime and acetate of the products. The latter is repeatedly crystallized until it is pure, and is then in a fit state for the manufacture of pure con acetic acid.

Oxalic Spirit; Pyroligneous Ether; Hydrate of Oxide of Methyle; of Methylene. Sometimes, but improperly, termed Naphtha. The first of the distillation of the acid liquor above referred to, are redistilled twice, and the product is sold under the name of pyroligneous ether. It is an impure liquor, containing, besides hydric ether of methyl alcohol, acetone inflammable liquor. It is employed by chemists as a substitute for spirit of naphtha, and by hatters and varnish-makers for dissolving substances. Drs. Babington and Rees have suggested its use for the
preservation of subjects for anatomical purposes. The spirit is to be injected into the aorta, the rectum, and the peritoneum. It was tried at the London Hospital, but the smell arising from the spirit was so intolerable, that, even if there were no other objections to its use, this alone would be fatal to it.

Pure pyroxilic spirit is obtained by introducing it into a retort with excess of chloride of calcium, and distilling the mixture by a water-bath, as long as volatile matter passes off. A quantity of water, equal to the spirit employed, is then added, and the distillation continued. The product is now pure pyroxilic spirit, carrying along with it a little water, which is removed by a second distillation with quicklime (Liebig).

Pure pyroxilic spirit is a very mobile, colourless, inflammable liquid, which has a peculiar odour, somewhat resembling that of alcohol and acetate ether. It boils at 150° F. It dissolves many resins, mixes with most essential oils, and forms crystalline compounds with baryta, lime, and chloride of calcium. Its composition is as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq.Wt.</th>
<th>Or.</th>
<th>Atoms</th>
<th>Eq.Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>2</td>
<td>12</td>
<td>Oxide of Methane</td>
<td>1</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>4</td>
<td>4</td>
<td>Water</td>
<td>1</td>
</tr>
<tr>
<td>Oxygen</td>
<td>2</td>
<td>16</td>
<td>Pyroxilic Spirit</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydrate of Oxide of Methane</td>
<td>1</td>
</tr>
</tbody>
</table>

Methane (C²H₈) is the hypothetical radical of pyroxilic spirit.

Oxide of Methane, or Methyllic Ether (C²H₈O) is a colourless gas.

The repeated use of small quantities of pyroxilic spirit caused colicky pain and acted as an anthelmintic.

2. Eblanin; Pyrosanthine; Pyroxilene.—This substance was obtained by Scanlan from raw pyroxilic spirit. It is a crystalline substance, of an orange colour. Oil of vitriol dissolves it, and assumes a reddish blue colour. Concentrated hydrochloric acid also dissolves it, and acquires an intense purple colour. Eblanin has the following composition:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq.Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>21</td>
<td>78.43</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>9</td>
<td>3.29</td>
</tr>
<tr>
<td>Oxygen</td>
<td>4</td>
<td>19.16</td>
</tr>
</tbody>
</table>

Eblanin

Preparation of Acetic Acid.—All the British colleges give directions for the preparation of a concentrated solution of acetic acid, which they simply term acetic acid.

The London College orders Acetate of Soda, 1b. ij.; Sulphuric Acid, 5 lb. Distilled Water, 13 oz. Add the sulphuric acid, first mixed with the water, the acetate of soda put into a glass retort, then let the acid distil in a sand-bath. Care is to be taken that the heat, towards the end, be not too much increased.

The Edinburgh College gives the following directions:—Take of Acetate Lead any convenient quantity; heat it gradually in a porcelain basin, by means of a bath of oil, or fusible metal (8 tin, 4 lead, 3 bismuth) to 330° F., and stir till the fused mass concretes again; pulverize this when cold, and heat the powder again to 330°, with frequent stirring, till the particles cease to adhere. Add six ounces of the powder to nine fluidrachms and a half of pure sulphuric acid, contained in a glass matras: attach a proper tube and refrigeratory at the distil from a fusible-metal-bath, with a heat of 330°, to complete drying. Agitate the distilled liquid with a grain of red oxide of lead to remove little sulphurous acid; allow the vessel to rest a few minutes, pour off the clear liquor, and redistil it. The density should be not above 1.065.

The directions of the Dublin College are as follows:—Take of Acetate of Potash, 100 parts, Sulphuric Acid, 52 parts. Put the acid into a tubular retort, then gradually, and at different intervals of time, add the Acetate of Potash, and let it distil, care being taken not to exceed 300°, and to keep the end of the retort cool; then cool the liquid, and add sufficient distilled water to make it a little thinner than vinegar, and it is fit for use.

"For further details, see Thomson's Chemistry of Organic Bodies, p. 751. Lond. 1839."
Potash, waiting, after each addition, until the mixture becomes cool. Lastly, with a moderate heat, distil the acid until the residuum is dry. The specific gravity of this acid is that of distilled water as 1.074 to 1.000.

The proportions of acetate of soda, sulphuric acid, and water, used by the London College, are nearly equal to one equivalent or 137 parts of crystallized acetate of soda, one equivalent or 49 parts of the strongest oil of vitriol (protohydrate of sulphuric acid), and six equivalents or 54 parts of water. The results of the distillation, on this calculation, will be the formation of one equivalent or 72 parts of anhydrous sulphate of soda, and the disengagement of one equivalent or 51 parts of anhydrous acetic acid, and thirteen equivalents or 117 parts of water.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Water</td>
<td>54</td>
<td>13 eq. Water</td>
</tr>
<tr>
<td>1 eq. Cryst. Acet. Soda</td>
<td>53</td>
<td>1 eq. Acetic Acid</td>
</tr>
<tr>
<td>1 eq. Oil Vitriol</td>
<td>40</td>
<td>1 eq. Sulphate Soda</td>
</tr>
<tr>
<td>240</td>
<td></td>
<td>240</td>
</tr>
</tbody>
</table>

The calculated results agree very closely with the actual products. The resulting acid consists of 51 real acetic acid and 114.58 water; so that 117—114.58 = 2.42 of water must remain in the retort with the sulphate of soda.

The Edinburgh College substitutes acetate of lead for acetate of soda. The salt is first dried to expel the water of crystallization, and the anhydrous salt thus obtained is subjected to distillation along with pure oil of vitriol, with the view, I presume, of obtaining glacial acetic acid. Hydrated acetic acid distils over, and sulphate of lead is left in the retort. To remove any sulphurous acid which may be formed, red oxide of lead is ordered to be added to the acetic acid, by which sulphate and sulphite of lead are formed, and the acetic acid is then to be redistilled.

The Dublin College employs acetate of potash to yield acetic acid. The reactions are similar to those of the London process.

The distillation of acetic acid is usually effected in glass or earthenware stills. On the large scale, silver condensers are sometimes used.

Properties.—Glacial Acetic Acid is the strongest acetic acid procurable. It crystallizes at 45° F. when we throw into it any particle of solid matter (a crystal of acetic acid answers best), and the thermometer plunged into it rises at the same time from 45° to 51°. These crystals are brilliant, broad flat plates, of a pearly lustre. They melt at a temperature somewhat below 60° F. The sp. gr. of the liquid at 60° is 1.08296.

The process of the Edinburgh Pharmacopoeia has been critically examined by Mr. R. Phillips (London Medical Gazette, N. S. vol. ii. for 1830-40, p. 271). It cannot be denied that several unnecessary refinements have been introduced into it, which render the operation troublesome, wasteful, and expensive. Such are the use of a bath of oil or fusible metal, the addition of red lead, and subsequent redistillation of the acid to get rid of a quantity of sulphurous acid, which, judging from the quantity of red oxide to be used, cannot exceed the 1/50th part of the product. Moreover, the whole process is objectionable on the ground that acid of this strength is not required for medicinal or pharmaceutical purposes.
When crystals of glacial acetic acid are dissolved in water we obtain a solution which, by way of distinction, we may denominate liquid acetic acid. The following table, drawn up by Dr. Thomson, shows the specific gravity of various atomic compounds of this acid and water:

\[
\begin{array}{ccc}
\text{Acid.} & \text{Water.} & \text{Sp. gr. at } 60^\circ \\
1 \text{ atom } & + 1 \text{ atom} & 1\cdot06296 \\
1 & + 2 & 1\cdot07060 \\
1 & + 3 & 1\cdot07084 \\
1 & + 4 & 1\cdot07132 \\
1 & + 5 & 1\cdot06820 \\
1 & + 6 & 1\cdot06708 \\
1 & + 7 & 1\cdot06349 \\
1 & + 8 & 1\cdot05974 \\
1 & + 9 & 1\cdot05794 \\
1 & + 10 & 1\cdot05439
\end{array}
\]

More recently Mohr\(^{\ast}\) has published the following table, exhibiting the sp. gr. of acetic acid of different strengths:

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Per Cent. of} & \text{Sp. Gr.} & \text{Per Cent. of} & \text{Sp. Gr.} & \text{Per Cent. of} & \text{Sp. Gr.} \\
\text{Glaacial Acid} & (\text{C}_4 \text{H}_6 \text{O}_7 + \text{aq.}) & \text{Glaacial Acid} & (\text{C}_4 \text{H}_6 \text{O}_7 + \text{aq.}) & \text{Glaacial Acid} & (\text{C}_4 \text{H}_6 \text{O}_7 + \text{aq.}) \\
\hline
100 & 1\cdot053 & 36 & 1\cdot069 & 42 & 1\cdot040 \\
99 & 1\cdot053 & 66 & 1\cdot068 & 43 & 1\cdot041 \\
98 & 1\cdot053 & 65 & 1\cdot068 & 44 & 1\cdot040 \\
97 & 1\cdot053 & 64 & 1\cdot068 & 45 & 1\cdot040 \\
96 & 1\cdot053 & 63 & 1\cdot068 & 46 & 1\cdot039 \\
95 & 1\cdot053 & 62 & 1\cdot068 & 47 & 1\cdot038 \\
94 & 1\cdot053 & 61 & 1\cdot067 & 48 & 1\cdot038 \\
93 & 1\cdot053 & 60 & 1\cdot067 & 49 & 1\cdot038 \\
92 & 1\cdot053 & 59 & 1\cdot066 & 50 & 1\cdot037 \\
91 & 1\cdot053 & 58 & 1\cdot066 & 51 & 1\cdot036 \\
90 & 1\cdot053 & 57 & 1\cdot066 & 52 & 1\cdot036 \\
89 & 1\cdot053 & 56 & 1\cdot066 & 53 & 1\cdot035 \\
88 & 1\cdot053 & 55 & 1\cdot066 & 54 & 1\cdot035 \\
87 & 1\cdot053 & 54 & 1\cdot065 & 55 & 1\cdot034 \\
86 & 1\cdot053 & 53 & 1\cdot065 & 56 & 1\cdot034 \\
85 & 1\cdot053 & 52 & 1\cdot065 & 57 & 1\cdot033 \\
84 & 1\cdot053 & 51 & 1\cdot064 & 58 & 1\cdot032 \\
83 & 1\cdot053 & 50 & 1\cdot064 & 59 & 1\cdot032 \\
82 & 1\cdot053 & 49 & 1\cdot064 & 60 & 1\cdot031 \\
81 & 1\cdot053 & 48 & 1\cdot063 & 61 & 1\cdot030 \\
80 & 1\cdot053 & 47 & 1\cdot063 & 62 & 1\cdot030 \\
79 & 1\cdot053 & 46 & 1\cdot062 & 63 & 1\cdot029 \\
78 & 1\cdot053 & 45 & 1\cdot062 & 64 & 1\cdot029 \\
77 & 1\cdot053 & 44 & 1\cdot061 & 65 & 1\cdot028 \\
76 & 1\cdot053 & 43 & 1\cdot061 & 66 & 1\cdot027 \\
75 & 1\cdot053 & 42 & 1\cdot060 & 67 & 1\cdot027 \\
74 & 1\cdot053 & 41 & 1\cdot060 & 68 & 1\cdot026 \\
73 & 1\cdot053 & 40 & 1\cdot060 & 69 & 1\cdot026 \\
72 & 1\cdot053 & 39 & 1\cdot059 & 70 & 1\cdot025 \\
71 & 1\cdot053 & 38 & 1\cdot059 & 71 & 1\cdot025 \\
70 & 1\cdot053 & 37 & 1\cdot058 & 72 & 1\cdot024 \\
69 & 1\cdot053 & 36 & 1\cdot058 & 73 & 1\cdot024 \\
68 & 1\cdot053 & 35 & 1\cdot057 & 74 & 1\cdot023 \\
67 & 1\cdot053 & 34 & 1\cdot057 & 75 & 1\cdot022 \\
66 & 1\cdot053 & 33 & 1\cdot056 & 76 & 1\cdot021 \\
65 & 1\cdot053 & 32 & 1\cdot056 & 77 & 1\cdot020 \\
\hline
\end{array}
\]

From these tables it is obvious that density is no criterion of the strength of liquid acetic acid.

The Acidum Aceticum of the Edinburgh Pharmacopoeia is stated in one part of that work (p. 44) to have a sp. gr. of not above 1\cdot068; in another (p. 2) to have a sp. gr. of not above 1\cdot068\(^{\ast}\); moreover, i

\(^{\ast}\) Pharmaceutisches Central-Blatt für 1833, S. 340-41.
the same work, the density of the acid is said to be increased by [the addition of] 20 per cent. of water. There are, however, some obvious mistakes in these statements.

The *Acidum Aceticum* of the London Pharmacopoeia has a sp. gr. of 1.048. One hundred grains of it are saturated by eighty-seven grains of crystals of carbonate of soda. Hence it contains 30.8 per cent. of real or anhydrous acetic acid. It is a limpid, colourless liquid, having a pungent but agreeable odour, and an acrid taste. It possesses the usual properties of an acid; such as reddening litmus, causing effervescence with the alkaline or earthy carbonates, and saturating bases. It is volatile, and by heat evolves an inflammable vapour.

Characteristics.—*Free acetic acid* is known by its peculiar odour and by its volatility. Its vapour reddens litmus, and fumes with ammonia. It does not occasion any precipitate with lime water, solutions of the barytic salts, or a solution of nitrate of silver. It forms with potash a very deliquescent salt. Concentrated acetic acid does not cause effervescence when marble is dropped into it, unless water be added.

The *neutral acetates* are all soluble, save those of molybdenum and tungsten. The acetates of silver and protoxide of mercury are slightly soluble. The acetates are known by the acetic odour which they emit on the addition of sulphuric acid, and by the white lamellar and pearly precipitates which many of them produce with the nitrate of silver and the protenticate of mercury. They redden solutions of the sesquisalts of iron (forming sesquiacetate of iron). All the acetates are decomposed by heat, and give results which vary somewhat according to the nature of the base. Some of the acetates, as those of potash, lead, and copper, evolve, when heated, an inflammable fluid, called acetone or pyro-acetic spirit, whose composition is C, H, O.

Composition.—Anhydrous or real acetic acid consists of carbon, hydrogen, and oxygen, in the following proportions:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>4</td>
<td>24</td>
<td>47.06</td>
<td>47.05</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3</td>
<td>3</td>
<td>5.88</td>
<td>5.88</td>
</tr>
<tr>
<td>Oxygen</td>
<td>3</td>
<td>24</td>
<td>47.06</td>
<td>47.07</td>
</tr>
</tbody>
</table>

Anhydrous Acetic Acid... 1 ... 51 ... 100-00 ... 100-00 ... 100-00

The *Acidum Aceticum* of the pharmacopoeias is a compound of Anhydrous or Real Acetic Acid and Water. Prepared according to the London Pharmacopoeia, 100 grs. of it contain 30.8 grs. of real acetic acid; or very nearly one equivalent of real acetic acid, and 18 equivalents of water.

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq.Wt.</th>
<th>Theory</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhydrous Acetic Acid</td>
<td>1</td>
<td>51</td>
<td>30.35</td>
</tr>
<tr>
<td>Water</td>
<td>13</td>
<td>117</td>
<td>69.63</td>
</tr>
<tr>
<td>Acidum Aceticum, Ph. L.</td>
<td>1</td>
<td>168</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Owing to the errors before alluded to in the statements of the Edinburgh College, it is impossible to estimate, correctly, the strength of the acid intended to be obtained by the process given in the Edinburgh Pharmacopoeia. If, however, the acid had a sp. gr. of 1·068, and 1 minim of it required 216 grs. of crystalline carbonate of soda to saturate it, as stated by the College, its per-centage quantity of acetic acid would be 78·65.

Acetometry.—The strength of acetic acid is best determined by ascertaining the quantity of alkaline carbonate which is required to saturate a given quantity of acid. Crystallized carbonate of soda or crystallized bicarbonate of potash, are salts of uniform constitution, and may be employed for this purpose. Every 144 grs. of crystallized carbonate of soda, or 101 grs. of crystallized bicarbonate of potash, are equal to 51 grs. of real acetic acid, or 60 grs. of glacial acetic acid. Marble or carbonate of lime is objectionable, since concentrated acetic acid will not decompose it without the addition of water.

I have already shown that specific gravity is no criterion of strength of the hydrated acid; since two acids of very unequal strength may have the same density. Moreover, the foreign matter (i.e. mucilage and alcohol) contained in vinegar, alter the density of this fluid, though they do not affect its acetometrical strength. The acetometrical method employed by the Excise is that recommended by Messrs. J. and P. Taylor, and consists in estimating the strength of the acid by the sp. gr. which it acquires when saturated by hydrate of lime. Acid, which contains 5 per cent. of real acetic acid, is equal in strength to the best malt vinegar, called by the makers No. 24, and is assumed as the standard of vinegar strength, under the denomination of proof vinegar. Acid, which contains 40 per cent. of real acetic acid, is, therefore, in the language of the revenue, 85 per cent. of proof: it is the strongest acid on which duty is charged by the Acetometer. Vinegars, which have not been distilled, contain mucilage, and require an allowance for the increase of weight from this cause. Hence in the Acetometer sold by Bate, a weight marked M is provided, and is used in trying such vinegars. As the hydrate of lime employed causes the precipitation of part of the mucilage matter in the vinegar, it serves to get rid of part of the difficulty above referred to.

Impurities.—The presence of sulphuric, hydrochloric, or nitric acid,—of metallic matter,—and of acid substances in acetic acid may be detected by the same methods as have already been pointed out for vinegar (see p. 390). Sulphurous acid is recognised by a white precipitate (sulphate of lead) produced on the addition of peroxide of lead. The presence of lead in acetic acid is known.

2 In Geo. 3, c. 65.
3 See Description of the Acetometer for determining the Strength of Acetic Acid made for Revenue of the United Kingdom, by R. B. Bate, 21, Poultry, London.
ACETIC ACID. 399

The yellow precipitate (iodide of lead) occasioned by the addition of dide of potassium.

Physiological Effects.—Before proceeding to notice the operations of acetic acid on vegetables and animals, it may be useful to point out such of its effects on dead organic matters as have reference to its influence on living beings. In the first place, it is a well-known and powerful antiseptic, and is employed, partly on this account, in the ordinary operation of pickling, and in the preservation of animal food, and of anatomical preparations. The impure acetic acid obtained in the distillation of wood, acts more efficaciously in this respect than the pure acid, on account of the creosote which it contains. Secondly, the action of acetic acid on albumen, fibrin, and blood-disks, deserves especial notice. Liquid albumen (as serum of blood and white of egg) is not coagulated by the ordinary acetic acid of the shops. Coagulated albumen is readily dissolved by it with the evolution of nitrogen, especially with the assistance of heat. Fibrin, as muscle or the cressamentum of the blood, also dissolve in it: the solution, by evaporation, yields a gelatiniform mass. Caseum is coagulated by it. It changes the form of the red particles of frog's blood, and dissolves part of the red colouring matter. It is an excellent solvent of gelatine. Diluted and mixed with mucus, it acts as a digestive fluid.

a. **On Vegetables.**—Distilled vinegar is ranked, by Achard, among vegetable poisons.

b. **On Animals generally.**—Concentrated acetic acid acts as a caustic poison to dogs. It causes blackening of the mucous lining of the stomach, analogous to that produced by sulphuric acid. Four or five ounces of common vinegar proved fatal to dogs in ten or fifteen hours, when vomiting was prevented by tying the oesophagus. Injected into the veins, vinegar does not appear to act energetically. Viborg threw two ounces and a half of wine vinegar into the jugular vein of a horse: the next day the animal was well. Analogous results have been obtained by Courten and Hertwich (quoted by Wibmer) and by Pommer.

The impure acetic acid obtained by the distillation of wood, has been usually regarded as possessing much more activity than pure acetic acid of the same strength, in consequence of the presence of empyreumatic oil. An extensive series of experiments have been made with it on amphibia, birds, and mammals, by Berres, Kerner, and Schubarth. From these it appears that pyrroligneous acid is a caustic poison; and that it destroys some of the lower animals, viz. amphibia, merely by contact with the external skin. Large doses affect the cerebro-spinal system, and cause giddiness, insensibility, paralysis, and convulsions. A very constant effect of it was an

1 Müller's Physiology, p. 105.
2 Müller, op. cit. p. 345.
3 De Candolle, Plante, Végét.
5 Ibid.
6 Wibmer, Die Wirkung der Arzneimittel. und Gifte, Bd. i. S. 11.
7 Christison, Treatise on Poisons.
affection of the windpipe and lungs. The acid was detected by its odour, in the blood and secretions.

γ. On Man.—In the concentrated state acetic acid is an irritation and corrosive poison (see p. 214). Its chemical influence depends principally on its power of dissolving fibrin, albumen, and germs as before mentioned, by which it is enabled to dissolve many animal tissues. Applied to the skin it acts as a rubefacient and vesicant (see p. 215). Only one fatal case of poisoning by internal use is known. The patient (a girl) appeared to be intoxicated, complained of acute pain, and was violently convulsed.

Swallowed in a very dilute form, and in moderate doses, it is refreshing, allays thirst, diminishes preternatural heat, lowers the pulse, and augments the urine. In its general effects, there appears to lower the powers of life and to prove antiphlogistic and agree in its operation with the diluted mineral acids (see pp. 193, 201, and 212). Its local operation is astringent. Used regularly it assists the digestive process, and is, therefore, taken as a condiment. It is in repute with young ladies for diminishing obesity. "Every one knows," says Giacomini, "that when it is internally taken, it produces leanness, from a sort of languor and digestive process." The following is a case, quoted by this author from Portal:

"A few years ago, a young lady, in easy circumstances, enjoyed good health. She was very plump, had a good appetite, and a complexion blooming with red cheeks and lilies. She began to look upon her plumpness with suspicion; for her husband was very fat, and she was afraid of becoming like her. Accordingly, she consulted a woman, who advised her to drink a small glass of vinegar daily: the lady followed her advice, and her plumpness diminished. She was delighted with the success of the remedy, and continued it for more than a month. She used to have a cough; but it was dry at its commencement, and was considered a slight cold, which would go off. Meantime, from dry it became moist; fever came on, and a difficulty of breathing; her body became lean, and away; night-sweats, swelling of the feet and of the legs, succeeded, and death terminated her life. On examination, all the lobes of the lungs were found with tubercles, and somewhat resembled a bunch of grapes."

It is said that the long-continued use of it, in full doses, will invert chronic diseases of the gastro-intestinal mucous membrane; and Gagni says, it has even given rise to scirrhous of the pylorus.

Vinegar may be taken in considerable quantity at one time without inconvenience. Dr. Christison knew a case in which eight gallons were swallowed without injury.

The vapour of strong acetic acid is very pungent and irritating. The long-continued inhalation of acetic vapours by the workmen employed at vinegar-works, is said by Sundelin to be injurious to the lungs, and to bring on chronic inflammation of these organs. Inquiry among the workmen of a large vinegar-manufactory, I first notion of the injurious influence of the vapour generally repudiated.

* Wibner, op. supra cit.
* Christison, Treatise on Poisons.
whether simple or eruptive, but especially in those varieties only denominated putrid and bilious, vinegar (more or less with water) is a most refreshing drink, allaying thirst, and thing excessive heat. In hemorrhages, as from the nose, stomach, or uterus, it is particularly beneficial by its refrigerative, and astringent qualities. It diminishes excessive action, and promotes contraction of the bleeding vessels. Local astringent, it is injected into the nose in epistaxis, and as a wash in profuse hemorrhoidal discharges. The benefit of the application of vinegar and water to the abdomen, and thighs, in uterine hemorrhages, arises principally from the produced. In phthisis pulmonalis, vinegar, diluted with is sometimes serviceable as a palliative, by its refrigerant qua- it relieves the hectic symptoms, diminishes or puts a stop to the sweating, checks bronchial hemorrhage, and prevents diarrhoea. In poisoning by opium, it is used as a counter-poison; acetic acid forms very soluble, and, therefore, powerful com- with morphia, it ought not to be exhibited until the contents stomach have been evacuated. In poisoning by the alkalis, carbonates, and by lime, vinegar is the safest and most effi- acidulous substance that can be administered. In diseases with phosphatic deposits in the urine, it may be advan- used either as a medicine or condiment. As an adjunct to tate of lead, acetic acid is recommended by Dr. A. T. Thomson, prevent the formation of carbonate of lead, which is more apt to the lead colic than the acetate. In scurvy, acetic acid has been serviceable. Clysers containing vinegar have been employed
ophthalmia, and for removing lime-dust adhering to any part of the
globe or lid of the eye.

Sponging the face, trunk, or extremities, with cold or tepid vinegar
and water, usually proves refreshing and grateful in febrile disorders
with a hot skin. It diminishes preternatural heat, promotes the
cutaneous functions, and operates as a beneficial stimulant to the
nervous system.

Fomentations containing vinegar are used in bruises, sprains, &c.
The concentrated acetic acid, known in the shops as Beaufoy’s, is
a valuable remedy for the cure of the different forms of porrigo,
popularly called ring-worm or scalled head. Its application, which
may be effected by means of a piece of lint wrapped around a
wooden stick, causes acute but temporary pain, redness of the skin,
and whitening of the abraded spots. One or two applications are
usually sufficient to effect a cure. Strong acetic acid is also em-
ployed as a caustic to destroy corns and warts. It has been pro-
aposed as a speedy means of exciting mufification and vescication, and,
for this purpose, blotting-paper or cambrie, moistened with this acid,
has been applied to the neck in cases of croup.

ADMINISTRATION.—Vinegar is used as a condiment ad libitum.
Medicinally it is given in doses of from $\frac{1}{3}$j. or $\frac{1}{5}$j. to $\frac{3}{8}$ss. As an
enema $\frac{1}{2}$j. or $\frac{3}{4}$j. have been used. A refrigerant drink in fevers is
made by adding $\frac{1}{4}$j. or $\frac{3}{4}$j. of vinegar to a quart of water. A
vinegar wash is prepared by mixing $\frac{3}{4}$iij. of vinegar and $\frac{3}{4}$v. of
water.

ANTIDOTES.—In poisoning by strong acetic acid, the treatment is
the same as that for poisoning by other acids. (See p. 281. Also
Acidum Sulphuricum).

1. ACETUM DESTILLATUM, L. E. D. Distilled Vinegar.—All the
British colleges give directions for the preparation of this liquid.

The London College directs us to take of Vinegar a gallon. Let the Vinegar
distil in a sand-bath, from a glass retort into a glass receiver. Keep the sever-
pints first distilled for use.

The Edinburgh College says, “Take of Vinegar (French, by preference) eight
parts: distil over with a gentle heat six parts: dilute the product, if necessary,
with distilled water till the density is 1-005.”

The Dublin College takes of Wine-vinegar, by measure, ten parts. Distil with
a slow fire eight parts by measure. In the distillation, glass vessels should be
employed, and the first portion which comes over, in quantity amounting to one
part, rejected.

The first portions which distil over are alcohol, acetic ether, water,
and a little acetic acid. Hence the Dublin College directs the first
tenth part to be rejected. Prepared according to the pharma-
copoeias, distilled vinegar has a yellowish tint, and contains, besides
acetic acid and water, a little alcohol, acetic ether, and an organ-
substance called mucilage. Hence, when it is saturated with alkali
the solution becomes brown by heat, and deposits a dark-colon
substance, probably arising from the decomposition of the mucilage.

One hundred grains of acetum destillatum, Ph. Lond. satu-
thirteen grains of crystals of carbonate of soda. This indicates
Mixture of acetic acid and water may be advantageously sub-
stituted for distilled vinegar. If the acetic acid be of the strength
of a solution in the London Pharmacopoeia, the proportions will be, of
acetic acid 15 parts, of water 85 parts, to form a dilute acid equal
strength to that of distilled vinegar.

The effects and uses of distilled vinegar have been noticed under
Acetic Acid.

ACIDUM ACETICUM AROMATICUM, E.—(Rosemary, and Origanum,
h 3j., dried; Lavender, dried, 3ss.; Cloves, bruised, 5ss.; Acetic
Oil.) Macerate for seven days, strain and express strongly, and
the liquor. In the former Edinburgh Pharmacopoeia there was
listed, under the same name, a somewhat similar but weaker
preparation, made with diluted acetic acid (i.e. distilled vinegar),
resembling the celebrated Marseilles Vinegar, or Vinegar of the
Thieves (Vinaigre des Quatre-Voleurs; Acetum quatuor Furum),
supposed to be a prophylactic against the plague and other con-
siderable diseases. It was a very useless preparation. In the present
Edinburgh Pharmacopoeia, concentrated acetic acid has been substi-
tuted for distilled vinegar, and Origanum for Sage. It is now a pun-
net of perfume, and may be used as a substitute for Henry's Aromatic
Vinegar. But it appears to me to be a very unnecessary preparation.

Acetum aromaticum, or Aromatic Vinegar of the shops, is made
by dissolving the Oils of Cloves, Lavender, Rosemary, and
Calamus, in crystallizable Acetic Acid. It is a very volatile
precipitate, and requires to be kept in carefully-
red bottles. Some manufacturers add camphor. The addition
renders it the odor of the greater part of the cam-
phor. It is a much perfumed pungent perfume, whose vapour is
able to the nostrils, to produce a powerful excitant impression.
in fainting, languor, headache, and nervous debility. For this purpose it is dropped on sponge, which is preserved in smelling-both vinigrettes. It is also used for the purpose of correcting unpleasant odours, which it does, not by destroying, but by disguising them (p. 217). An extemporaneous aromatic vinegar may be prepared by putting into a stoppered bottle ½j. of acetate of potash, three drops of some essential oil (as Lavender or Lemon), and twenty drops of vitriol.

3. Acidi Aceticum Camphoratum, E. D. (Camphor, 3ss.; A Acid, f3viss. [f3vj. D.] Pulverize the camphor with the aid of little rectified spirit, and dissolve it in the acid).—This preparation is an officinal substitute for Henry’s Aromatic Vinegar. The spirit is used merely to assist in reducing the camphor to powder. Camphorated acetic acid is exceedingly pungent and corrosive. Its vapor is snuffed up the nostrils as a powerful stimulant in syncope. It is never used internally.

4. Oxymerl, L. D. Syrupus Aceti, E.; Oxymerl Simplex or S Acymel. (The London College directs of Honey [clarified], lb. Acetic Acid, Oiss. Mix the acid with the honey made hot. —Dublin College orders of Honey, by weight, lb. i.; Distilled Vine Oj. [wine measure]. Boil them in a glass vessel, with a slow fire, to the thickness of syrup, removing the scum. —The Edinburgh College substitutes sugar for honey; —Take of Vinegar, French in preference f3vij.; Pure Sugar, 3xiv. Boil them together). —It is employed as a detergent and pectoral. It is frequently added to gargles; but more commonly used as an expectorant in slight colds and coughs. Diffused through barley-water, it forms an agreeable refreshing drink in febrile and inflammatory complaints. It is sometimes used as a vehicle for other medicines. Dose from ½j. to 3ss. or 5i.

2. PHARMACEUTICAL USES.—Vinegar or acetic acid is employed for extracting the virtues of various medicinal substances, as Semen Opium, Colchicum, and Cantharides: the solutions are of Medicated Vinegars (Acetica), or, by the French pharmacopoea, Oxymoles (from oxym, vinegar). A small quantity of spirit is usually added to them for the purpose of preventing the decomposition of vinegar, and, in consequence of this, a small portion of acetic acid is generated. They are usually prepared by maceration. The preparations into the composition of which acetic acid and honey are called Oxymerls (Oxymollites), or the Acid Mellites. Acetic acid is employed also in the manufacture of the salts called Acetates, which is a powerful solvent of the gum-resins, and is used, on this account, in the preparation of the Emplastrum Ammoniacci. Lastly, dis
bound in many acid juices of fruits usually free, but sometimes in com-
with either potash or lime. Besides the fruits of the genus Citrus, it
is, with little or no malic acid, in the fruits of Dulcamara, Dog-rose,
ry, Bird-cherry, and Whortleberry. Mixed with an equal quantity
of acid, it is found in the Gooseberry, Red Currant, Strawberry, Rasp-
berry, &c. In the Tamarind it exists with both malic and tartaric

PREPARATION.—All the British colleges give directions for the
paration of this acid.

London College orders of Lemon Juice, Oiv.; Prepared Chalk, \$ivss.;
Sulphuric Acid, \$%xxviiss.; Distilled Water, Oij. Add the Chalk
ly to the Lemon Juice made hot, and mix. Set by, that the powder
side; afterwards pour off the supernatant liquor. Wash the Citrate
frequently with warm water. Then pour upon it the diluted Sulphuric
and the distilled Water, and boil for a quarter of an hour. Press the
strongly through linen, and strain it; evaporate the strained liquor
gentle heat, and set it by, that crystals may be formed. Dissolve the
, that they may be pure, again and a third time in water, and as often
be solution, boil down and set it aside.

Edinburgh College employs the same quantity of Lemon Juice and Chalk
the latter a sufficiency), and “Diluted Sulphuric Acid, \$%xxvii., or in
proportion to the chalk required.” The lemon juice is to be boiled
allowed to rest once before the chalk is added. After the sulphuric acid
added, the filtered liquor is to be tested with a solution of nitrate of
and if the precipitate thereby obtained be not “almost entirely soluble
acid,” more citrate of lime is to be added [to saturate the great excess
acid].

process of the Dublin College is essentially similar to that of the London

tle of lemons and limes is imported for citric acid manufac-
pipes and hogsheads. It is saturated with chalk or whiting
arge vat. By this means a citrate of lime is formed. This is
stated, while the carbonic acid of the chalk escapes, and the
age of the juice for the most part remains in solution.
passed through a sieve and frequently washed with warm water, the mucilage and other soluble impurities are for the most part of. Sulphuric acid, diluted with water, is afterwards added. Phosphate of lime separates, and citric acid is left in solution.

MATERIALS.
- **Citrate of Lime.**
- **Sulphuric Acid.**

COMPOSITION.
- \(\frac{1}{2} \) **Citric Acid.**
- **Lime.**

PRODUCTS.
- **Citric Acid.**
- **Sulphate of Lime.**

The clear solution is then evaporated in leaden boilers, an concentrated solution set aside to crystallize. The crystals are afterwards purified by re-solution and re-crystallization.

Fig. 65.

Citric Acid Manufactory.
- **a, a, a.** Casks of Lemon Juice.
- **b.** Wooden Vat for saturating the juice with chalk.
- **c, c.** Copper Pumps.
- **d.** Decomposing Tub for the citrate of lime and sulphuric acid.
- **e.** Lead Boiler.
- **f, f.** Finishing Lead Boilers.
- **g.** Crystallizing Pans.
- **h.** Lead Syphon for running off waste liquor from the vat a.
- **i.** Chemical Tests.
- **k.** Moveable Strainer for clearing mother liquors.

Properties.—Citric acid crystallizes in colourless, odourless, sour, transparent, short, rhomboidal prisms, whose extremities terminated by four trapezoidal faces, and which belong to the right prismatic system. Crystallized citric acid becomes damp by exposure to moist atmosphere, though Dumas, and French chemists, state it to be unalterable by air. According to Vauquelin, it is soluble in parts of cold and 50 of boiling water. The solution is strongly acid, and becomes more so by keeping. Crystallized citric acid is much more soluble in alcohol than in water. Its sp. gr. is 1·617. Heated with potash, it is converted into oxalic and acetic acids and water. Treated with oil of vitri

*For further details, consult Parke's *Chemical Essays*, vol. 1, p. 539, 2d ed. 1833.

solves sulphurous acid, carbonic acid, carbonic oxide, acetic acid, and water. Heated with nitric acid, it becomes oxalic acid.

According to Crasso, crystallized citric acid, when exposed to heat, exhibits four stages of decomposition. During the first, the water of crystallization alone is given off, and the residue contains altered citric acid. The second stage is characterized by white fumes, and the production of acetone, carbonic oxide, and carbonic acid, while the residue consists of hydrated acetic acid \(\text{H}_3\text{O}^+ + \text{aq}\), which is the true pyrocitric acid. In the third stage, the acetic acid, not being volatile, is itself decomposed, yielding carbonic acid and an oily liquid which soon crystallizes. This is the pyroacetic acid, the citric of Baup, for which Crasso opposes the name of itaconic acid \((\text{C}_3\text{H}_4\text{O}_3 + \text{H}_2\text{O})\). This acid, when heated, yields citric acid \((\text{C}_3\text{H}_6\text{O}_5 + \text{H}_2\text{O})\), the citric acid of Baup. In the fourth period empyreumatic oil is produced, and a voluminous coal remains behind.

Characteristics.—When added in excess to lime water, no precipitate is produced. "When a few drops of a solution of citric acid are added to lime water, a clear liquid results, which, when heated, posits a white powder, soluble in acids without effervescence," says Liebig. It does not yield a crystalline precipitate when added in excess to a solution of carbonate of potash. It forms, with barytic water, a white precipitate \((\text{citrate of baryta})\). With a solution of nitrate of lead it also furnishes a white precipitate \((\text{citrate of lead})\), soluble in ammonia, which forms with it a double salt \((\text{ammoniacal citrate of lead})\). Added to a solution of nitrate of silver it produces white precipitate \((\text{citrate of silver})\), which, when heated, becomes brown, froths up, deflagrates, discharges white fumes, and leaves an undant, ash-grey, coarsely fibrous, crumbly residue, which by heat becomes pure silver.

Composition.—The following is the composition of crystallized citric acid:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>4</td>
<td>24</td>
<td>33-8</td>
<td>36-28</td>
<td>34-28</td>
<td>33-0</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3</td>
<td>3</td>
<td>4-5</td>
<td>4-45</td>
<td>4-75</td>
<td>4-63</td>
</tr>
<tr>
<td>Oxygen</td>
<td>5</td>
<td>40</td>
<td>59-7</td>
<td>59-27</td>
<td>60-96</td>
<td>62-37</td>
</tr>
</tbody>
</table>

Citric Acid crystallized by cooling a solution saturated at 212°.

1 ... 67 ... 100-0 ... 100-00 ... 100-00 ... 100-00

Crystallized citric acid of commerce contains, however, somewhat more oxygen and hydrogen (elements of water) than the above:

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Dumas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>4</td>
<td>24</td>
<td>34-29</td>
<td>34-73</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3/2</td>
<td>3-33</td>
<td>4-76</td>
<td>4-72</td>
</tr>
<tr>
<td>Oxygen</td>
<td>5/4</td>
<td>42-06</td>
<td>60-05</td>
<td>60-53</td>
</tr>
</tbody>
</table>

Commercial Citric Acid, or \(\frac{2}{3}\) Acid formed at 60°.

1 ... 70-00 ... 100-00 ... 100-00

According to Berzelius, hypothetical dry citric acid is composed of...
C\(^+\) H\(^+\) O\(^-\) (= 58); and, therefore, the acid, crystallized by cooling, consists of \(\text{Ci} + \text{Aq.} (58 + 9 = 67)\), and the commercial acid of \(\text{Ci} + 1\text{H Aq.} (58 + 12 = 70)\).

But Liebig\(^2\) regards the hypothetical dry citric acid as composed of \(\text{C}^{12} \text{H}^{8} \text{O}^{12} (= 165)\). On this supposition, the acid, crystallized by cooling, is composed of \(\text{Ci} + 3\text{HO} + \text{Aq.} (165 + 36 = 201)\); and the commercial crystals of \(\text{Ci} + 3\text{HO} + 2\text{Aq.} (165 + 45 = 210)\). On this view of its constitution citric acid is a tribasic acid; that is, it combines with three equivalents of base: its equivalent weight being three times the amount assumed in the above tables.

Purity.—Powdered citric acid is sometimes adulterated with powdered tartaric acid. The fraud may be readily detected by dissolving the suspected acid in a small quantity of water, and adding cautiously to it a solution of carbonate of potash, taking care that the acid be in excess. If any tartaric acid be present, a white crystalline precipitate (bitartrate of potash) is formed. The directions of the London and Edinburgh Colleges for ascertaining the purity of the acid are as follows:—

This acid is soluble in water; what is precipitated from the solution by acetate of lead is dissolved by nitric acid. No salt of potash, except the tartrate, is precipitated by solution of citric acid. It is totally dissipated in the fire (Ph. Lond.)

The solubility of the plumbeous precipitate in nitric acid shows the absence of sulphuric acid or a sulphate.

A solution, in four parts of water, is not precipitated by carbonate of potash when incinerated with the aid of the red oxide of mercury, no ash is left, or a mere trace (Ph. Ed.)

The elements of citric acid (viz. oxygen, hydrogen, and carbon) are dissipated by a red heat. But this dissipation is promoted by agents (ex. red oxide of mercury) capable of supplying oxygen without leaving any fixed residuum.

Physiological Effects.—Orfila\(^1\) ranks citric acid among the irritant poisons; but Drs. Christison\(^8\) and Coindet gave drachm doses of it to cats without observing that the animals suffered any inconvenience therefrom. The effects of large doses of this acid on man I am not acquainted with. Small quantities of it, dissolved in water, form an agreeable beverage, which allays thirst, diminishes preternatural heat, checks profuse sweating, and promotes the secretion of urine\(^b\). Vogt\(^1\) considers it to act more powerfully on the skin, and less so on the alimentary canal and urinary organs, than tartaric acid. In its action on the skin it agrees with acetic acid. The continued employment of it, as well as of other acids, disturbs the functions of the digestive organs\(^4\).

\(^1\) Turner’s *Elements of Chemistry*, 7th edit.
\(^2\) *Toxicologie Générale*.
\(^3\) *Christison, On Poisons*, p. 208, 3rd edit.
\(^4\) See pp. 183, 201, and 212.
\(^5\) *Pharmakodyn. Bd. ii. S. 72*. 2\(^{nd}\) Aufl.
\(^6\) For some further observations on its effects, see the article *Lemon Juice*, in a subsequent part of *this work.*
USES.—Citric acid is employed in medicine, as a substitute for lemon juice, in the preparation of refrigerant drinks and effervescing draughts, and as antiscorbutic, anti-narcotic, and anti-alkaline. (See Lemon Juice.)

1. ARTIFICIAL LEMON JUICE.—This is prepared by dissolving Citric Acid \(\text{C}_6\text{H}_{12}\text{O}_7 \) , in Water \(\text{H}_2\text{O} \) , and flavouring with a few drops of Essence of Lemons. This is less apt to undergo decomposition than the genuine juice, for which the artificial juice may be employed in the preparation of cooling beverages.

2. EFFERVESCING CITRATES.—Citric acid, with the alkaline carbonates, is frequently employed in the preparation of effervescing draughts. The following are the relative proportions of acid and base required to form a neutral compound.

\[20 \text{ grs. of Commercial Crystals of Citric Acid are saturated by about—} \]
\[\text{Crystallized Bicarbonate of Potash} \quad 29 \text{ grs.} \]
\[\text{Carbonate of Potash of Commerce} \quad 24 \text{ "} \]
\[\text{Hydrated Sesquicarbonate of Ammonia} \quad 17 \text{ "} \]
\[\text{Crystallized Carbonate of Soda} \quad 41 \text{ "} \]
\[\text{Sesquicarbonate of Soda of Commerce} \quad 24 \text{ "} \]

The most agreeable effervescing citrate is that prepared with bicarbonate of potash, flavoured with tincture of orange peel and \(\text{C}_6\text{H}_{12}\text{O}_7 \) (see \textit{Potasse Citreae}). Sometimes an effervescing citrate is prepared with the hydrated sesquicarbonate of ammonia (see \textit{Ammoniae Citreae}, p. 326). The carbonates of soda are rarely employed with citric acid.

9. \textit{Acidum Tartaricum, L. E. D.—TARTARIC ACID.}

HISTORY.—Tartaric acid was first procured in a separate state by Scheele, in 1770. It is sometimes termed the \textit{crystallized acid of tartar}.

NATURAL HISTORY.—It is peculiar to the vegetable kingdom.

In the free state it exists in tamarinds, grapes, the pine-apple, and pepper. It is also found native in combination with bases: thus, bitartrate of potash exists in tamarinds, grapes, mulberries, &c., and tartrate of lime in the fruit of \textit{Rhus Typhina}.

PREPARATION.—All the British colleges give formulæ for its preparation.

The \textit{London College} directs us to take of Bitartrate of Potash, lb. iv.; Boiling Distilled Water, Cong. iii.; Prepared Chalk, 3xxxv. and 3yj.; Diluted Sulphuric Acid, Orj. and 4xxv.; Hydrochloric Acid, 4xxxviss., or as much as may be sufficient. Boil the Bitartrate of Potash with two gallons of Distilled Water, and add, gradually, half the prepared Chalk; then, the effervescence having ceased, add the remainder of the Chalk, previously dissolved in the Hydrochloric Acid with four pints of the Distilled Water. Lastly, set aside, that the Tartrate of Lime may subsieve; pour off the liquor, and wash frequently the Tartrate of Lime, with Distilled Water, until it be void of taste; then pour on it the diluted Sulphuric Acid, and boil for a quarter of an hour. Evaporate the strained liquor by a gentle heat, that crystals may be formed.

Dissolve the crystals, that they may be pure, again, and a third time, in water, and, as often, strain the liquor, boil down, and set it aside.
The process of the Edinburgh Pharmacopoeia is essentially the same. The Dublin College uses of Bitartrate of Potash, reduced to powder, ten parts; Prepared Chalk, four parts; Sulphuric Acid, seven parts; Water, one hundred and twenty parts. The process is otherwise similar to that of the London Pharmacopoeia.

The following is the theory of the process for making tartaric acid:—By the mutual action of bitartrate of potash and carbonate of lime (chalk), we obtain tartrate of potash in solution and tartrate of lime precipitated, while carbonic acid escapes.—The following diagram explains these changes:—

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Chalk = 50</td>
<td>2 eq. Carbonic Acid = 22</td>
<td>1 eq. Carboxonic Acid = 22</td>
</tr>
<tr>
<td>1 eq. Bitartrate = 114</td>
<td>1 eq. Tartrate Potash = 114</td>
<td>1 eq. Tartrate Potash = 114</td>
</tr>
<tr>
<td>1 eq. Tartrate Potash = 150</td>
<td>1 eq. Tartrate Acid = 66</td>
<td>1 eq. Tartrate Acid = 66</td>
</tr>
<tr>
<td>1 eq. Tartrate Potash = 114</td>
<td>1 eq. Tartrate acid = 66</td>
<td>1 eq. Tartrate Acid = 66</td>
</tr>
</tbody>
</table>

If to the solution of tartrate of potash we add chloride of calcium (obtained by dissolving chalk in hydrochloric acid), double decomposition ensues; tartrate of lime is precipitated, and chloride of potassium remains in solution.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Chlor. Calcium = 50</td>
<td>1 eq. Chlorine = 35</td>
<td>1 eq. Chlorine = 35</td>
</tr>
<tr>
<td>1 eq. Tartrate Potash = 114</td>
<td>1 eq. Oxygen = 8</td>
<td>1 eq. Oxygen = 8</td>
</tr>
<tr>
<td>1 eq. Tartrate Potash = 114</td>
<td>1 eq. Tartrate Acid = 66</td>
<td>1 eq. Tartrate Acid = 66</td>
</tr>
</tbody>
</table>

The tartrate of lime obtained in the above two operations is then decomposed by sulphuric acid, which forms the almost insoluble sulphate of lime, and sets tartaric acid free.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Tartrate Lime = 94</td>
<td>1 eq. Tartrate Acid = 65</td>
<td>1 eq. Tartrate Acid = 65</td>
</tr>
<tr>
<td>1 eq. Sulphuric Acid = 40</td>
<td>1 eq. Lime = 28</td>
<td>1 eq. Sulphate Lime = 28</td>
</tr>
</tbody>
</table>

Properties.—Tartaric acid crystallizes in elongated, colourless

Fig. 67.

Crystals of Tartaric Acid.

Fig. 67. The crystal as usually modified.

Fig. 68. The same modified form, with the planes irregularly disposed, as they appear in most of the crystals.

(The corresponding planes in both figures are marked with the same letters.)

1 The Edinburgh College employs the same quantity (Ovii, and f\(\text{f}\)xvii.) of diluted Sulphuric Acid as is used by the London College; but, as its strength is weaker, the quantity ought to have been greater. The "Edinburgh College should have directed more than ten pints of diluted Sulphuric Acid, instead of less than eight." (Dr. K. Phillips, London Medical Gazette, N. S. vol. ii. 1855-56, p. 609.)
composition of tartrate acid, but only half the molecular weight. It corresponds, therefore, to metaphosphoric acid. By the same degree of heat all the water of this acid is driven off, and we obtain a hydrate tartaric acid, which, however, has lost its acid properties, and is quite insoluble in water. “This is a powerful flux in favour of the view, according to which all acids are compounds of hydrogen” (Liebig). When subjected to distillation, tartaric acid yields carbonic acid, water, and two pyrolytic—one of which is crystalline, and is called pyrotartaric acid, $O_3 + Aq_1$; the other is oily, and is termed pyruvic acid, $O_3 + Aq_2$. Strongly heated in the air it evolves the odour of acid, and furnishes a carbonaceous mass, which eventually disappears by combustion. Cold water dissolves crystallized tartaric acid; hot water takes up twice its own weight of the acid. A soft, viscous, flexible mass, forms in a solution of tartaric acid, as if of emetic tartar, when long kept. Alcohol sparingly dissolves the acid. Heated with either nitric acid or potash it yields oxalic acid. By the action of sulphuric acid on it acetic acid is formed.

Characteristics.—A solution of tartaric acid is very sour, and with solutions of caustic, lime, baryta, and strontia, white precipitates (earthly tartrates), soluble in excess of acid. Sal ammoniac forms the precipitate (tartrate of lime) produced by lime water. With a solution of lead the solution of tartaric acid also forms a white precipitate (tartrate of lead) soluble in excess of acid. Dropped into a solution of sulphate of lime it furnishes no precipitate. Heated with a solution of chloride of platinum, tartrate of potash occasions a black precipitate (metallic platinum). If excess of acid be added to a tritrate solution of a potash salt, small granular crystals (bitartrate of ash) are deposited. With nitrate of silver, tartrate of potash forms a white precipitate (tartrate of silver), which, when heated,
COMPOSITION.—The composition of tartaric acid is as follows:

|--------|--------|-----------|------------|--------|--------|-----------|
| Carbon | 4 | 24 | 36:36 | 35:990 | Anhydrous Tar-
| | | | | | tatic Acid | 1 | 66 | 88 |
| Hydrogen | 2 | 3 | 8-3 | 8-97 | Water | 1 | 9 | 13 |
| Oxygen | 5 | 40 | 60:61 | 60:213 | Crystallized Tar-
| | | | | | tatic Acid | 1 | 75 | 100 |
| Anhydrous Tartaric Acid | 1 66 | 100 00 | 100 000 | | Crystallized Tar-
| | | | | | tatic Acid | 1 75 | 100 |

Liebig regards the equivalent weight of the acid as double that above assumed; and the acid, therefore, is considered as a bibasic one, inasmuch as, on that hypothesis, it saturates two equivalents of base. Freym’s researches, above referred to, tend to support this view.

IMPURITY.—The only adulteration practised on this acid is the mixture of its powder with bitartrate of potash. This fraud may be detected by the difficult solubility in water of the bitartrate, and its yielding, on incineration, carbonate of potash (known by the tests hereafter to be described). The tests of the purity of the acid, given by the London and Edinburgh Colleges, are as follows:—

"Totally soluble in water. The solution throws down bitartrate of potash from any neutral salt of potash. Whatever is precipitated from this solution by acetate of lead is dissolved in diluted nitric acid."—Ph. L.

A precipitate insoluble in nitric acid would indicate the presence of sulphuric acid or a sulphate.

"When incinerated with the aid of the red oxide of mercury, it leaves no residuum, or a mere trace only."—Ph. Ed.

This test is devised to detect any fixed substance, and might be used to recognise the potash, if bitartrate of this alkali had been present.

PHYSIOLOGICAL EFFECTS.—The effects of tartaric acid, in small doses properly diluted, are those of a refrigerant (see p. 193). It reduces febrile heat, diminishes excessive vascular action, allays thirst, checks excessive perspiration, and perhaps also a too copious secretion of bile. It appears to promote the action of the absorbents, to increase the secretion of urine (see p. 201), and to act gently on the bowels. It possesses the tonic properties of the mineral acids (see p. 212) in a very slight degree only, if at all. Its continued use very readily disturbs the digestive process. Some doubt exists as to the effects of large doses of the acid. According to Dr. Christison it may be taken in very considerable quantities without injury. Six drachms have been taken in twenty-four hours without inconvenience. Pommer, however, asserts that when it is injected into the veins, it is scarcely less poisonous than oxalic acid (Ibid.)

USES.—Tartaric acid may be used as a cheap substitute for citric acid or lemon juice, in the formation of acidulous refrigerant drinks, for febrile and inflammatory disorders. It is, however, rarely employed for this purpose. Its common medicinal use is in the prepara-

Treat. on Poisons, p. 208, 3d ed.
of effervescing compounds, with the alkaline carbonates, specially with bicarbonate of soda.

FERRVERNESCING TARTRATES.—The following are the relative proportions of tartaric acid and alkaline carbonates for preparing effervescing draughts:

- 20 grs. of the Crystals of Tartaric Acid are saturated by:
 - Crystallized Bicarbonate of Potash 27 grains.
 - Carbonate of Potash of Commerce 22 "
 - Hydrated Sesquicarbonate of Ammonia 15½ "
 - Crystallized Carbonate of Soda 38 ½ "
 - Sesquicarbonate of Soda of Commerce 22 "

The most commonly used effervescing tartrate is that made with bicarbonate of soda (see *Soda Sesquicarbonas* and *Soda trias*).

10. ACIDUM BENZOICUM, L. E. D.—BENZOIC ACID.

History.—This acid was described in 1608 by Blaise de Vigeois; but it seems to have been known to Alexander Pedemontanus 560. The acid obtained by sublimation is frequently denominated *Flores of Benjamin* (*Flores Benzoinis*).

Natural History.—Benoic acid is peculiar to the organized kingdom.

exists ready formed in certain vegetable substances (as the balsams), and aduly produced in some others by the action of exterior agents (as heat, air, light, and alkalis). "It is formed by the oxidation of hydruret of benzole in air, and by the decomposition of many compounds of benzole, and of hippuric acid and amygdaline by oxidizing reagents" (Liebig). It is also produced by the action of potash on cinnamon and some other oils (Mulder). It is readily yielded from, and was formerly supposed to exist in, certain animal substances (as the urine of herbivorous animals), which are now known not to contain it; it is produced only by the decomposition of some of their proximate principles.

The benzoic acid procured from the urine of horses is not originally contained in that liquid, but is produced by the decomposition of hippuric acid, which is readily converted into benzoic acid. Thus, if the urine of the horse or cow be left to itself for a long time, or evaporated at a boiling temperature, it yields not a trace of hippuric acid, but only benzoic acid.

Preparation.—All the British colleges give directions for the preparation of this acid.

The *London College* orders of Benzoin, lb. j. Put the benzoin in a proper vessel placed on sand, and the heat being gradually raised, sublime until more rises; press that which is sublimed, wrapped in bibulous paper, separate it from the oily part. Afterwards again sublime it.

The directions of the *Edinburgh College* agree with these, except that they require any convenient quantity of benzoin to be used, and a glass-mattress be employed in the manufacture.

The process of the *Dublin College* is as follows:— Benzoin, five parts; water, fresh burnt; Muratic Acid, of each, one part; Water, two hundred times. Triturate the Benzoin with the Lime, then boil the mixture in one hundred parts of water; suffer the vessel to rest, and pour off the liquor when cold. Evaporate the mixed liquors to one-half, filter them through cotton, and to the liquors, when cold, gradually add the Muratic Acid. Lastly,
having decanted off the supernatant fluid, dry with a gentle heat the residual
powder, previously washed with a small quantity of cold water; pass it into a
proper vessel, and with a slow fire sublime the benzoic acid.

The process of the London and Edinburgh Colleges is the simplest,
and, I believe, the most economical. The following is the method
practised at Apothecaries' Hall, London:—"The better kind of ben-
zoine is most economically employed: it may be put into an iron pot,
set in brickwork over a proper fire-place: the sublimate is most con-
veniently received into a large wooden box, lined with paper, com-
municating with a conical iron or tin-plate neck with the subliming
pot. The first product may be sublimed a second time in the same
apparatus; and, by conducting the process rather rapidly, the acid
condenses in beautiful prismatic crystals, somewhat elastic. If slowly
sublimed it is more scaly. By this process of sublimation, good ben-
zoine yields 10 to 12 per cent. of acid contaminated by empyreumatic
oil; and which, when pressed between folds of blotting-paper, and
again sublimed, is reduced to the proportion of 8 or 9 per cent. of the
purified acid." The simplest method of procuring it is by putting
coarsely-powdered benzoine into an earthen pot, over which is placed
a cone of thick brown paper or pasteboard, and applying a moderate
heat: the acid sublimes into the cone, and there condenses. Some
employ, as a substitute for the cone, a house, as it is termed, made
of pasteboard and laths, and lined with loose sheets of blotting-paper,
which are renewed every time of use. The oil produced in sublima-
tion is, for the most part, formed during the process.

Mohr 5 gives the following directions for preparing it:—Benzoine,
in the form of a coarse powder, either alone or mixed with an equal
weight of sand, is spread upon the bottom of a round vessel, of
cast or plate iron, eight or nine inches in diameter, with the sides
about two inches high. A sheet of dry bibulous paper is stretched
tightly over the opening, and fastened to the sides of the vessel by a
little paste. A hat made of thick paper, and of the common form of
a man's hat, is made to cover the whole, and tightly tied to the sides
of the vessel by a strong string. The vessel is now placed upon sand
spread upon an iron plate, below which a fire is kept for three or four
hours. The vapours of the sublimed benzoic acid pass readily through
the pores of the bibulous paper, and are deposited in crystals upon the
hat; the crystals are prevented from falling back into the iron vessel
by the paper which closes its opening 8. Moreover, the paper absorbs
the oil which sublimes with the acid.

Scheele's process, adopted by the Dublin College, is, I believe, sel-
dom followed. By boiling benzoine and lime with water, a soluble
benzoate of lime is formed. Muratic acid is then added to the con-
centrated solution, by which benzoic acid is precipitated, while chlor-
ride of calcium (in solution) and water are formed. The precipitated

5 Brande, Manual of Chemistry, p. 1153, 5th edit.
6 Ann. der Pharm. xii. p. 178; also, Pharmaceutisches Central-Blatt für 1839, p. 223; and Liebig in Turner's Elements of Chemistry, 7th edit. p. 781.
7 For some practical remarks on the preparation of this acid, see Euler and Herberger, in Pharmaceutisches Central-Blatt für 1840, p. 156.
and parts of cold water, dissolves in about twenty-five parts of
and is very soluble in alcohol.

Characteristics.—Benzoic acid is readily distinguished from other
its light and feathery crystals, its fusibility, volatility, odour
vapour, and by the characters of its soluble salts. Thus the
ate of ammonia produces, with the sesquisalts of iron, a pale
cipitate (benzoate of iron), and with the nitrate of silver, ace-
lead, nitrate of mercury, and supernitrate of bismuth, white
tates (benzoates of the respective metals).

Position.—The following is the composition of this acid:—

<table>
<thead>
<tr>
<th>Ultimate constituents.</th>
<th>Hypothetical constitution.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atoms.</td>
<td>Eq.Wt.</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Benzoic Acid</td>
<td>113</td>
</tr>
<tr>
<td>Anhydrous Benzoic Acid</td>
<td>113</td>
</tr>
</tbody>
</table>

Crystallized acid contains one equivalent or 9 parts of water
aq.) = 122.

De or Benzoyle is the hypothetical radicle of benzoic acid. It consists of
O₂. Laurent discovered a crystallizable substance, which he termed
but which Liebig calls benzile. It has the composition of the hypothe-
cical benzule. OIL of bitter almonds is the _hydruret of benzule_ (C₁₁H₈O₂).

Prickly.—Good benzoic acid has the following properties:—It is
less, and is sublimed entirely by heat (Edinb. Pharm.) When
ly heated it totally evaporates with a peculiar odour. It is
gly soluble in water, but plentifully in rectified spirit. It is
dissolved by solution of potash or lime-water, and is precipi-
tin its solution by hydrochloric acid (Pharm. Lond.)
(C18 NH\textsubscript{8} O\textsubscript{6} + Aq.) is found in the urine two hours after taking benzoic acid, while not a trace of uric acid is recognizable. This effect does not always take place. I have found it produced readily in a rheumatic subject.

Uses.—Benzoic acid is a constituent of the *Tinctura Camphora Composita*; but otherwise is but little employed in medicine. It is sometimes employed in chronic bronchial affections. I have repeatedly tried it, but have seldom seen benefit result from its use. I have more frequently seen it augment than relieve the cough. Dr. A. Um has suggested the employment of benzoic acid, or a benzoate, in the gouty diathesis, to prevent the formation of the topaceous concretions commonly called *chalk stones*, and which consist of urate of soda.—Dose, grs. v. to 3j.

11. **CREASOTON, L.—CREASOTE.**

Creasotum, E.

(An Oxy-hydro-carburet; prepared from pyrosilic oil, L.)

History.—This substance was discovered a few years since by Reichenbach, who termed it *Creasote* (from *spic\lower{0.5ex}a*, flesh, and *cis\lower{0.5ex}a*, a preserve), or the *flesh-preserve*, on account of its antiseptic property. Its name is sometimes written *Creasote*, or *Kreosote*.

Natural History.—It is an artificial product; and is obtained by the destructive distillation of organic substances. It is found in pyroligneous acid, in tar, in Dippel’s oil, in wood smoke, and in pyrurous waters.

Preparation.—The preparation of creasote is a very troublesome and tedious process. The following concise abstract of it is taken from Turner’s *Elements of Chemistry* (5th ed. p. 872). These portions of the oil (called in the Pharmacopoeia *pyrosilic oil*) distilled from wood-tar, which are heavier than water, are first freed from adhering acetic acid by carbonate of potash, and, after separation from the acetate, are distilled. A little phosphoric acid is mixed with the product to neutralize ammonia, and another distillation resorted to. It is next mixed with a strong solution of potash, which combines with creasote, allows any eupion which may be present to collect on its surface, and by digestion decomposes other organic matter; the alkaline solution is then neutralized by sulphuric acid, and the oil which separates is collected and distilled. For the complete purification of the *creasote*, this treatment with potash, followed by neutralization and distillation, requires to be frequently repeated. The oil from which creasote is prepared, is that obtained by the distillation of wood-tar, and is either imported from Stockholm, Archangel, and America, or is made in the manufacture of pyroligneous acid.

Properties.—Pure creasote is colourless and transparent; and has a high refractive power, and an oleaginous consistence. Its odour is that of smoked meat, its taste burning and caustic, its sp. gr. 1·085

* *For further details I must refer to Damas’ *Traité de Chimie*; the Ann. de Chim. et Physiq. t. 25 1844; and Coull, in the *Journal de Pharmacie*, t. xxvii. p. 329.*
CREASOTE.

It boils at 397° F.; and is fluid at —16.6° F. It is combustible, burning with a sooty flame. It absorbs chlorine, and is sensitized by it. Nitric acid is decomposed by it, with the evolution of nitrous fumes. Sulphuric acid in small quantity reddens, and in large quantity blackens it. Potassium decomposes it, with the evolution of gas (hydrogen?) and the formation of potash, which comes with some inspissated creasote. It is soluble in alcohol, ether, sulphuret of carbon, eupion, naphtha, acetic acid, and acetic ether. Dissolves resins, various colouring matters (as of cochineal, saffron, d madder), and some salts (as the acetate of potash). It has very little action on caoutchouc; and does not possess any acid or alkaline action on test paper. Mixed with water, it forms two combinations: one is a solution of 1.25 parts of creasote in 100 of water; the other, on the contrary, is a solution of 10 parts of water in 100 of creasote.

It coagulates the albumen of eggs and of the blood. Concentrated buminous liquids are immediately coagulated by it; diluted ones, gradually. Fibrin is not altered by it. It is powerfully antiseptic in respect to meat and fish. Tar, smoke, and crude pyrolineous oil owe part, if not the whole, of their antiseptic properties to it. According to Mr. J. R. Cornack, the only essential part of the unmingifying process practised by the ancient Egyptians was the application of such a heat as would first dry up the body, and then decompose the tarry matters which had been previously introduced, and thus generate creasote.

A patent has been taken out by Mr. Flockton, for the preservation of wood, etc. by creasote. The liquid actually used under this patent is the impure liquor obtained by distillation from tar, and in which old iron has been gested, so that it is a mixture of various volatile oils and acetate of iron.

Characteristics.—The odour of creasote is its most characteristic property. To this must be added its combustibility, its oleaginous appearance, its complete solubility in acetic acid and caustic potash, and its action on albumen before mentioned.

Impurity.—Creasote, when pure, is perfectly colorless; but that sold in commerce has frequently a more or less brownish tinge. Rectified oil of tar, capnomor, and a substance like almond oil, are substances which have been mixed with it. These impurities are readily detected by mixing separate portions of the suspected liquid with acetic acid and caustic potash: pure creasote is completely soluble in these fluids; not so the adulterated. Capnomor is similar to creasote in many of its physical and chemical properties, and is frequently associated with the creasote of the shops.

Composition.—Ettling analyzed creasote which was supposed to contain three per cent. of water. Making allowance for this in-
purity, its composition, as determined by this chemist, is nearly as follows:

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>14</td>
<td>84</td>
<td>77.42</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>2</td>
<td>14</td>
<td>10.85</td>
</tr>
<tr>
<td>Oxygen</td>
<td>2</td>
<td>16</td>
<td>14.66</td>
</tr>
<tr>
<td>Creasote</td>
<td>1</td>
<td>109</td>
<td>100.00</td>
</tr>
</tbody>
</table>

At present, however, the equivalent of creasote must be considered as uncertain, since no definite compound of this substance has been analyzed, by which the combining proportion could be ascertained.

Physiological Effects.

a. *On Vegetables.*—Plants moistened with creasote water fade and die. The injurious effects of smoke from vegetation are probably to be referred principally to the creasote which it contains.

b. *On Animals generally.*—Insects (as flies), spiders, and small fishes, die in two minutes after their immersion in water containing few drops of creasote suspended in it. According to Mr. Cormack, the effects of creasote on dogs are remarkably similar to those of hydrocyanic acid, and are much less apparent when this substance is injected into the carotid arteries than into the veins. When thrown into the latter it suddenly stops the heart's action, and causes hurried respiration, one or two convulsive fits, shrill cries, and death. Injected into the carotid artery it produces coma. Introduced into the stomach it gives rise to dimness and fixation of the eyes, vertigo, ana comia; when given in large quantities it also affects the heart. Corneli

[...]

γ. *On Man.*—Cresote operates locally as an irritant and caustic. Applied to the skin it causes heat, redness, and the destruction of the cuticle, which comes away in the form of furfuraceous scales. On the tongue it produces a painful sensation. Dropped into the eye it occasions acute pain. Placed in contact with a suppuring surface it whitens the part, like nitrate of silver. Swallowed in large doses it causes vomiting and purging. The caustic effect of creasote depends on its union with albumen.

Unless largely diluted, it occasions, when swallowed, heat in the pharynx, oesophagus, and stomach. Small doses, as one or two minims, produce in most individuals no other unpleasant effect than that just mentioned. Larger doses give rise to nausea, vomiting, vertigo, headache, and heat of head. Dr. Elliotson knew a lady who increased the dose of creasote to forty drops before it disagreed; the addition of a single drop beyond this produced extreme giddiness, insensibility, and vomiting, followed by headache for several days. When given in moderate doses it does not affect the bowels; so that

2 Cormack, *op. cit.* p. 66, et seq.
4 *Medico-Chirur. Trans.* vol. six.
Dr. Elliotson has observed, "aperients are as requisite as if it was not taken." When, however, the dose has been considerably augmented, diarrhea, or even dysentery, has been produced. The influence of creasote on the urinary organs is sometimes very marked. Mr. Macleod was, I believe, the first who noticed that the urine acquired a blackish colour by the use of it. A similar effect is referred by Dr. Elliotson. In some cases creasote is recognised, by its smell, in the urine, showing that it has been absorbed. Occasionally increases the quantity of this secretion, but in diabetes it sometimes has an opposite effect. In some instances it has caused micturition and strangury, so that in its influence over the urinary organs it bears a resemblance to turpentine. Some other effects which have been ascribed to it require further evidence to establish them. In the dose two drachms creasote proved fatal in thirty-six hours. It caused acute pain.

USES.—Various substances, some known to contain creasote, others supposed to do so, have long been used in medicine, in the same seases in which creasote itself is now employed; and, in consequence, it has been imagined that they owe part of whatever efficacy they really possess to this substance. These remarks apply to Tar, Crude Pyroigneous Acid, Aqua Binelli, the Empyreumatic Water of Runge and Hanke, Pyrotonide, and Animal or Drippel's oil. To this list should be added, according to Mr. Cormack (op. cit.), mummy.

As an _internal_ remedy, creasote has been principally celebrated, in this country, as a remedy possessing extraordinary powers of arresting vomiting. It has, however, been greatly overrated. It is decidedly

*Cormack, op. cit. p. 99.
*See _The Times_ of June 17, 1839. I presume the mental faculties were unaffected.
*The will be described hereafter.

Wood Soot (Fuligo Ligni) was formerly contained in the list of the materia medica of the British Pharmacopoeia. It is still in use on the continent, and statements of its efficacy are occasionally met with in the periodicals. It is a mixture of distilled products from the imperfectly dried wood and of ashes, or other fixed matters, carried up the chimney by the current of air. It consists of a pyrogenous or empyreumatic resin called pyrelita, combined with acetic acid, which also saturates the bases (potash, lime, and magnesia) of the ashes which are carried up the chimney. Besides these, there are small quantities of cresquinide of iron, silica, and carbon. Acetate of ammonium, chloride of ammonia, and sulphate of lime, are also contained in soot. Moreover, there is extractive matter, all of which is insoluble in alcohol. Lastly, to these constituents must be added creasote. Brahman (Ann. Chim. et Phys. t. xxxi. p. 327) mentions a bitter principle, which he calls asbolon, (from _Asbolus_ in soot); but Berzelius (Traité de Chemie, t. vi. p. 725) considers it to be a mixture of different matters with the acid pyrelita. The matters insoluble in water constitute about 0.14 of soot. Usually soot was esteemed tonic, antispasmodic, and emmenagogue. It is now principally employed as an external remedy, chiefly in ringworm and other analogous eruptions, and obturate ulcers. It is employed in the form of decoction (prepared by boiling two handfuls of soot in a pint of water for half hour) and of ointment (composed of a drachm of soot to an ounce of lard). The decoction has been used as an injection in chronic cystitis. (Laud. Med. Gaz. 1839-40, vol. i. p. 804). The _Tincture of Soot_, formerly in the London Pharmacopoeia, consists of Wood Soot, _x_ x; Asafoetida, _x_ x; and Proof Tartar, _3x_ x. It is sometimes called _Soot Drops_ or _Hysteric Mixture_, and is prescribed in doses of one or two teaspoonsful in hysteria.
injurious in inflammatory conditions and structural disease of stomach, and frequently fails in allaying the sickness dependent on organic diseases, as of the heart and kidneys. It is most success in hysterical cases, and sometimes succeeds in pregnancy. Creasote was first employed to relieve vomiting by Dr. Elliotson, to whom the paper, as well as to that of Mr. Taylor, apothecary of the New London Hospital, I must refer for cases illustrative of extraordinary success with it. It is regarded by Dr. Macleod as of doubtful efficacy; and has completely failed in the hands of Dr. Parry and Dr. Burne, however, found it efficacious in gastro-enteritis. I have found it much more frequently fail than succeed in alleviating irritable stomach. It sometimes relieves the chronic vomiting connected with granular disease of the kidneys when other means fail.

In gastritis or flatulence it occasionally succeeds, but is impossible in those cases only in which local stimulants are used. I found beneficial. Where both hydrocyanic acid and creasote have been separately tried without success, Dr. Elliotson advises their union.

Creasote has been tried in a few cases of diabetes. In some it diminished both the quantity and saccharine quality of the urine. I have tried it at the London Hospital, but without obtaining benefit from its use.

In neuralgia, hysteria, and pulmonary diseases, it has also been used with occasional advantage; but a more extended experience is required to establish its efficacy in these cases.

As an external agent creasote may frequently be employed to great advantage. It has been successfully applied to relieve toothache. After carefully cleaning out the cavity of the tooth, a drop of creasote, or an alcoholic solution of this principle, may be introduced, possibly by means of a camel’s hair pencil, and the cavity filled with cotton soaked in this liquid. As a local application to chronic skin diseases (particularly the different forms of porridge, impetigo, eczema) it has considerable value. Where a caustic application is required, it may be applied undiluted; but for other purposes it is used either in the form of ointment, or dissolved in water as a wash. Creasote may also be beneficially used as an application to foul and indolent ulcers. It serves the double purpose of stimulating the living surface (thereby changing the quality of actions going on in the part), also of preventing the putrefaction of the secreted matters. It is sometimes applied pure, but more commonly diluted with water. Lupton said to have healed under the employment of an ointment of creasote.

In hemorrhages creasote acts as a most efficient styptic, p

1 Medicine-Chirurg. Trans. vol. xiv.
2 Lancet, August 15, 1835.
4 Appendix to the 8th ed. of the Pharmacologia, 1835.
5 London Medical Gazette, August 15th, 1835.
6 See Christiansen, On Granular Degeneration of the Kidneys. Edinb. 1839.
7 Dr. Elliotson, Med.-Chirurg. Trans. and Professor Berns, Lancet, July 18, 1835.
8 Mr. Browne, in the London Medical Gazette, for April 7, 1839.
nce of its power of coagulating albuminous liquids, and
causing the formation of a clot, and partly by causing
of the bleeding vessels. Creasote water (prepared by
a part of creasote with eighty parts of water) may be
her to bleeding wounds and leech-bites, or introduced
rina in uterine hemorrhage, by means of pledges of lint
it. There are many other purposes for which creasote
plied as a local agent, but which I think it sufficient
ame, referring the reader to the various papers and works
ated for further information. It has been employed to
restrain excessive suppuration, and to repress fun-
lations in burns and scalds; to act as a counter-irritant
phthalmia, in which disease it is sometimes dropped into
the same principle that nitrate of silver and other local
are used; and to remove condylomatous and other ex-

The inhalation of creasote vapour is occasionally use-
ing excessive bronchial secretion. Dr. Elliotson cured
of chronic glinders in the human subject, by injecting
solution of creasote up the affected nostril*.

TRATION.—Creasote may be given, at the commencement
in doses of one or two drops diffused through an ounce
matic water by the aid of mucilage; the dose should be
creased. As before mentioned, in one case forty drops
with impunity: in another instance, ninety drops were
d in less than half a day without any bad symptom*

astic, undiluted creasote is sometimes applied by means of
air pencil.

gargles, or injections of creasote, are prepared by dis-
ion two to six drops (according to the circumstances of each
ounce of water. A solution of this kind is sometimes
in poultries.

alation of creasote vapour may be effected by diffusing a
ce of creasote through water or a mucilaginous liquid, and
through this, by means of the ordinary inhaling bottle (see

es.—In a case of poisoning by creasote, the depression
owers is to be counteracted by ammonia and other stimu-
. Cormack suggests the use of chlorine, but the value of
has not been determined by actual experiment. Oleagi-
niculaginous drinks are recommended by Corneliani, for
of preventing the local action of creasote on the mucous
stomach and intestines. Vinegar does not diminish,
ing to Corneliani, increases its activity. Mr. Cormack
en augments [?] its poisonous operation. Bleeding is sug-
this writer, in order to relieve the distension, and thereby
he contractions, of the heart. Artificial respiration should

* See also Lancet, vol. ii. for 1834-5, p. 398.
* Mr. Taylor, Lancet, August 15, 1835.
on no account be omitted. Any inflammatory symptoms which subsequently appear are of course to be treated by the usual antiphlogistic measures.

1. **MISTURA CREASOTI.** _Mistura Creazote, E_. (Take of Creasote and Acetic Acid, of each,

\[\text{\(\frac{3}{2}\)}\] ; Compound Spirit of Juniper, Syrup, of each, \[\text{\(\frac{3}{2}\)}\] ; Water, \[\text{\(\frac{3}{2}\)}\] ; mix the creazote with the acid, then gradually [add] the water, and lastly the syrup and spirits. Dose \[\text{\(\frac{3}{2}\)}\] to \[\text{\(\frac{3}{2}\)}\] or more.

2. **UNGUENTUM CREASOTI, L.** _Unguentum Creazoti, E_. (Creasote, \[\text{\(\frac{3}{2}\)}\] ; Lard, \[\text{\(\frac{3}{2}\)}\] rub and mix them, \[\text{\(\frac{3}{2}\)}\] — Axunge, \[\text{\(\frac{3}{2}\)}\] ; Creazote, \[\text{\(\frac{3}{2}\)}\] . Melt the axunge, add the creazote, stir them briskly, and continue to do so as the mixture concretes on cooling. E.)—It is principally in skin diseases, as ring-worm. The quantity of creasote may be augmented or lessened according to circumstances.

12. **PETRO’LEUM, L. E. D.—PETROLEUM OR ROCK OIL.**

Petroleum (Barbadense), L.

(Bitumen Petroleum. Petroleum Barbados, D.)

History.—Herodotus \(^{1}\) mentions the petroleum springs of Zante (now called Zante) more than 400 years before Christ. Plutarch in his Life of Alexander, speaks of a lake of naphtha at Ecbatana (now Hamedan), in Media. The substance known to mineralogists as petroleum is the black naphtha (\(\nu\sigma\rho\theta\alpha \mu\epsilon\lambda\alpha\mathrm{u}r\alpha\mathrm{na}\)) of Dioscorides (lib. i.), the _bitumen liquidum_ of Pliny (lib. xxxv.)

Natural History.—There are two varieties of liquid bitumen, or mineral oil: one is transparent and nearly colourless, or only slightly yellow, and when burnt leaves no residuum; the other is thick, or reddish brown colour or blackish, and leaves, after combustion, a black coal. The first is called naphtha (a Chaldaean word); second petroleum (from _petra_, a rock; and _oleum_, oil) or rock oil, because it is frequently found exuding in the form of an oily liquid from the rocks. Both kinds are supposed to be produced by the decomposition of organic (vegetable) matter, for they are always found in Neptunian rocks, and they appear sometimes to be one of the products of the decomposition of coal \(^{2}\). From the investigation of Dr. Christison and Gregory \(^{3}\), it appears probable that some variety of petroleum, as that of Rangoon, are products of destructive distillation, since they contain paraffine and eupion, substances obtained from organic bodies by heat.

Petroleum is found in this country at Ormskirk in Lancashire, Colebrook Dale, and at St. Catherine’s Well, near Edinburgh. In France it is produced at the village of Gabien in Languedoc.

\(^{1}\) _Melpomene, excv._

\(^{2}\) _Berzelius, Traité de Chim. t. 6._

\(^{3}\) _Trans. of the Roy. Soc. Edinb. vol. xiii. p. 1._
PETROLEUM OR ROCK OIL.

ence it was termed Oleum Gabianum. It is also found in other parts of Europe, especially in Italy. In the United States of America it is met with in various places: that from the Seneca Lake in New York is called Seneca oil. Several of the islands of Barbadoes and Trinidad, yield it. Barbadoes petroleum (Petroleum Barbadense, L. D.; Pisselatum, Dale) is commonly termed Barbadoes Tar, or Barbadoes pitch. Mr. Hughes* speaks of two kinds of it; one of a dirty inclining to a green, issuing from some hills in St. Andrew's St. Joseph's parishes; and one of a blacker colour, in St. a's parish. That imported by Mr. Clarke professes to be the substance of the springs on Mount Hall estate, in Barbadoes. In both localities of Asia, petroleum is met with in great abundance.

FRACTION.—Mr. Hughes says that the mode of procuring the tar of Barbadoes is to dig a hole or trench in, or very near, the where it oozes out of the earth. This by degrees becomes filled water, having a thick film or cream of this liquid bitumen swim upon the surface; from whence it is skimmed off, and preserved in jars or other vessels. The most convenient season for collecting it is in the months of January, February, and March.

PROPERTIES.—Barbadoes petroleum, at ordinary temperatures, has a consistency of treacle; its colour is reddish brown or blackish; its odour and taste are bituminous. It floats on water; is combustible, yielding a thick black smoke, and leaving a carbonaceous residuum. It is insoluble in water.

POSITION.—The ultimate constituents of Barbadoes petroleum are carbon and hydrogen, with small quantities of oxygen and nitrogen. The nature of the distillation, five parts by measure yield rather more than four of a yellow oily fluid, somewhat similar in appearance to the carbo-hydrogen obtained in the manufacture of oil-gas, but dissimilar to naphtha. The residuum in the retort is a substance given to asphaltum. It yields by destructive distillation traces of some kinds of petroleum contain paraffine and eupion.

PHYSIOLOGICAL EFFECTS.—Petroleum possesses stimulating properties, which are principally observed in its effects on the organs of excitation (the skin, the kidneys, and the mucous membranes), the action of which it promotes: hence it has been called sudorific, diuretic, expectorant, &c. It becomes absorbed, and in this way acts topically on the secreting organs; for Mr. Hughes says, that when a horse "that has been dosed with it begins to run upon his journey, the rider will smell the tar strongly." It is said to be an excitant to the lymphatic vessels and glands.

USES.—As an internal remedy it is employed in chronic pulmonary diseases (as winter coughs, old asthmatics, &c.), in obstinate skin diseases (as lepra, psoriasis, and impetigo), and against tape-worm. Hughes says it is used in paralytic and nervous disorders.

* The Natural History of Barbadoes, p. 50. Lond. 1750.
As an external agent it is applied to obstinate ulcers, cutaneous diseases, and is employed as a stimulant in chronic rheumatism, paralysis, and chilblains.

ADMINISTRATION.—The dose of Barbadoes petter, tea-spoonful given in any convenient vehicle (as senna, tea, or spirit). The quantity should be gradually increased, and the whole quantity has been taken in the day without any ill effect.

13. SUC'CINUM, L. D.—

HISTORY.—Amber was known to the ancients before Christ. He was the first who acquired the power of attracting light, and the property.

NATURAL HISTORY.—Amber is found on the southern coasts of the Baltic, and is usually associated with the vegetable resin. It is an old oil jack, known to be derived from the unions of petroleum: impure succeins, impressions of the brackish aqueous liquor, termed the insects and parts of plants, acetic and succinic acid, according to Sir David Brewster. The residue in the reindurated vegetable asphalt. The oil is after its chemical compound, in the form of an oil pot, to which an earthen vessel suffices for re-distillation. The frut of some came Cola and the resin Dammar are frut supposed to be the same. They yield no succinic acid, but a volatile oil leads to genuine oil of amber. Probably the genuine amber, when fresh drawn, has a P. balsam, which it acquires as it deepens by age, and a strong and odour. It is a powerful local irritant. It is a toothache, and is sometimes employed as a rubefacient, and is sometimes employed in the diseases of the nervous system.

ARTIFICIAL MUSK (Moschus artificialis ; Moschus factitus) is a mixture of concentrated nitric acid to f5j. of oil of glass, a rambler. When the acid is not of sufficient strength,
yields readily to the knife, has a conchoidal vitreous or resinous fracture, and becomes negatively electrical by friction: it contains various insects which, apparently, must have become entangled in it while it was soft and viscid. (For an account of these, consult Mr. Hope’s paper before quoted; also Burmeister’s Manual of Entomology, p. 574). Heated in the air, amber fuses at about 550° F., then inflames, and burns with a yellow flame, emitting a peculiar odour, and leaving behind a light shiny black coal. It cannot be fused without undergoing some chemical change. It evolves water, volatile oil, and succinic acid: the residual mass is termed colophonium succini. By destructive distillation in a retort or alembic, amber yields first an acid liquor (which contains succinic and acetic acids), then some succinic acid deposits in the neck of the retort, and an empyreumatic oil (oleum succini) comes over, at first thin and yellowish, afterwards brown and thick: towards the end of the operation a yellow light sublimate is observed in the neck of the retort; this is called, by Berzelius, crystallized pyréte; by Vogel, volatile resin of amber; by Gmelin, amber-camphor. An inflammable gas is evolved during the whole time of the operation.

Composition.—The ultimate constituents of amber are, Carbon, Hydrogen, and Oxygen. The proximate principles are, a Volatile Oil, two Resins, Succinic Acid, and a Bituminous substance.

<table>
<thead>
<tr>
<th>Ultimate Constituents.</th>
<th>Proximate Constituents.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dresier.</td>
</tr>
<tr>
<td>Carbon</td>
<td>80.99</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>7.31</td>
</tr>
<tr>
<td>Oxygen</td>
<td>6.73</td>
</tr>
<tr>
<td>Ashes (silica, lime, and alumina)</td>
<td>3.27</td>
</tr>
<tr>
<td>Amber</td>
<td>97.90</td>
</tr>
</tbody>
</table>

According to Hühnfeldt, hydrochloric acid extracts from amber, besides succinic acid, another acid, very similar to mellitic acid.

The volatile oil has a strong but agreeable odour. The resins are soluble in both alcohol and ether: if an alcoholic solution of the two resins be prepared by heat, and then allowed to cool, one of the resins deposits. The bituminous matter constitutes the principal part of amber: it is insoluble in alcohol, ether, the oils both volatile and fixed, and alkaline solutions.

Characteristics and Purity.—The resins copal and animi are sometimes substituted for amber. They may be distinguished by the difference in their colour and fracture, and by their not emitting the peculiar odour of amber when thrown upon hot iron 4. They do not yield succinic acid when submitted to distillation. Copal, during its combustion, is constantly falling in drops; and by this character may be distinguished from amber 5.

Physiological Effects.—Amber was formerly celebrated as a sti—

4 United States Dispensatory.
mulant and antispasmodic. It probably possesses little or no medicinal power.

Uses.—It is not employed as a medicine in this country. It was formerly used in chronic catarrhs, amenorrhoea, hysteria, &c., and was given either in the form of powder, in doses of from ten grains to a drachm, or in that of tincture, a formula for which is contained both in the French Codex and Prussian Pharmacopoeia.

1. Oleum Succini, L. D. Oil of Amber.—The following are the directions for the preparation of this oil:

The London College orders Amber to be put into an alembic, so that an acid liquor, an oil, and a salt, contaminated with the oil, may distil in a sand-bath, with a heat gradually increased. Afterwards let the oil distil again, and a third time.

The Dublin College directs, of Amber reduced to coarse powder, Pure Sand, of each one part. On the application of heat gradually increased, an acid liquor, oil and an acid in the crystallized form, will distil over. The latter should be received on bibulous paper, and exposed to strong pressure to expel the oil, and again sublimed. By filtration through bibulous paper, the oil may be obtained separate from the acid liquor.

The following mode of preparing this oil I have seen practised by an experienced manufacturer:—The amber is distilled in a large iron still or retort, set in brickwork over a proper fire, and connected with an earthen globe, which opens into an old oil jar for a receiver. Three distilled products are obtained: impure succinic acid, called volatile salt of amber; an aqueous liquor, termed volatile spirit of amber, consisting of water, acetic and succinic acid, and pyrogenous oil; and volatile oil of amber. The residue in the retort is a kind of pitch, and is called English asphalt. The oil is afterwards rectified by distillation in an iron pot, to which an earthen head is adapted. A very gentle heat suffices for re-distillation.

Scrappings of Copal and the resin Dammar are frequently substituted for amber. They yield no succinic acid, but a volatile oil scarcely distinguishable from genuine oil of amber.

Volatile oil of amber, when fresh drawn, has a pale yellowish colour, which deepens by age, and a strong and remarkable, but agreeable, odour. It is a powerful local irritant. When rubbed on the skin it acts as a rubefacient, and is sometimes employed in liniments in rheumatism and paralysis. Taken internally it operates like most other empyreumatic oils, on the nervous system, and is used as a stimulant, antispasmodic, and emmenagogue, in hysteria and amenorrhoea. The dose is from ten to fifteen drops. It is a constituent of the Tinctura Ammoniac composita (see p. 305), which is made in imitation of Eau de Luce, the history of which has been fully detailed by Beckmann.

Artificial Musk (Moschus artificialis; Moschus factitius) is prepared by adding gradually to it, of concentrated nitric acid to 5, of oil of amber, in a large glass tumbler. When the acid is not of sufficient strength, its action must be

by heat. The oil is gradually refined at the expense of the oxygen of
it, nitrous fumes being evolved. An orange yellow resin, having a peculiar
odour, is obtained; which is to be well washed with water to remove all
of acid. Artificial musk is reputed antispasmodic and nervous, and has
employed in hooping-cough and low nervous fevers. A tincture of it
(via Moschi artificialis) is prepared by dissolving 5j. of artificial musk in
rectified spirit. The dose is f.3.

ACIDUM SUCCINICUM. D. Succinic Acid or the Acid of Amber;
succini.—This acid is obtained in the distillation of amber.
mode of purifying it has been already stated. It may also be
red by the oxidation of stearic and margaric acids. It crystal-
 colourless white scales or prisms, which are quite volatile.
Succinic acid is composed of $C_4H_6O_3 = 108$. The sub-
acid is composed of $2\text{O} + \text{aq.} = 108$. It is soluble in water;
dy so in cold, but more so in boiling alcohol. It is almost in-
e in oil of turpentine, by which it is distinguished from benzoic
succinate of ammonia produces, with the salts of the sesqui-
iron, a brownish red, flaky precipitate (persuccinate of
and, with the salts of lead, a white precipitate (succinate of
Succinic acid is said to possess stimulant and antispasmodic
erties, and to promote perspiration and urine. It was formerly
ayed in rheumatism, gout, suppressed or repressed eruptions,
&c. It is now never used in medicine. The dose in which
formerly given was grs. v. to grs. xv.

V. COMPOUNDS CONTAINING CARBON AND NITROGEN.

OLEUM ANIMALE EMPYREUMATICUM.—EMPYREUMATIC

ANIMAL OIL.

hen animal substances (as bone or hartshorn) are subjected to
active distillation, a fetid volatile oil is obtained, which is com-
called Animal or Dippel's Oil. That which is found in com-
e is obtained in the manufacture of bone black (see p. 318). It
ical in its nature with the Oleum Cornu Cervi, or Oil of
horn, formerly used in medicine. As usually met with it is a
brown, viscid oil, having a most repulsive odour. By dis-
on, however, it may be rendered colourless and limpid, but
altered by the action of air and light. Its ultimate com-
ents are, Carbon, Hydrogen, Nitrogen, and Oxygen. It contains
monia, and therefore has an alkaline re-action. Unverdorben-
es that it contains four oily salifiable bases, to which he has
the names of odorine, animine, olanine, and ammoline. Reichen-
has obtained creasote from it, and ascribes to this principle
supposed virtues of animal oil. Whatever may be its active prin-
animal oil is undoubtedly a very powerful agent. In large
it acts as an energetic poison, operating in two ways, locally as
itant, remotely as a narcotic. Swallowed in moderate doses, it
stimulates the vascular and nervous systems, and is esteemed spasmodic. It has been employed as a local agent in bruises, grene, porridge, &c. Internally, it has been used to prevent an of epilepsy or ague, as a stimulant in low fevers, and as antispasmodic in hysteria and other affections of the nervous system in pain with convulsive movements. Bremsera used Chabert's oil, prepared by mixing three parts oil of turpentine with one part D1, oil, and distilling three parts) as an anthelmintic in tape-worm.

A dose of animal oil is a few drops, cautiously increased.

2. AC'IDUM HYDROCYAN'ICUM DILU'TUM, L.—DILUTED HYDROCYANIC OR PRUSSIC ACID.

(\textit{Acidum Hydrocyanicum, E.—Acidum Prussicum, D.})

\textbf{History.}—The substance called Prussian or Berlin blue (\textit{leum Borussicum seu Berolinense}) was accidentally discovered by Diesbach at the commencement of the 18th century, and various conjectures were soon offered regarding its nature. In 1746, Dr. Langrish published some experiments made with laurel water in an attempt to investigate its effects on animals1. In 1752, Macquer announced that Prussian blue was a compound of oxide of iron, and that the colouring principle which he could not isolate; and in 1772, G. Morveau concluded that this principle was of an acid nature. So in 1782, Macquer removed some of the mystery connected with Prussian blue by obtaining \textit{hydrous prussic acid} from it. In 1787 Berthollet obtained this acid to be a compound of carbon, nitrogen, and hydrogen.

In 1800 and 1802, Bohn and Schrader discovered it in laurel-water. Borda, Brugnatelli, and Rasori, first employed the acid in medicine from 1801 to 1806. In 1815, Gay-Lussac obtained the acid in its pure \textit{anhydrous} state, and explained its composition2.

\textbf{Synonymes and Etymology.}—It has been denominat\textit{ed} \textit{Prussic Acid} (\textit{Acidum Borussicum}), \textit{Zotic Acid} (\textit{Acidum Zooticum}), or \textit{Hydrous Acid}; the first name indicates the substance (Prussian blue), from which it was obtained, the second refers to its animal origin, and the third indicates its constituents, hydrogen and cyanogen (so that \textit{kýnawos, blue} and \textit{γεννάω, to produce}; because it is one of the principal constituents of Prussian blue).

\textbf{Natural History.}—Hydrocyanic acid is a product peculiar to the organised kingdom. It may be readily procured from many tables, more especially those belonging to the sub-orders \textit{Amygdalae} and \textit{Pomeae} as from Bitter Almonds, Apple-pips, the Kern of Peaches, Apricots, Cherries, Plums, and Damsons; the Flower of the Peach, Cherry-laurel, and Bird-cherry; the Bark of the latter, and the Root of the Mountain Ash. It is said to have been all

a \textit{Traité sur les Ices Vers Intestins.} Paris, 1834.
1 \textit{Physical Experiments upon Brutes.} Lond. 1745.
2 The chemical history of hydrocyanic acid is fully detailed in Thomson's \textit{System of Organic Chemistry}, vol. ii. 7th edition. The medical history of it is contained in Dr. Granville and Pratt, \textit{Treatise on this acid}, 2d ed. 1830.
from plants of other families, as from _Rhamnus Frangula_ and of Rye. In some of the vegetables now referred to, hydro-
acid does not exist ready formed, but is a product of the pro-
which it is obtained. This has been fully proved in the case
bitter almond, and is inferred in other instances.

acid is rarely, if ever, found in animals. One of its consti-
t(cyanogen) has, however, been detected, in combination with
forming Prussian blue) in the urine, the menstrual fluid, and
eat: and with sulphur and potassium in the saliva. The
ish-blue discharge of some ulcers probably depends on the pre-
Prussian blue. In one case I detected the presence of iron
discharge. During the decomposition of animal matters,
gen is frequently generated: as when blood and carbonate of
are calcined in an iron pot. It has also been stated, that
cheese is exposed to the action of water and the sun, it disen-
ammonia, and if treated, in this state, by alcohol, yields traces
rocyanic acid.

PARATION.—The processes for procuring this acid are very nu-
. I shall only notice the most important of those which yield
ite acid employed for medicinal purposes.

by the action of diluted Sulphuric Acid on Ferrocyanide of Pot-
a.—This is the process directed by the London and Edinb
es:—

London College orders of "Ferrocyanide of Potassium, \(\frac{3}{2}\)\; Sulphuric
ss.; Distilled Water, \(\frac{5}{8}\). Mix the acid with four fluidounces of the
and to these, when cooled and put into a glass retort, add the ferrocyanide
sium, first dissolved in half a pint of water. Pour eight fluidounces of the
into a cooled receiver; then, having adapted the retort, let six fluidounces
distilled with a gentle heat in a sand-bath, pass into this water. Lastly,
more fluidounces of distilled water, or as much as may be sufficient, that
ins of nitrate of silver, dissolved in distilled water, may be accurately sa-
by 100 grains of this acid."

Edinburgh College orders of "Ferrocyanide of Potassium, \(\frac{3}{2}\)\; Sulphuric
x.; Water, \(\frac{5}{8}\). Dissolve the salt in eleven fluidounces of the water,
t the solution into a matrass; add the acid, previously diluted with five
ounces of the water, and allowed to cool; connect the matrass with a proper
story; distil with a gentle heat, by means of a sand bath or naked gas
ill fourteen fluidounces pass over, or till the residuum begins to froth up.
the product with distilled water till it measures sixteen fluidounces."

he large scale, the distillation is conducted in a stoneware still,
warm refrigerator of the same material.

be performed in a [tubulated] retort, as directed in the London
acooëia, an adopter should be employed. When small quan-
to be operated on, we may conveniently employ two Florence
(one as the receiver, the other as the distilling vessel), connected
lass tube curved twice at right angles. The receiver should be
ever cool, ice or snow being used if it can be procured: and the

1. formation of cyanogen dependent on the oxidation of gelatine? Persy states, that when
is submitted to an oxidizing agent it is susceptible of being transformed into hydrocyanic
onic, and carbolic acid, and a small quantity of one of the fat, volatile, and odoriferous
existence of which was established by Cherrett (Brit. and For. Med. Rev. vol. xvi. p. 522).
heat employed in distilling should be very moderate. The distilled liquor frequently contains a little sulphuric acid, and, by standing, deposits a small portion of Prussian blue. A second distillation, cautiously conducted, will often separate the sulphuric acid; but I have seen Prussian blue formed after the hydrocyanic acid has been carefully distilled three times.

The theory of the process, founded on the experiments of Mr. Everitt, is as follows:—Six equivalents or 294 parts of oil of vitriol \((SO_3 + \text{aq.})\) react on two equivalents or 426 parts of crystallized ferrocyanide of potassium (composed of four equivalents cyanide of potassium, two of cyanide of iron, and six of water), and produce three equivalents or 384 parts of the bisulphate of potash, three equivalents or 81 parts of hydrocyanic acid, one equivalent or 174 parts of a new salt (which I shall term the bisferrocyanide of potassium), and nine equivalents or 81 parts of water. The bisulphate and the new salt remain in the retort, while the hydrocyanic acid with some water distil over. In the London Pharmacopoeia an additional quantity of water is employed to assist the condensation of the acid.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Cryst. Ferrocyanide</td>
<td>3 eq. Water ((3 \times \text{aq.}))</td>
<td>3 eq. Water</td>
</tr>
<tr>
<td>Potassium 435</td>
<td>3 eq. Water 27</td>
<td>3 eq. Hydrocyanic Acid</td>
</tr>
<tr>
<td>73 eq. Oxygen 24</td>
<td>3 eq. Hydrogen 8</td>
<td></td>
</tr>
<tr>
<td>3 eq. Cyanide 58</td>
<td>3 eq. Cyanogen 78</td>
<td>3 eq. Potash 144</td>
</tr>
<tr>
<td>Potassium 108</td>
<td>2 eq. Potas 130</td>
<td></td>
</tr>
<tr>
<td>1 eq. Cyanide Potassium 60</td>
<td>2 eq. Cyanide Iron 108</td>
<td></td>
</tr>
<tr>
<td>6 eq. Oil of Vitriol 294</td>
<td>6 eq. Water 54</td>
<td>1 eq. Biferrocyanide</td>
</tr>
<tr>
<td>16 eq. Sulphate Acid 240</td>
<td></td>
<td>Potassium</td>
</tr>
<tr>
<td>720</td>
<td>720</td>
<td></td>
</tr>
</tbody>
</table>

The salt here called biferrocyanide of potassium is termed, by Mr. Everitt, the yellow salt. I have prepared it with the greatest care, but have always found it to be white. Gay-Lussac also says it is white. By exposure to the air it becomes blue.

\(\beta.\) By the action of Hydrochloric Acid on Cyanide of Silver—This process, proposed by Mr. Everitt, yields an acid of uniform strength, and may be followed when the acid is required for immediate use.

In the London Pharmacopoeia it is stated that diluted Hydrocyanic Acid may be otherwise prepared, when it is to be more quickly used, from forty-eight grains and a half of Cyanide of Silver, added to a fluidounce of distilled water, mixed with thirty-nine grains and a half of Hydrochloric Acid. Shake all these in a well-stoppered phial; and, after a short interval, pour off the clear liquor into another vessel. Keep this for use, the access of light being prevented.

The proportions directed by Mr. Everitt are 40 grs. of cyanide, 7 fluidrachms and 20 minims of water, and 40 minims of dilute hydrochloric acid (sp. gr. 1·29). This gentleman says, that practitioners could obtain an ounce of the acid, prepared by this process, for one shilling, while the manufacturer could obtain 50 per cent profit by it.

theory of the process is as follows:—By the mutual reaction equivalent or 134 parts of cyanide silver and one equivalent or of hydrochloric acid, there are obtained one equivalent or parts of chloride of silver, and one equivalent or 27 parts of

<table>
<thead>
<tr>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Silver 134</td>
<td>1 eq. Hydrocyanic Acid</td>
</tr>
<tr>
<td>2 eq. Silver</td>
<td>100</td>
</tr>
<tr>
<td>chl* Acid 37</td>
<td>1 eq. Chloride Silver</td>
</tr>
<tr>
<td>1 eq. Hydrogen</td>
<td>171</td>
</tr>
<tr>
<td>1 eq. Chlorine</td>
<td>171</td>
</tr>
</tbody>
</table>

by the action of Hydrochloric Acid on Bicyanide of Mercury. At Apothecaries' Hall hydrocyanic acid was formerly prepared from bicyanide of mercury, one part hydrochloric p. gr. 1.15), and six parts of water. The mixture was distilled six parts had passed over. The acid thus obtained had 0.995, and its standard strength was such, that two fluid- tions of it dissolved 14 grains of the red oxide of mercury, indicating a strength of about 2-9 per cent. of real acid.

Hublin College orders Prussic acid to be prepared from Cyanuret of 3.4: Muriatic Acid, by measure, 3viij. Water, by measure, 3viij. Distil from a receiver, eight ounces, by measure, to be kept in a well-corked in a cool and dark place.

specific gravity of this acid is to the specific gravity of distilled water, 1.000.

most convenient method of procuring concentrated or anhydrocyanic acid, is by the action of strong liquid hydrocyanic acid on bicyanide of mercury. The vapour should be over carbonate of lime, to deprive it of hydrochloric acid; or chloride of calcium, to remove the water. The receiver should be immersed in a freezing mixture, consisting of ice and of sodium.

theory of the process is as follows:—Two equivalents or of hydrochloric acid react on one equivalent or 254 parts bicyanide of mercury, and form one equivalent or 274 parts dichloride of mercury, which remain in the retort, and two parts or 54 parts of hydrocyanic acid, which distil over.

<table>
<thead>
<tr>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>chl* Acid 74</td>
<td>2 eq. Hydrogen</td>
</tr>
<tr>
<td>2 eq. Chlorine</td>
<td>22</td>
</tr>
<tr>
<td>* Mercury 234</td>
<td>1 eq. Mercury</td>
</tr>
<tr>
<td>202</td>
<td>328</td>
</tr>
</tbody>
</table>

the action of Tartaric Acid on Cyanide of Potassium.—This was proposed by Dr. Clarke, and adopted by Mr. Laming. nula of the latter is the following:—22 grains of the cyanide of potassium are to be dissolved in 6 fluiddrachms of distilled water, his solution are to be added 50 grains of crystallized tartaric acid solved in 3 fluiddrachms of rectified spirit. One fluiddrachm decanted liquor contains one grain of pure hydrocyanic
The objections to this process (which, however, has several tages) are the trouble and expense of procuring pure cyanide of potassium, and the liability of the salt to undergo spontaneous decomposition.

The theory of the process is the following: Two equivalents of parts of crystallized tartaric acid, one equivalent or 9 parts of hydrogen and one equivalent or 66 parts of cyanide of potassium, react with each other, and produce one equivalent or 189 parts of the crystalline bitartrate of potash, which precipitates, and one equivalent or 225 parts of hydrocyanic acid, which remains in solution.

Properties.

a. Of Anhydrous Hydrocyanic Acid.—Anhydrous hydrocyanic acid is a solid at 0° F. (some state at 5° F.), having the appearance of crystallized nitrate of ammonia; it readily forms a limpid, colourless liquid, with an intense and pungent odour; its taste is at first cool, then hot; at 45° its sp. gr. is 1.16, and at 64° is 0.9669. In this state it is exceedingly volatile: if placed on paper freezes by its own evaporation. It unites with ether and alcohol in every proportion. At 79° or 80° F. it boils, forming hydrocyanic acid vapour, which is combustible; and when mixed with oxygen, explodes. Two volumes of the vapour require to it a half volumes of oxygen gas for their complete combustion. The products are two volumes of carbonic acid gas, one volume of nitrogen and one volume of aqueous vapour.

The following diagrams illustrate the composition as well as the products of the combustion of the gaseous acid when exploded by oxygen gas:

Anhydrous hydrocyanic acid undergoes speedy decomposition. Yet Dr. Christison says he has kept it unchanged for a fortnight in ice-cold water.

b. Of Diluted Hydrocyanic Acid.—Diluted or medicinal hydrocyanic acid is a colourless, transparent liquid, having the taste and odour of the strong acid, but in a lesser degree. Heated in a tube it gives a combustible vapour.
PRUSSIC ACID.

COMPOSITION.—The ultimate constituents of pure hydrocyanic acid are Carbon, Nitrogen, and Hydrogen.

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Theory</th>
<th>Gay-Lussac</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>2</td>
<td>12</td>
<td>44 4</td>
<td>44 45</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
<td>51 9</td>
<td>51 85</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>1</td>
<td>1</td>
<td>27</td>
<td>27 70</td>
</tr>
<tr>
<td>Hydrocyanic Acid</td>
<td>1</td>
<td>27</td>
<td>100 0</td>
<td>100 00</td>
</tr>
</tbody>
</table>

But it is more usual to regard this acid as a compound of hydrogen and cyanogen, the latter substance being a bicarburet of nitrogen. On this view the composition will be as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanogen</td>
<td>1</td>
<td>20</td>
<td>90 2</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>1</td>
<td>1</td>
<td>3 7</td>
</tr>
<tr>
<td>Hydrocyanic Acid</td>
<td>1</td>
<td>27</td>
<td>100 0</td>
</tr>
</tbody>
</table>

STRENGTH OF THE DILUTED ACID.—In the London Pharmacopoeia, hydrocyanic acid is directed to be prepared of such a strength that 100 grains of it will exactly precipitate 12.7 grains of nitrate of silver dissolved in water:—the precipitate, which is cyanide of silver, should weigh 10 grains. Five parts of this precipitate correspond to one of real acid. Hence the diluted acid Ph. L. consists of—

Real Hydrocyanic Acid	2 0
Water	98 0
Diluted Hydrocyanic Acid (Ph. L.)	100 0

The Acidum Hydrocyanicum Ph. Ed. consists of “Hydrocyanic Acid diluted with about thirty parts of water.” Hence its per-centag composition is as follows:

Real Hydrocyanic Acid	3 225
Water	96 775
Acidum Hydrocyanicum (Ph. Ed.)	100 000

The Edinburgh College gives the following directions for ascertaining its strength:

“Fifty minims [of the acid] diluted with one fluidounce of distilled water, agitated with 390 minims of solution of Nitrate of Silver [Ph. Ed.], and allowed to settle, will again give a precipitate with 40 minims more of the test; but no further addition of the test, after agitation and rest, has no effect. The precipitate entirely disappears in boiling nitric acid.”

The Acidum Prussicum Ph. Dub. contains only 1.6 per cent. of real acid.

This discrepancy in the strength of the acid ordered in the British Pharmacopoeias, is greatly to be regretted. Most of the acid met with in the shops of London chemists, is stated by the label to be of Scheele’s strength.” But as Scheele’s process gave an acid of
variable strength, this statement is by no means definite. A manufacturer of large quantities of the acid informs me he sells, under the name of Scheele's acid, a diluted hydrocyanic acid, which contains 4 per cent. real acid.

Purity.—Diluted hydrocyanic acid should be perfectly colourless. Decomposed acid is frequently, but not invariably, coloured. It should be vaporizable by heat: this character shows the absence of fixed impurities. The presence of metallic matter is recognized by the hydrocyanic acid, which has no effect on the pure acid. If the acid strongly reddens litmus, it must contain some other acid, probably the sulphuric or hydrochloric. The presence of any of these acids is easily determined by the formation of the hydrargyro-iodo-cyanide of potassium; a precipitate of white or pearly crystalline plates of this salt is immediately formed. If a small portion of this salt be placed in diluted hydrocyanic acid, no change is observed unless some foreign acid be present; the latter event the red biniode of mercury immediately makes its appearance. For this test we are indebted to Dr. Géoghe. Sulphuric acid may be detected by a solution of the salts of barium and lead; “Solution of nitrate of baryta occasions no precipitate” in the acid (Ph. Ed.); but if sulphuric acid be present, it occasions a white precipitate (sulphate of baryta), insoluble in nitric acid. Hydrochloric acid is recognized by nitrate of silver, which with white chloride of silver insoluble in boiling nitric acid is formed; whereas the white cyanide of silver is soluble in nitric acid at boiling temperature. I would observe, that the presence of a trace of these acids is of no further objectionable, than that it creates a difficulty in the determination of the strength of the hydrocyanic acid: while, on the other hand, it confers the advantage of rendering the hydrocyanic acid much less liable to decompose. The acid prepared from ferrocyanide of potassium will keep for years, though it was exposed to day-light), owing, it is supposed, to the presence of some sulphuric acid. Mr. Barry adds a little hydrochloric acid to his medicinal hydrocyanic acid, in order to stave off decomposition. As air and light hasten, though they are not essential to the decomposition of the acid, they should be carefully excluded.

Characteristics.—The following are the best tests for hydrocyanic acid:—

1. The odour.—The peculiar odour of hydrocyanic acid is known. It must not be confused with the odour of the volatile oil of bitter almonds. Orfila says, that this is the most decisive characteristic of the acid, since it is very marked when the latter tests give very slight indications only. But I have not found this to be invariably the case: it depends much on the nature of the substance containing the acid.
2. Formation of Prussian blue (Ferroesquicyanide of Iron).—Add sufficient caustic potash to the suspected acid to saturate it; then a solution of some proto- and sesqui-salt of iron: the common sulphate of iron of the shops, or the tincture of the chloride, answers very well, since both these preparations usually contain the two (proto- and sesqui-) salts of iron. A precipitate is thus obtained, which is liable to considerable variation in its colour, depending on the quantity of potash and the quality of the ferruginous salt employed; it may be yellowish brown, or greenish, or bluish. Then add dilute sulphuric or hydrochloric acid, when Prussian blue (ferroesquicyanide of iron) will immediately make its appearance, if hydrocyanic acid were present.

The formation of Prussian blue is thus accounted for. When potash is added to hydrocyanic acid, water and cyanide of potassium are generated. By the reaction of this salt on a proto-salt of iron the proto-cyanide of iron is produced, while with a sesqui-salt of iron it forms sesquicyanide of iron. The two ferruginous cyanides, by their union, constitute the ferroesquicyanide or Prussian blue.

The following diagram explains the reaction of nine equivalents of cyanide of potassium on three equivalents of the protosulphate, and four equivalents of the sesquisulphate of iron.

3. Nitrate of Silver.—This is by far the most delicate test of the presence of hydrocyanic acid. It causes a white precipitate of cyanide of silver, which is soluble in boiling nitric acid. By this latter character cyanide is distinguished from chloride of silver. If carefully dried cyanide of silver be heated in a small glass tube, it evolves cyanogen gas, known by its combustibility and the colour (violet or bluish red) of its flame.

4. Sulphate of Copper.—This test is applied as follows:—Supersaturate with potash, then add sulphate of copper. A greenish blue precipitate is obtained, which, by the cautious addition of a few drops of hydrochloric acid, becomes white, if hydrocyanic acid be present. The objections to the test are, that the results are not sufficiently striking, and that an inexperienced manipulator may fail in getting any evidence of hydrocyanic acid. When excess of potash is added hydrocyanic acid, we obtain water, cyanide of potassium, and oxide of copper. On the addition of sulphate of copper, hydrated oxide of copper, sulphate of potash in solution, and white cyanide of copper, are formed. The hydrochloric acid is added to redissolve the oxide of copper, leaving the white cyanide of this metal.

5. Tincture of Guaiacum and Sulphate of Copper.—If tincture of
guaiacum be added to a very dilute aqueous solution of hydrocyanic acid, a whitish precipitate (resin of guaiacum) is thrown down. If now a few drops of a solution of sulphate of copper be added, a blue colour is produced, which is rendered more intense by the addition of rectified spirit. Pagenstecher of Berne, first proposed tincture of guaiacum and hydrocyanic acid as a test for copper. I find that tincture of guaiacum and sulphate of copper, applied as directed above, form a very sensible test of the presence of hydrocyanic acid: but unfortunately it is not characteristic, since other agents also develop a blue colour with it. Thus spirit of nitric ether produces a blue colour with tincture of guaiacum.

Detection of this Acid in Cases of Poisoning.—As hydrocyanic acid is a substance which readily undergoes decomposition, it is not likely to be met with in bodies which have been interred for many days. It has, however, been recognized in one case, seven days after death, notwithstanding that the trunk had not been buried, but had been lying in a drain. In recent cases the acid is readily distinguished by its odour, with which, in some instances, the whole body is impregnated. The tests for this acid, already mentioned, will sometimes detect the poison in the filtered contents of the stomach; but the foreign matters present may, occasionally, prevent their characteristic action. The best mode of proceeding in that case, is, to introduce them into a tubulated retort, to add some sulphuric acid to neutralize any ammonia which might be generated by the process of putrefaction, and to distil by means of a vapour or water bath; then apply the tests already mentioned.

It has been suggested, that hydrocyanic acid may be formed during the process of distillation by the decomposition of the animal matters. But, as Dr. Christison has justly observed, the objection appears only to rest on conjecture, or presumption at farthest. It is to be recollected, that unsound cheese has, under certain circumstances, been found to contain this acid, as already mentioned. It is not improbable that it may be found in many animal substances during their spontaneous decomposition. It is said to have been detected in ergot of rye.

Physiological Effects. a. On Vegetables.—Hydrocyanic acid is a poison to plants. The stamina of Berberis vulgaris and the leaves of Mimosa pudica lose their irritability when the stems bearing them are immersed in the diluted acid. Seeds lose the power of germination by immersion in this acid. In those parts of lactescing plants which are poisoned by it, the milky juice does not flow from the cells or vessels in which it is contained. By chemical means it has been shown that the acid becomes absorbed. Ammonia has, in some cases, appeared to favour the recovery of plants which had been exposed to the vapour of the acid.

\(^6\) Macaire, Biblioth. Universelle, xxxi. 344.
\(^7\) De Candolle, Physiol. Végét. p. 1355.
\(^8\) Macaire, op. cit.
β. On Animals generally.—Hydrocyanic acid is an energetic poison to animals. Experiments have been made with it on the following:—Mammalia, Aves, Reptilia, Amphibia, Pisces, Gasteropoda, Annelida, Crustacea, Insecta, and Infusoria. The general effects are very similar on all classes, and consist essentially of loss of sensation and voluntary motion, with convulsive movements. Mr. Gray, however, states that some of the larvae of the common Musca having been put into hydrocyanic acid, remained uninjured after two or three days’ exposure. The cold-blooded animals are more slowly affected by hydrocyanic acid than the hot-blooded ones.

Dr. Christison states that 25 grs. of the strong acid, applied to the mouth, killed a rabbit within ten seconds. I once caused the almost instantaneous death of a rabbit by applying its nose to a receiver filled with the vapour of the pure acid; the animal died without the least struggle. If a drop of the pure acid be placed on the throat of a dog, or applied to the eye, death takes place in a few seconds. Inhaling the vapour decidedly produces death more quickly than any other mode of using the acid. If the pure acid be applied to the eye of a dog, it causes opacity and whiteness of the cornea, and a copious flow of tears. In a very short time it gives rise to constitutional symptoms.

γ. On Man. αα. In small or medicinal doses.—Small doses of hydrocyanic acid sometimes relieve certain morbid conditions (as of the stomach), without producing any remarkable alteration in the condition of the general system. If the dose be cautiously increased, and its operation carefully watched, the following effects are usually observed:—a bitter but peculiar taste; increased secretion of saliva; irritation in the throat; frequently nausea; disordered and laborious respiration (sometimes quick, at others slow and deep); pain in the head, giddiness, obscured vision, and sleepiness. The vascular system is in some cases not obviously, but in others much, affected, though not uniformly; its action being sometimes quickened, at others reduced in frequency. In some instances faintness is experienced. Drs. Macleod and Granville have noticed salivation and ulceration of the mouth during its medicinal use.

ββ. In poisonous doses: convulsions and insensibility (Epilepsy?): if death occur, it takes place slowly.—Immediately after swallowing the acid, a remarkably bitter taste is experienced; this is soon followed by a sensation of faintness and giddiness, with salivation, and is succeeded by tetanic convulsions and insensibility; the respiration is difficult and spasmodic; the odour of hydrocyanic acid may be recognized in the breath; the pupils are usually dilated, though sometimes contracted; the pulse is small or imperceptible. When recovery takes place it is usually very rapid, and the whole period of

2. For some remarks on the period of time which intervenes between the application of a poison and the first symptoms of its action, see p. 129.
suffering seldom exceeds half an hour. However, exceptions to this
exist, in which the symptoms have been prolonged for several hours.

The following case, related by Dr. Geoghegan, is an interesting illustration
of these effects:—A gentleman, aged 21, having been for some time subject
to an uneasiness in the stomach, not actually amounting to gastrodynia, but
having tried many remedies in vain, was induced to have recourse to
hydrocyanic acid. He commenced with one minim of the Dublin Pharma-
copoeia, sp. gr. 0·998: this dose he repeated twelve times the first day, with
no perceptible effect. On the following day he took half a drachm, with
the same result. The third day his dose was a drachm, which he repeated the fourth
day. On the fifth day he took a drachm and a half; still no effect of an
similar kind. On the sixth day he increased his dose to two drachms. In about
two minutes after taking this quantity, he experienced a sensation of
extreme bitterness in the mouth, and having walked a few paces, was affected
with great confusion, headache, and loud ringing in his ears. He now
suffered great difficulty in retracing his steps, and leaning forward on a table, became insensible
and fell backwards. In this state he remained altogether between three and five
minutes, during which time he was violently convulsed. Two drachms of the
spiritus ammonis aromatics were diluted with a little water, and applied
quickly as possible to the mouth, but as the teeth were clenched it could not
be swallowed. The solid sesqui-carbonate of ammonia was then applied assiduously
to the nostrils; its beneficial effects were soon apparent, and he was shortly able
to swallow a little fluid. Sensibility now speedily returned, and vomiting su-
pered, from which he experienced great relief; and at the expiration of half an
hour he was quite well, with the exception of pain and feeling of distension in
the head, which continued for the remainder of the day. After he had become
insensible, and while leaning on the table, his thighs became rigid, and he was
drawn up on the abdomen; and as he was about falling, he was caught and placed on the ground. The upper extremities were then observed to be all
rigid, and on drawing them from the side, they forcibly reverted to their form
position; the eyes were shut, the teeth clenched, and the muscles of the face vi-
ently convulsed. It is deserving of notice that the old complaint was completely
removed by this extraordinary dose.

γγ. In poisonous doses: death rapid with or without convulsions.—In
these cases the death is so rapid that, in the human subject, the
symptoms have scarcely been observed. They are probably similar to those noticed in animals,—viz. imperceptible pulse, breathing no
obvious, or there may be two or three deep, hurried inspirations, insensibility, and death. Convulsions may or may not be present.

The presence or absence of convulsions, as connected with the time within
which death occurs in these cases, is sometimes a matter of great moment. Some years
gone the life of a prisoner almost turned on this point. The following is an out-
line of the case:—An apothecary's maid-servant at Leicester, was found on
morning dead in bed. The body lay in a composed posture—the arms crossed
over the trunk, and the bed-clothes pulled smoothly up to the chin. At her right
side lay a phial, from which about five drachms of the medicinal hydrocyanic
acid had been taken, and which was corked and wrapped in paper. It was sus-
pected that she took the acid to occasion miscarriage, and that the apprentice
was accessory to its administration; in consequence of which he was put on
trial. Now, the important question for the consideration of the medical witness
was, could the deceased, after having drunk the poison, have had time to cork the
phial, wrap it up, and adjust the bed-clothes, before insensibility came on? It
was supposed that if the death were of that slow description to allow of these
acts...
of volition, convulsions would have occurred, and the bed-clothes would have been found disordered. On the other hand, those cases in which no convulsions occur usually terminate too quickly to allow of the above acts. The medical witnesses in the above case were not agreed in opinion: the majority thought that it was impossible the deceased could have had the power of corking the bottle. The jury very properly found the prisoner not guilty.

There are two points of inquiry connected with the action of this acid, which are interesting, more particularly in a medico-legal point of view—namely, the time at which the poison begins to operate, and the period in which it proves fatal. No absolute answer can be given to either of these questions, since the strength and quantity of the acid exhibited, and peculiarities (not known or understood) affect the result. Very strong acid, in large doses, begins to operate very speedily, especially if its vapour be inhaled. The diluted acid, on the other hand, sometimes does not produce any obvious effect for several minutes, and death may not occur for nearly half an hour. Of seven epileptic patients killed in one of the Parisian hospitals by hydrocyanic acid, some did not die for forty-five minutes. But I have not found the same quantity of the same acid kill different animals of the same species in the same period of time.

Morbid Appearances.—The post-mortem appearances in cases of poisoning by this acid are the following:—Glistening and staring expression of the eyes, but which, however, is not a constant phenomenon, since it was not observed in the seven Parisian epileptics: nor is it peculiar to this poison, for the same is observed after death by carbonic acid, and in other cases (Christison): the odour of the acid is oftentimes very obvious in the blood, brain, chest, or stomach: the venous system is usually gorged with blood, while the arteries are empty: the blood is, in many cases, fluid, dark, or bluish black, and viscid or oily: the vessels of the brain and spinal marrow are frequently gorged with blood; and the cerebral ventricles sometimes contain a serous or sanguineous liquor; the lungs are, in some instances, natural—in others, turgid with blood: the internal lining of the stomach is sometimes red.

It has been stated by Magendie, that, after death by the strong acid, the muscles are not sensible to the galvanic influence. But this condition is very rarely present; indeed I have never observed it in animals killed by this acid; though Dr. Christison has occasionally found it. I have examined a considerable number of animals (principally rabbits) destroyed by hydrocyanic acid, and have always found the muscles to be powerfully affected by the galvanic influence: nor have I once met with a single case in which the heart had ceased to beat when the chest had been laid open immediately after death.

Modus Operandi.—There are several interesting subjects of inquiry connected with the operation of hydrocyanic acid, which, as they are principally theoretical, I shall briefly notice under this head.
a. Local action. — Dr. Christison says that Robiquet’s fingers became affected with numbness, which lasted several days, in consequence of their exposure for some time to the vapour of this acid. This effect would appear to depend on the local action of the poison on the nerves, — a mode of operation which we are constrained likewise to admit in the case of some other narcotics. The alleviation of gastrodynia by hydrocyanic acid depends probably on this b-numbing effect. Some of the local effects produced by hydrocyanic acid are those of an irritant: such are, the acid impression made by the vapour on the nose and mouth — the ptyalism — the vomiting and purging — and the redness of the mucous membrane of the stomach.

β. Absorption. — That hydrocyanic acid becomes absorbed, is proved by its having been detected by Krimmer (quoted by Dr. Christison, p. 15), in the blood of animals poisoned with it, and by the odour of it exhaled by various parts of the body. The exhalation by the breath of the odour of the acid may sometimes serve to recognize the presence of the poison in the system.

γ. Are the remote effects of this acid caused by its absorption? — In many cases the operation of hydrocyanic acid on the system is so rapid, and death so speedily follows the application of the poison, that doubt has been entertained of its action being dependent on its absorption. The principal arguments which have been adduced in favour of the agency of absorption are the following: — first, that the acid produces no remote effects when applied either to the nerves or brain: secondly, that applied to the tongue or stomach, it operates as an energetic poison, although the nerves of these parts were previously divided: thirdly, that if the acid be applied to a part where circulation is arrested, the operation of the poison is prevented: fourthly, the activity of the acid is in proportion to the absorbing powers of the part with which it is placed in contact: fifthly, a sufficient time always elapses between its application to the body and the first symptom of its action, to admit of its operation by absorption.

δ. Organs affected. — The parts specifically affected by this acid are the brain and true spinal system. The pain in the head, the insensibility, and the coma, are evidence of the cerebral affection; while the tetanic convulsions depend on the disorder of the true spinal system. Marx mentions the following experiment performed by Wedemeyer and which shows the independent action of the acid on the spinal marrow: the spinal cord of a dog was divided between the last dorsal and first lumbar vertebrae, so that the hind legs were completely paralyzed and insensible to mechanical irritants: hydrocyanic acid was then introduced into one of the hin
in one minute, symptoms of poisoning commenced, the hind
well as the fore legs were violently convulsed,—and in twelve
utes the animal was dead. The affection of the respiratory and
culatory system produced by hydrocyanic acid is probably only
ordinary: that is, is the result of the influence of this agent over
parts of the nervous system from which the respiratory organs
heart derive their nervous power. The insensibility caused by
hydrocyanic acid occurs too rapidly, in many cases, to be the result
asphyxia caused by paralysis of the muscles of respiration.

Condition of the brain and spinal marrow induced by this
d.—The precise pathological condition of the brain and spinal
of an animal under the influence of hydrocyanic acid, cannot
positively determined, and is, therefore, a matter of conjecture.
swerve it may be, it is probably identical with that which occurs
an epileptic paroxysm, and with that produced by loss of
od: for the essential symptoms (insensibility and convulsions
curing suddenly) are the same in all three states,—and ammonia
been found to relieve them. Now Dr. Hall has shown that
convulsion from hemorrhage is spinal. Dr. Holst, Professor of
ateria Medica in the University of Christiana, Norway, told me of
case of epilepsy which had been under his care, and in which it
as observed that the pulse in one arm was always imperceptible
ing the paroxysm. On a post-mortem examination it was dis-
ered that an anomalous distribution of the arteries existed,—
that this arm was supplied with blood by the vertebral arteries,
ich derived it, through the basilar artery, from the carotids.
now the cessation of the pulse during the paroxysm proved that
irculation through these vessels was temporarily interrupted.
any similar interruption occur in poisoning by hydrocyanic
id?

Cause of death.—In most cases the immediate cause of death is
struction of respiration. In some instances it is stoppage of the
art’s action. There are cases, however, in which the death is too
mediate to be produced by obstructed respiration, while, on open-
g the chest, the heart is found still beating: this I have observed
periments on rabbits with strong hydrocyanic acid.

Cumulative effects.—Hydrocyanic acid is not usually regarded
an cumulative poison; but a case mentioned by Dr. Baumgärtner
oted by Dr. Christison), as well as some other circumstances, seem
avour the reverse opinion.

Uses.—We are indebted to the Italians (Borda, Brugnatelli, and
ori) for the introduction of hydrocyanic acid into the Materia
ica. It was first employed by them at the commencement of the
entury; namely, from 1801 to 1806.

Internal.—By the founders of the theory of contrastimulus this
acid was regarded as a powerful asthenic or contrastimulant, and,
therefore, as peculiarly useful in all diseases dependent on, or connected with, excitement. Hence it was employed in inflammatory affections. But subsequent experience has fully shown that in these cases it possesses little or no remedial power.

In this country the reputation of hydrocyanic acid, as a medicinal agent, is chiefly founded on its effects in alleviating certain painful (neuralgic) and spasmodic stomach complaints. It appears, from Dr. Granville's statements, that laurel-water (which contains this acid) was used in these affections by Hufeland, Haller, Thuesen, Swedianr, and Sprengel, between the years 1780 and 1796. But the first person who actually recommends hydrocyanic acid for them is Sprengel, in 1814. In 1819, Dr. A. T. Thomson detailed a case, which led him to infer that this acid would be an important agent in the treatment of dyspeptic affections. But the profession are principally indebted to Dr. Elliotson for a full investigation of its powers in these complaints.

Every practitioner is familiar with a stomach complaint in which pain of a spasmodic character is the leading symptom, but which is not essentially accompanied by pyrexia, as in gastritis—by tendency to faint, as in cardialgia—by indigestion, as in dyspepsia, nor by loss of appetite; though one or more of these conditions may attend it. By some nosologists (as Sauvages and Sagor) it has been regarded as a distinct disease, and has been termed gastrodynia. It is not unfrequently accompanied by vomiting and precordial tenderness, which, however, cannot be regarded as indicative of inflammation, for various reasons; one of which is the alleviation of it often obtained by the use of stimulants and antispasmodics. What may be the precise pathological condition of this malady I know not. Dr. Barlow thinks the primary disease to be irritation or excitement of the mucous membrane of the stomach, whereby a redundant, dense, membranous, and opaque mucus is secreted, which accumulates and oppresses the stomach. The pain he supposes to arise from a contractile effort of the stomach to detach and expel the offending matter: but the immediate and permanent relief sometimes obtained by the use of hydrocyanic acid, is, I conceive, almost fatal to this hypothesis. Some time since I prescribed the acid for a lady who had suffered for months with gastrodynia, and who was persuaded, from her sensations, she had some organic disease. The remedy acted in the most surprising manner: in a few hours, to the astonishment of herself and friends, she was apparently quite well, and has since had no return of her complaint. It can hardly be imagined, that irritation of stomach can be rapidly removed by a substance which is itself an irritant. For my own part, I conceive the affection to be, essentially, a disordered condition of the nerves supplying the stomach, or of the nervous centres from whence those nerves are derived; in other

2 Pharmacologia.
3 Numerous Cases illustrative of the Efficacy of the Hydrocyanic Acid in Affections of the Stomach. 1820.
4 Cyclopaedia of Practical Medicine, art. Gastrodynia.
Prussic Acid.

It is a gastric neuralgia. It is frequently, but not invariably, accompanied by the irritation of stomach alluded to by Dr. Row. But be the proximate cause of the disease what it may, the efficacious effects of the hydrocyanic acid, in some instances of it, are astonishing, while in others it totally fails. In all the cases in which I have tried it, I have obtained either perfect success or complete failure: I have met with no cases of partial relief. It not only relieves pain, but relieves vomiting, and in the latter cases, frequently a great deal of other remedies fail. Dr. Elliotson mentions the following stomach affections relieved by it:—1st, those in which pain at the back of the stomach was the leading symptom: 2dly, those in which the hydrodynia was accompanied by a discharge of fluid, constituting it is called pyrosis, or the water-brash: 3dly, when the excessive instability of the stomach produces vomiting; and, 4thly, those disorders of the stomach which, in some of their symptoms, resemble attacks of the heart. Dr. Prout has found it useful in gastrodynia and in colica pictumum.

I have also found it useful in a painful affection of the bowels, resembling that of the stomach, and which, therefore, might with strictness be termed enterodynia. The most remarkable case of this which I have met with, was that of a gentleman, a relative of one of my pupils. He had suffered, for several months, excruciating pain in the bowels, commencing daily about two o'clock, and increasing at night. It was, apparently, a consequence of an attack of the pleurisy. He had been under the care of several country practitioners, who had tried a number of remedies (including opium and disulphate of antimony) without the least benefit. I advised the employment of hydrocyanic acid, and accordingly five minims were administered with this to the commencement of a paroxysm: the remedy acted like a charm: the unpleasant symptoms immediately disappeared. Several doses of the acid were given before the period of the succeeding paroxysm, but the disease never returned; and after employing the acid for several days longer, he went back to the country completely cured.

I have seen hydrocyanic acid used with great success to allay inflammation of the lungs, without the necessity of drenching the lungs; of suspending the movement of the stomach, while in severe cases it smoothed the approach of death; of curing spasmodic cough, and of removing all the symptoms of spasmodic peristalsis. Experience has shown the fallacy of most of these state-claims.

Dr. Granville's Treatise before referred to; and also Magendie's Recherches sur l'emploi de Prussique, 1819.
ments. I have employed hydrocyanic acid in a considerable number of cases of phthisis, and have occasionally fancied that it relieved the cough and night-sweats; but these effects were only temporary. Cases of genuine spasmodic asthma are rare; but in two instances in which I have seen the acid employed, no relief was obtained. In allaying cough (especially the kind called spasmodic) I have, on several occasions, found it useful; but it has so frequently disappointed my expectations, that I now rarely employ it in any pulmonary diseases. I have never observed any ill effects from its use in these cases, though others assert they have. Dr. Roe* ascribes to this acid the power of curing simple hooping-cough, that is, convulsive cough unaccompanied by inflammatory symptoms. He gives it in conjunction with ipecacuanha and tartarized antimony. In two or three days after the use of these remedies, the violence of the paroxysms he says, is perceptibly diminished, and their duration shortened. To a girl of ten years of age he gave a minim and a half of the acid every quarter of an hour, for twelve hours. I have not found this practice so successful as Dr. Roe’s reports would lead us to expect.

It has been employed in affections of the nervous system. Cases of hysteria, epilepsy, chorea, and tetanus, have been published, in which this remedy has been found beneficial. I have seen it employed in the three first of these affections, but without any evident relief. It has been repeatedly used in hydrophobia, at the London Hospital, but without success. A most interesting case of its employment in this malady has been published in the *Lancet* (for May 10th, 1839). Under its use the hydrophobic symptoms subsided and typhus fever supervened, of which the patient, after some days, died. Dr. Hall* proposes that in addition to the use of this acid tracheotomy, as suggested by Mr. Mayo, should be tried.

Hydrocyanic acid has been administered as an anodyne in several painful affections; namely, cancer, tic-douloureux, rheumatism, &c. but, with a few exceptions, it has not been found serviceable.

As an anthelmintic it has been extolled by Brera; but the following fact, mentioned by Dr. Elliotson, will, I imagine, shew its true value:—“I have frequently employed it perseveringly without expelling one worm, when a dose of calomel has instantly brought away hundreds.”

β. External.—The local employment of the acid has not been attended with very great success.

In chronic skin diseases, especially impetigo, prurigo, and psoriasis, the acid has been recommended by Dr. A. T. Thomson to allay pain and irritation. Schneider, of Dusseldorf, has employed one drachm and a half of hydrocyanic acid, six ounces of spirit, and as much water, in scaly diseases attended with severe itching, especially eruptions upon the genital organs. On several occasions I have tried

*Lect. on the Nerv. Syst. p. 135.
PRUSSIC ACID.

...yanic washes in prurigo, but without obtaining any relief. Hiotson says he has found it efficacious in sores behind the ears, scabs of the face; and adds, to an irritable face it is very g, if employed before and after shaving. In cancer of the lusions containing this acid have been employed to allay the Frisch, of Nyborg. Osiander has also employed, in the disease, cherry-laurel water, the active principle of which is this In gonorrhœa, injections containing hydrocyanic acid have employed with benefit. Schlegel has tried also the cherry-water with the same result. Lastly, the dilute acid has been used as an effectual and agreeable mode of destroying vermin.

INSTRUCTION.—The best mode of exhibiting this acid interm the form of mixture. I generally give from three to five of the diluted acid, Ph. L., three or four times a day, in about an some mild vehicle (simple water answers very well). Gum, and some flavouring ingredients (as orange-flower water, ner on the continent) may be added. Some persons give it cold emulsion. In some cases of irritable stomach this is impossible.

wash, two fluidrachms of the dilute acid of the shops may be ed mixed with half a pint of distilled (or rose) water as a skin diseases. Frequently about half an ounce of rectified is added, and Dr. A. T. Thomson recommends, in addition to teen grains of acetate of lead. The external use of this acid, cases (more especially if there be sores) requires great caution. cts on the nervous system and on the pulse must be carefully d. In some cases it causes giddiness and faintness; and Mr. e says, in two instances it produced intermission of the pulse.

NOTES.—The most important agents in the treatment of poi by hydrocyanic acid, as well as by the substances which contain the cherry-laurel, bitter almonds, the volatile oil of these sub-, &c.), are chlorine, ammonia, cold affusion, and artificial respi-

Chlorine is the most powerful of these. It was first proposed by in 1822. It has been subsequently strongly recommended by er, Simeon, and Orfila. It should be applied both internally externally if possible. If chlorine water be at hand, this should n in doses of one or two tea-spoonfuls properly diluted with.

In the absence of this, weak solutions of the chloride [hypop] of lime, or the chloride [hypochlorite] of soda, may be admil. Nitro-hydrochloric acid, largely diluted, might be given one of the above agents could be procured. The patient be allowed to inhale, very cautiously, air impregnated with e gas (developed by the action of dilute hydrochloric acid on e of lime.) Enemata, containing chlorine water, or a solution ride of lime, should also be employed.

Ammonia.—The spirit of sal ammoniac was proposed by Mead ¹

¹ Meehan. Account of Poisons, 5th edit. p. 275, 1756.
as an antidote for laurel water. In 1822, ammonia was recommended by Mr. J. Murray as an antidote for hydrocyanic acid; and its value has been admitted by Buchner, Orfila, Dupuy, and Herbst: but it is certainly inferior to chlorine; and, therefore, should be used only in the absence of this. If the patient be able to swallow, the liquor ammonia, diluted with eight or ten parts of water, should be exhibited, and the vapour of ammonia or its carbonate inhaled: the latter practice is most important, and should not be omitted. Orfila says that ammonia is of no use when introduced into the stomach, but that the inhalation of the vapour will sometimes preserve life. Great caution is requisite in the employment of it (see p. 300). In the absence of ammonia the inhalation of the vapour of burnt feathers might be employed. Ammonia cannot be useful, as an antidote, by its chemical properties merely, since hydrocyanate of ammonia is a powerful poison.

γ. Cold Affusion has been strongly recommended by Herbst, and is admitted by Orfila to be a valuable remedy, though he thinks it inferior to chlorine. Herbst says that its efficacy is almost certain when it is employed before the convulsive stage of poisoning is over, and that it is often successful even in the stage of insensibility and paralysis.

δ. Artificial respiration ought never to be omitted. Of its efficacy I am convinced from repeated experiments on animals. I once recovered a rabbit by this means only, after the convulsions had ceased, and the animal was apparently dead. It is an operation easily effected, and will be found a powerful assistant to chlorine or ammonia, by enabling it to get into the lungs when natural respiration is suspended. To produce respiration, make powerful pressure with both hands on the anterior surface of the chest, the diaphragm being at the same time pushed upward by an assistant. Inspiration is effected by the removal of the pressure and the consequent resiliency of the ribs.

Other remedies (as turpentine) have been recommended, but they will not bear comparison (if, indeed, they possess any efficacy with those now mentioned. Blood-letting has been advised, in various subjects, when respiration has been established, and the s tis livid.

Order VIII. Compound of Boron and Oxygen.

Acidum Boracicum. Boracic Acid.

History.—Beccher¹ “was undoubtedly the first discoverer of boracic acid, though the credit of the discovery has usually been given to Homberg,” who, in 1702², obtained it in small shining plates, which

² Devergie, Med. Leg. t. ii. p. 825; also Lonsdale, op. supra cit.
⁴ Histoire de l’Académie Royale des Sciences, 1722; Mémoires, p. 30.
have been called Sedative or Narcotic Salt (Sal sedativum Hombergi). In the year 1776 it was discovered in the lagoons (Lagioni) of Tuscany by Hoefer and Mascagni, and more recently by Mr. Smithson Emmett, Dr. Holland, and Mr. Lucas, in the crater of Vulcano, one of the Lipari Islands.

Natural History.—Boric acid is peculiar to the inorganised kingdom. It is found both free and combined.

1. **Free Boracic Acid.**—The boracic acid **lagoni** of Tuscany are spread over a surface of about thirty miles. There are nine establishments for the manufacture of this acid; viz. at Monte Cerboli, Monte Rotondo, Sasso, Serazzano, Istelnuovo, San Frederigo, Lustignano, Lurderello, and Lago. They are the property of one individual (M. Tarderel, now Count de Pomerance), to whom they are the source of great wealth. The earth (principally calcareous) of this mine continually evolves aqueous and sulphurous vapours, which, when they rest with a fierce explosion, produce boracic acid. The phenomena are applicable to the supposition that water gains access to immense masses of sulphuriferous boron contained in the interior of the earth. By the mutual reaction of these substances, great heat, boracic acid, and sulphuretted hydrogen, will be evolved. The latter taking fire would produce water, sulphur, and phurorous acid. In consequence of being found at Sasso, native boracic acid is obtained the name of Sassoline.

2. **Combined with bases.**—Boric acid is found native combined with soda forming Trincal, and with magnesia (constituting Boracite). It is also found in minerals called Datholite, Botryolite, Schorl, Apprite, and Azynite.

Process of Manufacture.—Boric acid is obtained in Tuscany in the following manner:—"Round the more considerable fissures a cubic basin is dug, about four feet deep, and usually three or four yards across. These basins, which are called lagoni, being situated at different levels, the water of a rivulet is admitted into them, which, mixing with the black mud at the bottom, is made to boil up violently the issues of vapour within its circuit. The water is generally confined in each basin for twelve [twenty-four, Payen] hours at a time, during which period it becomes saturated to a certain extent with acid from the steam which has passed through it. It is then drawn off from the higher basin to one beneath it, where it remains an equal height of time, till at length it reaches a building at the bottom of the hill, in which the process of evaporation is conducted." Here it forms a reservoir or cistern, where it is allowed to repose till it has deposited the mud which it held in suspension. Having cleared itself of impurities, the water is then drawn off from the cistern into leaden pans, under which some of the natural steam is conducted.
by brick drains about two feet under ground, and by this heat is evaporated. This process requires about sixty hours, the water passing successively from the pans at the upper extremity into others at the centre, and from thence into others at the lower extremity of the building, by means of leaden siphons.

Fig. 69.

Boracic Acid Lagoons of Tuscany.

A, B, C, D. Lagoons.—The vapours enter at the bottom, and escape through the water into the air. When the water in the upper lagoon, A, is sufficiently charged with acid, it is allowed to run through the tube, a, into the lower lagoon, B. In this way it passes successively from B to C, from C to D, and from D into the reservoir, E.

E, F. Reservoirs or Cisterns.—In these the solution is allowed to rest, and deposit mechanical impurities. By the removal of the upper plug, p, the solution escapes into the upper evaporating pan, G.

G, G. Leaden Evaporating Pans.—They are supported by rafters, and are heated by the aqueous vapours, which enter at H and are confined in drains. The acid solution is conveyed from one pan to another by means of leaden siphons, i i.

Having arrived at a proper state of concentration, it is then conducted into wooden tubs, in which it cools for about five days, during which the crystallization of boracic acid takes place on the sides of the tubs, and on the stick in the centre. The acid having been removed from the tubs is placed in a basket to drain, and is then spread on the floor of a closed chamber, heated by vapour, to dry. The acid, thus prepared, is sent in casks to Leghorn.

* Tancred, op. supra cit.; also Borrow, op. supra cit.; and Payen, op. supra cit.
Boracic Acid may also be obtained by dissolving borax in hot water, and adding half its weight of oil of vitriol. As the solution is cooled, crystals of boracic acid (retaining a little sulphuric acid) are formed, which must be well washed. Or borax may be decomposed by hydrochloric acid, by which a purer boracic acid is produced.

Properties.—Crystallized boracic acid occurs in the form of transparent, pearly, hexagonal scales, which are odourless, sweet, scarcely acid, taste, and communicate a wine-red tint to the air. At 60° the crystallized acid requires 2566 times its weight of water to dissolve it, but only 2.97 times at 212°. It dissolves freely in spirit of wine. When sufficiently heated it evolves its characteristic smell, melts, forming a transparent liquid, which, on cooling, becomes a brittle glass (vitrified boracic acid).

Characteristics.—An alcoholic solution of boracic acid burns with a beautiful green flame. A hot aqueous solution of the acid renders paper brown, like the alkalis.

Before the blowpipe, boracic acid, and forms a glass which may be tinged blue by chloride of iodine, and rose-red by the perchloride of gold. A mixture of one part of vitrified boracic acid, finely powdered, two parts of flour, and twelve parts of oil of vitriol, evolves, by heat, the fluoride of boron, recognised by its forming dense white fumes in the air, and charring paper, wood, &c.

Composition.—The following is the composition of boracic acid:

\[
\begin{array}{ccc|c|c}
\text{Atoms} & \text{Eq. Wt.} & \text{Per Ct.} & \text{Berzelius} & \\
\text{Boric Acid} & 1 & 34 & 100\% & 100\%
\end{array}
\]

Physiological Effects and Uses.—Though sedative properties formerly ascribed to this acid, it is probably inert, or nearly so.
Cullen* gave it in large doses without observing that it produced no effect on the human body. It is, therefore, not employed in medicine; but it is extensively used in the manufacture of borax \(\textit{Soda Biboras} \).

ORDER IX. PHOSPHORUS AND PHOSPHORIC ACID.

1. PHOSPHORUS, L.—PHOSPHORUS.

History.—This substance was discovered, in 1669, by Brahe, the alchemist at Hamburg; and received its name from being luminous in the dark (from \(\phi\omega, \text{ light,} \) and \(\phi\iota\rho\omega, \text{ I carry} \)).

Natural History.—Phosphorus is found in both kingdoms of nature.

\[a. \] **In the Inorganised Kingdom.**—It is comparatively rare in the mineral kingdom. Various phosphates are found native, but in small quantities: Lime, Lead, Iron, Copper, Manganese, Uranium, and Yttrium, may be mentioned as examples. Phosphate of Lime is an important constituent of the exuviae entombed in the fossiliferous rocks.

\[b. \] **In the Organised Kingdom.**—Phosphoric acid, free, or combined with potash, or iron, is found in various vegetables. Phosphorus is a constituent of the bones of animals: in some cases it is in combination with oxygen, and a base, as in bones, urine, &c.; in other instances, as in the brain, it is uncertain in what form it exists.

Preparation.—Phosphorus is obtained from bone-ash, or more properly, from the sub- or two-thirds carbonate of ash. The bones of the sheep are preferred, as the ash which they yield is less compact, and more easily attacked by the acid. Sulphuric acid is gradually added to the bone-ash previously made into a thick sludge with water. Carbonic acid is evolved, while sulphuric acid and superphosphate of lime are formed. Water is added, and the mixture is boiled for four hours. The liquor is filtered and evaporated, and the liquid is transferred to a copper pan, and the charcoal added. The charcoal absorbs the carbonic acid, the superphosphate, setting free the phosphorus, which is volatile, and condensed in water contained in a copper receiver. It is afterwards purified by pressing it through shawmy leather under a strong pressure. It is subsequently moulded for sale into cylinders, by means of cold water, and sucking it up a slightly conical glass tube, which is then immersed in cold water, when the solidified stick of phosphorus falls out.

Properties.—It is a pale yellow, semitransparent, crystalline, highly combustible solid. Mitscherlich says the crystals are biauricular dodecahedrons; so that they belong to the regular system. Light, especially violet light, reddens it.

Its sp. gr. is 1.77. At ordinary temperatures it is flexible, and melts at 108°, and boils at 550° F. It gives

* Materia Medica, p. 341.
* For further details consult Soubeiran, Nouveau Traité de Pharmacie, t. ii. p. 260. 2°
* Ure, Dict. of Arts.
small quantity of vapour at ordinary temperatures. In the atmosphere its fumes are luminous in the dark, in consequence of a slow combustion: they have the odour of garlic. By keeping in water, phosphorus becomes coated by a white substance, by some regarded as an oxide, by others as the hydrate of phosphorus. By Rose it is considered to be phosphorus in a peculiar mechanical state. Phosphorus is insoluble in water, but soluble in ether, and the oils both fixed and volatile. It may be reduced to powder by melting it under water, and shaking in a closed vessel until cold. Its equivalent by weight is 16.

Characteristics.—Phosphorus, in substance, is easily recognized by its waxy appearance and garlic-like odour; by its fuming in the air, and being phosphorescent or luminous in the dark; by friction or gentle heat causing it to inflame; and, lastly, by its burning with a most intense white light and a white smoke of phosphoric acid, in air, or still better in oxygen gas. A solution of phosphorus in oil or ether, may be known by its garlic-like odour, and, when rubbed on the skin, by its rendering the latter luminous in the dark.

Physiological Effects. a. On Vegetables. — According to Darwin it is poisonous to plants.

b. On Animals generally.—Water impregnated with phosphorus acts as an aphrodisiac to drakes*. Phosphuretted oil is a stimulant to orses: blood drawn from the veins of horses under its influence as a phosphoric odour*. If phosphuretted oil be injected into the angular vein, or into the cavity of the pleura of a dog, white vapours of phosphorus are evolved from the mouth, and death shortly takes place. The phosphorous acid (formed by the combustion of the phosphorus) inflames the lungs in its passage through the delicate alveolar vessels. Introduced into the stomach of animals, phosphorus acts as a caustic poison. The corrosion is supposed to depend on the action of the phosphorous acid (formed by the combination of the phosphorus with the oxygen of the air contained in the alveolar canal) on the tissue with which it is in contact.

γ. On Man.—In small doses, phosphorus acts as a powerful and diffusible stimulant, exciting the nervous, vascular, and secreting organs. It creates an agreeable feeling of warmth at the epigastrum, increases the frequency and fullness of the pulse, augments the heat of skin, lightens the mental activity and the muscular powers, and operates as a powerful sudorific and diuretic. Its aphrodisiac operation has been recognized by Alphonse Leroy, and Bonttatz*, by experiments made on themselves. In somewhat larger doses it causes burning pain, vomiting and purging, with extreme sensibility of the stomach, which lasts for several days*. In still larger doses, it causes inflammation of the stomach and bowels. Its activity as a caustic poison depends, according to Orfila, on its absorbing oxygen, and thus be-
coming converted into an acid which acts as a corrosive, like the other mineral acids. Hence, therefore, ethereal and oleaginous solutions are more active poisons, inasmuch as the oxidation of the phosphorus is effected more rapidly. Comparatively small doses have in some cases proved fatal. Dr. Christison mentions one instance in which 12 grains, in another instance 3 grains, caused death. Cases, however, are reported, in which 6, 10, and even 12 grains have been swallowed without any hurtful effects; but doubts have been entertained as to the correctness of the statements. Thus Merat and De Lenc think that the phosphorus employed in these cases must have undergone some chemical change. I once administered 16 grains of apparently good phosphorus to a man without any injurious effect. The person here alluded to was Chabert, some years ago renowned in London under the name of the "Fire King." I carefully weighed the above quantity, which was placed in a spoon, introduced into his mouth, and washed down by a tumblerful of water. He offered to take this dose daily. Within ten minutes after swallowing the phosphorus, he left the room for about a quarter of an hour.

Uses.—In this country, phosphorus is rarely employed, and, therefore, it will be unnecessary to enter minutely into its uses. It has been strongly recommended in those cases attended with great prostration of the vital powers, as in the latter stages of typhus fever, dropsies, &c.; in some chronic diseases of the nervous system (as epilepsy, paralysis, melancholy, mania, amaurosis, &c.) occurring in debilitated subjects. In some of the exanthemata, as measles, it has been administered to promote the reappearance of the eruption when this, from some cause, had receded from the skin. In impotencia virilis of old and debilitated subjects, in cholera, and in some other maladies, it has also been exhibited. Paillard recommends phosphorus as a caustic, in the place of moxa, than which, he says, it is more convenient and safe.

Administration.—Phosphorus cannot be given with safety in the solid form. It may be administered dissolved in ether, or, still better, in oil.

Antidotes.—In poisoning by phosphorus, large quantities of mild demulcent liquids are to be exhibited, so as to envelop the phosphorus and exclude it from the air contained in the alimentary canal. Magnesia should be given, in order to neutralize the phosphates and phosphoric acids which may be formed. Parts burned with phosphorus are to be washed with a weak alkaline solution, to remove any adhering acid which might serve to keep up irritation.

1. Tinctura Aetheria Cum Phosphorio, French Codex. — (Phosphorus 4 parts, Sulphuric Ether 200 parts by weight. Macerate a month, in well-stoppered bottles covered with black paper, &c.)

* Treatise on Poisons.
* In the Morning Herald of June 17, 1840, is a report of an inquest held on the body of a child killed by sucking the phosphoric ends of lucifer matches.
* Dictionnaire de Maitre Medecine.
sionally shaking. Preserve it in small bottles, well stoppered and covered with black paper). The quantity of phosphorus dissolved is about 4 grains for each ounce of ether. Dose from 5 to 10 drops. Some objection has been raised to the use of this preparation on the ground that, by the evaporation of the ether, the phosphorus will be set free in the stomach, and might ignite.

2. **OLEUM PHOSPHORATUM, Ph. Borussica.**—(Phosphorus dry and cut into small pieces, gr. xij.; Almond Oil, recently prepared, xij. Melt the phosphorus in the oil by the aid of warm water; then agitate until it appears to be dissolved). One ounce of oil dissolves about 4 grs. of phosphorus. Dose from 5 to 10 drops. It should be administered in some mucilaginous liquid, or made into an emulsion. It may be *aromatized* by a few drops of some essential oil, as of bergamot.

2. **ACIDUM PHOSPHORICUM DILUTUM, L.**—PHOSPHORIC ACID.

History.—Phosphoric acid was first distinguished by Marggraf, in 1740.

Natural History.—(See Phosphorus).

Preparation.—In the London Pharmacopoeia, diluted phosphoric acid is ordered to be thus prepared:—

Take of Phosphorus, xij.; Nitric Acid, fiv.; Distilled Water, fiv. Add the phosphorus to the nitric acid, mixed with the water, in a glass retort placed in a sand-bath; then apply heat until eight fluidounces are produced (distilled). Let these be again put into the retort that eight fluidounces may distil, which are to be rejected. Evaporate the remaining liquor in a platinum capsule until only two ounces and six drachms remain. Lastly, add to the acid, when it is cold, as much distilled water as may make it accurately measure twenty-eight fluidounces.

In this process six equivalents or 96 parts of phosphorus react on five equivalents or 270 parts of nitric acid, and abstract fifteen equivalents or 120 parts of oxygen, with which they form six equivalents or 210 parts of phosphoric acid, while five equivalents or 150 parts of the binoxide of nitrogen are evolved.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 eq. Nitric Acid</td>
<td>270</td>
<td>5 eq. Binox. Nitrogen</td>
</tr>
<tr>
<td>10 eq. Oxygen</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>15 eq. Oxygen</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>6 eq. Phosphorus</td>
<td>96</td>
<td>6 eq. Phosphoric Acid</td>
</tr>
<tr>
<td>365</td>
<td></td>
<td>365</td>
</tr>
</tbody>
</table>

If strong nitric acid be employed, instead of the dilute acid ordered in the Pharmacopoeia, the re-action is so energetic that explosion and combustion are sometimes the consequence. In such cases some nitrate of ammonia is usually developed: the ammonia being formed by the union of the nitrogen of the acid with the hydrogen of the water.

Properties.—The aqueous solution of phosphoric acid (*acidum phosphorictum dilutum, Ph. L.*) prepared as above, is a colourless and odourless liquid. It possesses the usual characteristics of an acid;
that is, it is sour to the taste, reddens litmus, and neutralizes bases. Its sp. gr., according to the London Pharmacopœia, is 1.064. By evaporation it acquires the consistence of treacle (hydrated phosphoric acid): and when exposed to a higher temperature, it loses water and becomes pyrophosphoric acid. At a dull red heat a further evolution of water takes place, and a compound is formed, called metaphosphoric acid: this is fusible, and by cooling concretes into a transparent solid, called glacial phosphoric acid.

Characteristics.—If phosphoric acid be saturated with an alkali (soda) so as to form a soluble phosphate, it may be distinguished from all other acids by the following characters:—it throws down, with the soluble salts of lime, lead, and baryta, white precipitates (phosphates) soluble in nitric acid: with the nitrate of silver it causes a yellow precipitate (subsequeousphosphate of silver) soluble in nitric acid and in ammonia: hydrosulphuric acid causes no change of colour or precipitate with it: if the soluble phosphate be heated to redness, it is converted into a pyrophosphate, which gives, with the nitrate of silver, a white precipitate (pyrophosphate of silver).

Purity.—The following are the qualities of this preparation, as given in the London Pharmacopœia:—

"Chloride of barium or nitrate of silver being added, whatever is thrown down is readily dissolved by nitric acid. Strips of copper and silver are not at all acted upon by it, nor is it coloured when hydrosulphuric acid is added. Its sp. gr. is 1.064; 42 grs. of [crystallized] carbonate of soda are saturated by 100 grs. of this acid, and nothing is thrown down."

The chloride of barium is to detect sulphuric acid: while the nitrate of silver detects hydrochloric acid. Should any free nitric acid be present, a portion of the copper and silver would be dissolved; and the solution would yield a dark precipitate with hydrosulphuric acid. The quantity of carbonate of soda saturated indicates the per centage strength to be 10.5. The absence of any precipitate, on the addition of carbonate of soda, shows that no phosphate of lime or any other earthy phosphate is present.

Composition.—Pure anhydrous phosphoric acid is thus composed:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorus</td>
<td>1</td>
<td>16</td>
<td>44.44</td>
<td>44.05</td>
<td>44.8</td>
<td>43.6</td>
</tr>
<tr>
<td>Oxygen</td>
<td>32</td>
<td>20</td>
<td>55.56</td>
<td>55.95</td>
<td>55.2</td>
<td>55.4</td>
</tr>
</tbody>
</table>

Phosphoric Acid | 1 | 36 | 100.00 | 100.00 | 100.0 | 100.0 |

Mr. Phillips says, that 100 grains of the diluted acid of the Pharmacopœia saturate 42 grains of [crystallized] carbonate of soda. This indicates its composition to be as follows:—

By Weight.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphoric Acid</td>
<td>10.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Water</td>
<td>89.5</td>
<td>89.5</td>
</tr>
</tbody>
</table>

Diluted Phosphoric Acid, P. L. 100.0

Physiological Effects. a. On Vegetables.—This acid is poisonous to plants.

Gaspert, quoted by De Candolle, Phys. Végét.
PHOSPHORIC ACID.

3. On Animals.—Very few experiments have hitherto been made with it on animals. Orrilla found that a strong solution of it acted like sulphuric acid. Thrown into the veins of a dog, it coagulated the blood and killed the animal within ten minutes. Introduced into the stomach, it acted as a powerfully corrosive poison.

γ. On Man.—Diluted phosphoric acid produces the usual effects of the diluted mineral acids, and which I have before noticed (pp. 189, 201, and 212). It is, therefore, denominated tonic and refrigerant, and may be employed wherever the mineral acids are indicated. It is milder, more assimilable, and, therefore, less likely to disagree with the digestive organs, than sulphuric acid, with which, in its action, it is usually compared. These qualities it perhaps derives from its being, as Burdach expresses it, “less heterogeneous to the human organism, since it has a considerable share in the composition of it.” The same authority also observes, that besides fulfilling the indications of the mineral acids, “it much exalts the excitability when the organism is weak.”

Various effects have been ascribed to this acid, which require to be further investigated ere they are admitted. Thus Hecker says, it exerts a special influence over the nervous system, in virtue of which it possesses the power of allaying pain and spasm. Lentin considers it to be endowed with the specific power of influencing secreting surfaces and the bones, whereby it is enabled to ameliorate various morbid conditions of these parts. Sundelin regards it as a stimulant and tonic to the sexual organs. Various effects have been ascribed to it by Herder.

Uses.—Phosphoric acid has been employed in the same cases in which sulphuric and other mineral acids have been used, and under the same regulations. It may be employed for a longer period, without disturbing the digestive functions, than the other agents of this class.

It has been used in certain cases rather on theoretical than practical grounds. Thus its power of dissolving phosphate of lime has led to its employment in those forms of lithiasis attended with phosphatic deposits in the urine,—in ossification of the arteries and cardiac valves,—and in exostosis and other osseous tumours. Lentin used it as a local agent to check caries, from a notion that this disease depends on a deficiency of phosphoric acid in the part affected. Woulff applied it to promote the formation of bone.

There are several other diseases against which this acid has been administered. Thus it has been given in blenorrhoea and leucorrhoea, when the secreted fluid was thin and acrid (Sundelin),—in purulent suppuration, to diminish the quantity and improve the quality of the secreted matter,—in hysterical affections of young and irritable

subjects, Sundelin has found it useful,—in impotency of the members (Berends),—in diabetes, and in jaundice. Dr. Paris1 has found it to assuage the thirst so commonly present in diabetes, more effectually than any other acidulated drink.

Administration.—Internally the dilute phosporic acid should be given in doses of from ten minims to a fluidrachm, properly diluted. Mixed with eight or ten times its volume of water, it may also be employed as a wash in caries.

Antidotes.—(See **Sulphuric Acid**.)

ORDER X. SULPHUR AND ITS NON-METALLIC COMPOUNDS.

1. Sulphur, L. E.—Sulphur or Brimstone.

History.—Sulphur has been known from the most remote periods of antiquity. It is mentioned by Moses2, Homer3, and other ancient writers.

Natural History.—It is found in both kingdoms of nature.

\textit{a. In the Inorganised Kingdom.}—Native or virgin sulphur occurs in two forms: either imbedded in rocks (common native sulphur), or produced by sublimation (volcanic sulphur). In Sicily4 it is found in beds in a blue clay formation, which, in the opinion of Dr. Daubeney, is more recent than chalk, but is of the same age with the gypsum beds in the neighbourhood of Paris. Solfa5 (called by the ancients Forum Vulcani or the Court of Vulcan), a kind of an extinct volcano, in the vicinity of Naples, is celebrated for its native sulphur which is collected in considerable quantities for the purposes of commerce. Sulphur is also found in the mineral kingdom in a state of combination. The sulphurous acid gas rises out from volcanoes. Sulphuric acid is found both in the free and combined states: hydrochloric acid gas is evolved from the pure sulphurous or hepatic waters (see p. 267), and from the soil in other places; lastly, sulphur is found in combination with metals. Dr. Thomson mentions fourteen native sulphurcet and seventeen sulphur salts.

\textit{b. In the Organised Kingdom.}—Sulphur is found in Liliacese (as in garlic in Cruciferae (as in mustard)); in Umbelliferae (as in asafoetida), and in many other orders of plants. The alkaline and earthy sulphates are frequently mixed with vegetables. Sulphur is also a constituent of some animal substances (thus it is found in eggs, urine, &c.) sulphates are found in the urine.

Preparation.—Sulphur is procured in two ways; by the purification of native sulphur, or by the decomposition of the native sulphurcets. The sulphur of British commerce is almost exclusively obtained in the first way. It is brought principally from Italy and Sicily. During the year 1830 no less than 236,338 cwt. of regular brimstone were imported from Italy and the Italian islands6.

\textit{a. Purification of native sulphur.}—In Sicily, from whence most of this substance is procured, the native sulphur is submitted to

1 Appendix to the 8th ed. of the Pharmacologia. Lond. 1836.

2 Genesis, xix. 24.

3 Iliad, lib. xvi.

4 Some mineralogists entertain the opinion that Sicilian sulphur is of organic (animal) origin. See Athenaeum for December 1st, 1838; also Leonhard, Handbuch der Orthognosie, S. 399. Heidelberg 1825.

5 Sir W. Hamilton, Campi Phlegraei, 1776.

6 Outlines of Mineralogy, &c. vol. 1. p. 76.

7 Parl. Pet. 367, ordered to be printed, April 1832.
process of fusion: it is collected in heaps, which are set fire to the surface: the heat developed by the combustion of one portion another.

Another mode of purifying native sulphur is to distil it in earthen pots. These are arranged in two rows in a large oblong furnace, fig. 71 (1, 1), the top of each pot, which serves for the introduction of the sulphur and for the removal of the residuum, being kept closed during the operation. The upper and lateral part of each pot communicates with an inclined tube of about two inches diameter and fourteen long. When the fire is lighted in the furnace, the sulphur fuses and sublimes, and passes through this tube into another pot, placed on the outside of the furnace, and perforated near its top to allow the melted sulphur to flow into a pail (3) containing water, where it congeals, and forms the rough or crude sulphur (sulphur crudum).

Crude sulphur is purified in this country. The process formerly adopted was to submit it to fusion in an iron cauldron: the earthy impurities subsided, and the liquid sulphur was ladled out and cast into moulds. The improved method of purification is to submit it to distillation in an iron still.

Fig. 72.

1. Iron Still.
2. Communication between the still and the Sulphur chamber (d).
3. Pipe by which this communication can be cut off.
4. St Pipe, one end of which opens into the chamber, the other dips into water.
5. Communication between the still and the receiver (g).
7. Water butt which supplies cold water, by the pipe to cool the distilled sulphur, and afterwards runs off at k.

* Daubeney, *Description of Volcanoes*, p. 197.
* Dumas, *Traité de Chimie*, t. 1er, p. 121.
For this purpose crude sulphur is put into an iron pot (fig. 70), set in brickwork, over a proper fire. To this is adapted an iron head (a), removable by a crane, and communicating by two tubes or necks (b and f), the one with the sulphur chamber (d), the other with the iron receiver (g), which is immersed in water. The communication (f) between the still and the receiver being shut off, the sulphur distils into the sulphur chamber (d), on the walls of which it is deposited in a pulverulent form. When obtained in this state it is called Flowers of Sulphur. The door into this chamber is placed near the ground, and is closed when the process is going on. If the communication (b) between the still and the sulphur chamber be shut off by turning the handle (e), and the communication (f) between the still and the receiver (g) opened, the sulphur distils over and condenses into a liquid which, when solidified, constitutes the refined sulphur of commerce. The elbow-pipe, which forms the communication between the still and the receiver, is encased in a metal jacket, between which and the tube a current of cold water is continually flowing from the butt (i), and, after passing around the receiver (g), escapes at k. The top of the receiver is perforated by a vent pipe (b), and is supplied with a circular aperture (by which the liquid sulphur can be laddled out), usually kept closed by a moveable lid.

The Stick, Roll, or Cane Sulphur (Sulphur in baculis; Sulphur in rotulis; Sulphur rotundum) is refined sulphur which has been cast in wooden moulds.

Sublimed Sulphur (Sulphur sublimatum, L. D.), commonly termed Flowers of Sulphur (Flores Sulphuris), is apt to be contaminated with a little adhering acid (formed by the oxidation of sulphur), which, in both the Edinburgh and Dublin pharmacopoeias, is ordered to be removed by washing.

The Edinburgh College orders Sulphur sublimatum to be thus prepared:—

"Sublime sulphur in a proper vessel; wash the powder thus obtained with boiling water in successive portions till the water ceases to have an acid taste: then dry the sulphur with a gentle heat."

The Sulphur lotum of the Dublin Pharmacopoeia is prepared by pouring hot water on sublimed sulphur, and repeating the washing so long as the effused water appears contaminated with acid. This is discoverable by means of litmus. The sulphur is then to be dried on bulblous paper.

β. Decomposition of Metallic Sulphurets.—In some places sulphur is procured by the decomposition of metallic sulphurets (of iron and copper). In Anglesea, it is (or was) prepared by roasting copper pyrites, by which part of the sulphur is burned, while the remainder is volatilized and collected in chambers connected with the domes of the furnaces by means of horizontal flues.

The dregs remaining after the purification of sulphur are called Horse Brimstone (Sulphur vicum; Sulphur caballinum; Sulphur griseum).

Properties.—At common temperatures, pure sulphur is a brittle
crystallizable solid, of a yellowish-green colour, without smell, and
with a very weak and almost imperceptible taste. Its specific gra-
visibility is about 1·99, but, when free from air-bubbles, 2·087. It is a bad
conductor of electricity; and, therefore, by friction becomes power-
fully electric. It is a bad conductor of heat, and when grasped in the
warm hand, crackles, and sometimes breaks to pieces. It is fusible,
volatile, and combustible. In atmospheric air it burns with a
pale blue flame, and emits a large quantity of fumes having a peculiar
suflocating odour (sulphurous acid).

It is called dimorphous, because it is capable of crystallizing in
forms belonging to two systems of crystallization. Thus, crystals of
native sulphur, and those deposited from solutions of sulphur, belong
to the right prismatic system; while crystals obtained by fusion and
slow cooling of sulphur are referrible to the oblique rhombic prismatic
system. It is temperature which determines the form: crystals which
are formed at a temperature below 232°, belong to the right prismatic
system; on the other hand, those produced at 232°, belong to the
oblique system.

When sulphur is heated to 340°, it becomes viscid; and, by in-
creasing the heat, the viscosity increases, until the temperature arrives
at between 400° and 500°. If, while in this state, it be suddenly
cooled, as by throwing it into water, it remains quite soft, so that it
may be drawn out into threads. The cause of this change, which
seems to be merely physical, is not understood. The atomic weight
of sulphur is about 16.

Characteristics.—Sulphur is easily distinguished from other bodies,
by its colour, its fusibility, its volatility, and its burning with a blue
flame, and the evolution of sulphurous acid gas, the odour of which
can be easily recognized.

Impurities.—Rough sulphur is always mixed with variable quan-
tities of foreign substances. Vauquelin® distilled 200 grains, and ob-
tained a residuum of 0·82, composed of silica, carbonate of lime, iron,
bituminous charcoal, alumina, and magnesia, but the proportion of
earthy matters is generally more considerable. Sulphur obtained
from pyrites sometimes contains orpiment (sesquisulphuret of arse-
nicum). The purity of any specimen is determinable by dissolving it
in oil of turpentine, which does not act on the foreign matters. It
should be perfectly volatile.

At a temperature of 600° sublimed sulphur totally evaporates. When washed
with water, it does not alter the colour of litmus. Ph. Lond.

Litmus detects the presence of any free acid (sulphurous or sulphuric
acid).

Physiological Effects. a. On Vegetables.—Sulphur does not
appear to be injurious to vegetables, for seeds vegetate and produce
thriving plants when sown in sulphur.

b. On Animals.—At the veterinary school of Lyons it was found
that a pound of sulphur killed horses by producing violent inflam-

— Ann. de Chim. 25, 50.
mation, recognizable during life by the symptoms, and after death by the morbid appearances.*

γ. On Man.—In small and repeated doses sulphur acts as a gentle stimulant to the secreting organs, especially to the skin and the mucous membranes, particularly the bronchial membrane. It promotes the capillary circulation of these parts, and increases their secretions. Sundelin⁸ says it operates specifically on the mucous membrane of the rectum, and thereby promotes critical hemorrhoidal secretions. That it becomes absorbed is shewn by the odour of hydrosulphuric acid which it communicates to the sweat, urine, and milk, and by silver articles becoming blackened in the pockets of patients who are under the influence of it. By the German physicians it is called a resolvent, and is ranked with the mercurial and antimonial preparations.⁹

“From mercurial and antimonial medicines," says Sundelin, "sulphur is distinguished by its great diffusibility: in virtue of which it approximates to the exciting tonic agents; and also by its not possessing the liquefacient properties of these agents.”

In larger doses (as one or two drachms) sulphur acts as a mild purgative, without exciting the pulse or occasioning griping. As the stools are usually solid, Dr. Paris³⁷ concludes that the action of sulphur on the bowels is confined to the muscular coat.

Uses.—Sulphur is employed both internally and externally.

α. Internally.—It is given for various purposes. In affections of the rectum, as stricture, hemorrhoids, and prolapsus, it is a valuable agent as a mild purgative. I have frequently employed it in these cases as a substitute for castor oil. In order to promote its purgative effect, it will be sometimes necessary to conjoin magnesia or the bitartrate of potash. In chronic cutaneous diseases, more especially prurigo, impetigo, and scabies, the internal use of sulphur is sometimes attended with great benefit. In pulmonary affections, as chronic catarrhs and asthma, it is said to be sometimes useful. In rheumatic and gouty affections also. After an attack of acute rheumatism, when the joints are left in a swollen and painful state, I have seen sulphur prove highly useful. It is popularly taken with ardent spirit in this complaint. It has been employed as an antieptic. Vogt employs it as a resolvent in inflammation: as in croup, bronchitis, peripneumonia, and abdominal inflammation. In some constitutional diseases (as scrofula and secondary syphilis) it has been used as an alternative. Tortual has proposed sulphur, as a preservative against measles: but, as might be expected, experience shews sulphur possesses no prophylactic power of this kind, and that the only preservative is isolation.

β. Externally.—Sulphur is a most valuable remedy in various skin diseases, more especially scabies; and notwithstanding many substances have been proposed for it in the latter disease, none are

* Christison's Treatise on Poisons.
* Heilmittei. Bd. 1, S. 196.
† See p. 196.
generally successful. It is supposed by some that its curative powers
in this disease depend on its poisonous influence over the so-called
itch-insect (Sarcoptes Hominis of Raspail, the Acarus Scabiei of other
writers): a little parasite belonging to the class Arachnida of articu-
lated animals, and, therefore, improperly termed an insect."

Fig. 73.

Sarcoptes Hominis—(Raspail.)

But before adopting this explanation of the *modus medendi* of
sulphur, it is to be proved that the animal is the cause of the disease;
for, at present, it has not been satisfactorily shown whether it be the
cause, effect, or mere accompaniment of itch. Rayer* observes, that
it is indubitable that the number of these insects bears no proportion
to that of the vesicles. “It is, further,” he adds, “rare to discover
these insects on the abdomen and on groins, where the eruption of
cabies is nevertheless very common and very apparent; moreover,
cabies is known to continue when no more acari are to be discovered.”
Sulphur is also a most valuable application in various other skin
diseases, as porrigo, impetigo, &c.

Administration.—Internally, it is usually given with syrup, or
mlecule, in the form of an electuary, or suspended in milk. The dose
of it, as a purgative, is from one to three or four drachms. As an
iterative and sudorific, the dose is about half a drachm.

1. **UNGUENTUM SULPHURIS, L. E. D. Sulphur or Brimstone Oncinent.** (Sulphur [sublimed] 5ij. [3j. E.; lbj., D.]; Hog’s lard, lbss.
Siv., E.; lbiv., D.) Mix them thoroughly together.—The London
College adds of Oil of Bergamot, 3xx.) Extensively employed in
cabies, porrigo, and other skin diseases. In scabies, it is to be
applied every night until the disease is cured.

2. **UNGUENTUM SULPHURIS COMPOSITUM, L. Compound Sulphur
Ointment.—(Sulphur, lbss.; White Hellebore, powdered, 3ij.; Ni-
trate of Potash, \(\frac{5}{4}\); Soft Soap, lbss.; Lard, lbjss.; Oil of Bergamot, m\(\frac{m}{xxx}\). Mix.) This is employed in the same cases as the preceding preparation, than which it is considered more efficacious, but at the same time more irritating.

3. SULPHUR PRECIPITATUM; Precipitated Sulphur; Lae Sulphuris or Milk of Sulphur.—This preparation was known to Geber. It is prepared by boiling together sublimed Sulphur, one part; Slacked Lime, two parts; and Water eight parts. To the filtered solution is to be added a sufficient quantity of Hydrochloric Acid to precipitate the whole of the sulphur, which is collected and dried in a stove.

The theory of the process is the following:—When sulphur and lime are boiled in water, six equivalents or 96 parts of sulphur react on three equivalents or 84 parts of lime, and produce two equivalents or 104 parts of bisulphuret of calcium, and one equivalent or 76 parts of the hyposulphite of lime. By the action of three equivalents or 111 parts of hydrochloric acid on these two salts, we obtain three equivalents or 168 parts of chloride of calcium, six equivalents or 96 parts of sulphur, and three equivalents or 27 parts of water.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>INTERMEDIATE COMPOUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 eq. Hydrochl.</td>
<td>3 eq. Hydr.</td>
<td>3 eq. Water</td>
</tr>
<tr>
<td>Acid…</td>
<td>111 eq. Chl.</td>
<td>3 eq. Chl. Calc.</td>
</tr>
<tr>
<td>1 eq. Lime</td>
<td>28 eq.</td>
<td>1 eq. Lime</td>
</tr>
<tr>
<td>2 eq. Oxyg.</td>
<td>16 eq.</td>
<td>1 eq. Oxyg.</td>
</tr>
<tr>
<td>2 eq. Calc.</td>
<td>40 eq.</td>
<td>2 eq. Calc.</td>
</tr>
<tr>
<td>2 eq. Sulph.</td>
<td>64 eq.</td>
<td>2 eq. Sulph.</td>
</tr>
<tr>
<td>4 eq. Sulph.</td>
<td>64 eq.</td>
<td>4 eq. Sulph.</td>
</tr>
</tbody>
</table>

Precipitated sulphur agrees in most of its properties with sublimed sulphur, but is much whiter, and is in a finely pulverulent form. Berzelius says, that when melted, it gives out a little sulphuretted hydrogen; and on cooling, resumes the yellow colour it had before it was boiled with the alkali. H. Rose ascribes the whiteness of precipitated sulphur to its containing sulphuretted hydrogen in the state of persulphuret of hydrogen.

It is composed of sulphur with a little water; and hence it is frequently termed hydrate of sulphur. According to Bucholz, however, when well dried, it contains hardly a trace of water, and, therefore, that which, under ordinary circumstances, is contained in it, must be regarded as hygroscopic; so that the term hydrate is not strictly applicable to it.

On account of the extensive adulteration of this preparation, it has been omitted from all the British pharmacopoeias. In the prepara-
nearly the whole of the precipitated sulphur of the shops, this acid is substituted for hydrochloric acid, by which the pro-
tains about two-thirds of its weight of sulphate of lime.
weitze analyzed a sample, and found its composition to be:

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphate of Lime</td>
<td>50</td>
</tr>
<tr>
<td>Water of Crystallization of ditto</td>
<td>13'1</td>
</tr>
<tr>
<td>Sulphur</td>
<td>86'9</td>
</tr>
<tr>
<td>Lac Sulphuris of the shops</td>
<td>100'0</td>
</tr>
</tbody>
</table>

Informed by an extensive manufacturer of this article, that
ares both kinds, the pure and the adulterated, and that the
Messrs. Barry and Co. is almost the only one which buys the
nd. The adulteration is readily detected by subjecting the
ed preparation to heat in a crucible or on a fire shovel, when the
and water of crystallization are volatilized, leaving behind
shate of lime. Or the sulphur may be dissolved out by oil of me
effects, uses, and doses of this preparation, are the same as of
sublimed sulphur.

SULPHURATUM; Sulphurated Oil; Balsamum Sulphuris, an of Sulphur. In the London Pharmacopoeia for 1824, this
and was ordered to be prepared by dissolving one part of
ed Sulphur in eight parts of Olive Oil. The compound thus
cannot be regarded as a mere solution of sulphur in oil, the
odour of hydrosulphuric acid, which it possesses, proves
oil has undergone partial decomposition: in fact, the
which the oil is raised in order to boil it, causes a chemical
a dark reddish-brown viscid substance, having an extremely
ant odour. Its local action is that of an acrid: its remote
that of a stimulant, causing thirst and febrile heat. It has
posed to possess expectorant and diaphoretic properties. It
ed to foul ulcers, and is employed internally in chronic pul-
affections. The dose of it is from 40 to 50 drops: but its un-
t taste and smell almost preclude its use.

ACIDUM SULPHURICUM, L.E.D.—SULPHURIC ACID.

ISTORY.—This acid appears to have been known to Geber as
as the seventh century. In the state in which we usually
ith it in English commerce, it is usually denominated Oil of

URAL HISTORY.—It is found in both kingdoms of nature.

* British Annals of Medicine, vol. i. p. 618.
a. In the Inorganic Kingdom.—It is found in the waters of some regions, and is evidently produced by the combustion of sulphur.

Fig. 74.

Cascade of Vinagre in Colombia.

have been found in plants. The sulphates of potash and soda are mentioned by Berzelius as constituents of human urine.

Preparation.—The most improved method of manufacture of vitriol adopted in this country, is the following:—Crude vitriol is burned on a stone hearth or iron plate in a furnace (or burn) with quicklime, and the gas (sulphurous acid) thereby produced, is conveyed by a chimney into a leaden chamber, the bottom of which is covered with a layer of coal. The furnace door is kept open as an aperture to regulate the supply of atmospheric air. After the operation has continued for several hours, an iron pot or pan, containing a mixture of the nitrate of potash or soda and oil of vitriol, is placed under the furnace, and steam is conveyed into the leaden chamber. So that sulphurous acid, nitric or nitrous acid (generally produced by the heat produced by the combustion of the sulphur), and the oil of vitriol, can be admitted into the leaden chamber, and by their mutual union produce sulphuric acid, which is absorbed by the water at the bottom of the chamber. To prevent loss in the process, the residue is conveyed through two or more leaden chambers of unequal height (also containing water) before they are allowed to escape into the air. In one manufactory which I inspected, the chambers commu...
Oil of Vitriol Manufactory.

A. Pipe conveying the residual gas from the first to the second leaden chamber.
B. Pipe conveying the gas not absorbed in the first and second chambers into the third.
C. Waste pipe conveying the unabsorbed gas into the atmosphere.
D. Man-hole, by which the workmen enter the chamber when the process is not going on.
E. Pipe for withdrawing a small portion of sulphuric acid from the chamber, in order to ascertain its sp. gr. by the hydrometer.

A leavened chamber is sometimes divided into two or three compartments by leavened curtains placed across it, as shown in the following plate, taken from Professor Graham's Elements of Chemistry, page 324.

Oil of Vitriol Chamber.

F. Furnace or Burner.
G. Leaden curtains suspended from the ceiling to within 6 inches of the floor, rising from the floor to within 2 feet of the roof.
H. Leaded conduit or vent tube for the discharge of undecomposed gases. It should communicate with a tall chimney to carry off these gases, and to occasion a slight draught in the chimney.

curtains "serve to detain the vapours, and cause them to ascend in a gradual manner through the chamber, so that the sulphur is deposited as completely as possible, before the vapours leave the discharge tube."

To check the combustion of the sulphur, it is sometimes mixed
with some earthy matter, and made into truncated pyramidal mounds which are burnt in the usual way.

Since the high price of native sulphur, manufacturers have employed pyrites to yield sulphuric acid. I have seen pyrites from Wicklow, Cornwall, and St. Lucia, used for this purpose. The furnace for the combustion requires bars, to allow a greater supply of air. The sulphuric acid obtained from pyrites is usually contaminated with arsenic acid.

At Mr. Farmer's oil of vitriol manufactory, Kennington Common, I witnessed the escape of brown vapour (nitrous acid) from the pipe of the leaden chamber; and I was informed this was used for nitric acid. It is evident, therefore, that the nitric acid is not completely deoxidised.

A crystalline matter is sometimes deposited in the pipes connected with the leaden chambers. It indicates a deficiency of water in the process. When the liquid in the leaden chamber has acquired 1-5 gr. of about 1-5 (1-6 or 1-7, according to Mr. Farmer's statement), it is conveyed by leaden pipes into rectangular leaden boxes, where it is evaporated and concentrated until its sp. gr. is 1-70 (Farmer); but in some manufactories this part of the process is omitted. The final concentration is effected by boiling it down in glas retorts: the latter, notwithstanding their great cost, are usually adopted. Their price, of course, depends on their size. Parker had one which held thirty gallons, and cost about £4 but sometimes they are made so large, that they are worth £4 each. In this apparatus the acid is deprived of a part of its water and sulphurous acid, and when it has attained a sufficient degree of concentration, it is drawn off by means of a platinum syphon into carboys.

The theory of the process is the following:—When sulphuric acid gas, nitric acid vapour, and aqueous vapour, come into contact with each other, the sulphurous acid robs the nitric acid of part of its oxygen, and is thereby converted into sulphuric acid. By a partial deoxidation, nitric acid is converted into nitrous acid.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Nitric Acid</td>
<td>54 1 eq. Nitrous Acid</td>
</tr>
<tr>
<td>1 eq. Sulphurous Acid</td>
<td>32</td>
</tr>
</tbody>
</table>

The nitrous acid thus produced is further deoxidised and converted into binoxide of nitrogen, by another portion of sulphurous acid which, thus gaining oxygen, is converted into sulphuric acid. There be excess of nitrous acid and a deficiency of water, a crys
SULPHURIC ACID.

The matter** is sometimes deposited. Its formation depends on the sulphuric acid first formed, decomposing some nitrous acid into nitric acid and binoxide of nitrogen: with the latter the sulphuric acid combines to form the crystalline compound. Hence to prevent the production of excess of sulphurous acid and water should be present.

An interesting illustration of the above reactions is obtained by generating nitrous acid in a flask, and conveying the gas, by means of a curved glass tube, into a tall jar, at the bottom of which is a small quantity of colourless but entrated nitric acid. Brown vapours of nitrous acid are evolved, sulphuric acid is formed, and the jar becomes lined with a crystalline matter, which dissolves effervescence in water.

The old method of manufacturing oil of vitriol, and, indeed, one followed in some places, consists in burning a mixture of eight parts of sulphur and one part of nitrate of potash (or nitrate of soda) in or leaden plates, either within the leaden chamber or in a furnace on the outside of it. Fig. 77 is the ground plan of a manufactory of this kind.

In this process an equivalent of sulphur combines with two equivalents of atmospheric oxygen to form one equivalent of sulphurous acid. Another equivalent of sulphur abstracts three equivalents of oxygen from one equivalent of nitric acid of the nitrate, and thereby becomes sulphuric acid, which, with the potash of the nitre, forms an equivalent of sulphate of potash.

An equivalent of binoxide of nitrogen is evolved by the decomposed nitric acid, and this, combining with two equivalents of atmospheric oxygen, becomes nitrous acid, which, aided by the presence of water, acts on a further portion of sulphurous acid.

At Goslar, Nordhausen, and other parts of Saxony, sulphuric acid is made thus:—Crystallized sulphate of iron is calcined, by which greater portion of its water of crystallization is expelled. It is distilled in earthen vessels, by which fuming sulphuric acid is formed, while sesquioxide of iron is left in the retort. If this be heated in a glass retort, real or anhydrous sulphuric acid is over.

Properties. a. Of Anhydrous Sulphuric Acid.—It is a white crys-
talline solid, having very much the appearance of asbestos. Exposed to the air it attracts water, and flies off in the form of dense white fumes. It melts at 66° F., and boils at from 104° to 122° F. The sp. gr. of the liquid acid, at 78° F. is 1·97. It does not redden litmus unless moisture be present.

Its composition is as follows:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphur</td>
<td>1</td>
<td>16</td>
<td>40</td>
<td>40·14</td>
<td>1</td>
</tr>
<tr>
<td>Oxygen</td>
<td>3</td>
<td>24</td>
<td>60</td>
<td>59·86</td>
<td>74</td>
</tr>
<tr>
<td>Anhydrous Sulphuric acid</td>
<td>1</td>
<td>40</td>
<td>100</td>
<td>100·00</td>
<td>17</td>
</tr>
</tbody>
</table>

§. Of Nordhausen or Fuming Sulphuric Acid.—This is usually a dark brown, oily liquid, which gives out copious white fumes in the air. Its sp. gr. is about 1·9. It is imported in stone bottles, having a stoneware screw for a stopper. When subjected to heat, it gives out the vapour of anhydrous sulphuric acid: the residue in the retort resembles oil of vitriol. The composition of fuming sulphuric acid is as follows:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhydrous Sulphuric Acid</td>
<td>2</td>
<td>80</td>
<td>89·85</td>
<td>Anhydrous Sulphuric Acid</td>
<td>1</td>
</tr>
<tr>
<td>Water</td>
<td>1</td>
<td>9</td>
<td>10·11</td>
<td>Protophylate Sulphuric Acid</td>
<td>1</td>
</tr>
<tr>
<td>Fuming Sulphuric Acid</td>
<td>1</td>
<td>89</td>
<td>99·99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

γ. Of Oil of Vitriol, or English Sulphuric Acid. (Acidum Sulphuri- cum, L. E. Acidum Sulphuricum venale, D.).—This is a colourless, transparent, inodorous, highly acid, and corrosive liquid. It possesses the usual properties of a powerful mineral acid in a very eminent degree, such as reddening the vegetable blues, saturating bases, and displacing other acids. Its affinity for water is most intense, and by virtue of this, it absorbs aqueous vapour from the atmosphere, and chars animal and vegetable substances. When mixed with water there is a mutual condensation with the evolution of heat. Various substances when heated in sulphuric acid decompose it; they abstract oxygen and evolve sulphurous acid. This is the case with charcoal, organic substances, phosphorus, sulphur, and several of the metals, as copper, tin, and mercury.

The sp. gr. of this acid at 60° F. is about 1·84. Genuine commercial acid should never surpass 1·8455; when it is denser, we may infer sophistication or negligence in the manufacture.

According to the London College, good oil of vitriol possesses the following characters:—

It is free from colour. Its specific gravity is 1·845. What remains after the acid has been distilled to dryness, does not exceed the four-hundredth part of its weight. Diluted sulphuric acid is scarcely coloured by hydrosulphuric acid.

The Edinburgh College gives the following characters of it:—

"Density 1840, or near it: colourless: when diluted with its own volume of water only a scanty muddiness arises, and no orange fumes escape."

"muddiness" here referred to depends on the precipitation of lead, which commercial oil of vitriol usually holds in, but which is deposited when water is added. The "orange are nitrous acid vapour.

Dublin College states the sp. gr. of commercial sulphuric acid 850; but this is erroneous. It ought not to exceed 1·845.

order to procure Pure Oil of Vitriol (Acidum Sulphuricum E. D.), both the Edinburgh and Dublin Colleges give direc-

t the purification of the commercial acid.

Dublin College states, that "if commercial sulphuric acid contain nitrous at eight fluidounces of it, with between ten and fifteen grains of sugar, still unequal to quite sufficient to boil the acid, till the dark colour at first shall have nearly or altogether disappeared. This process removes acid. Other impurities may be removed by distillation; which, on the de, is easily managed by boiling the acid with a few platinum chips in retort by means of a sand-bath or gas-flame, rejecting the first half. The College gives the following characters of the pure acid:—" Density, blueness; dilution causes no muddiness; solution of sulphate of iron reddening at the line of contact when poured over it."

Dublin College orders of Commercial Sulphuric Acid, lb. Pass the acid of one part; attach a receiver of the same kind, and with the s of the vessels left open, let heat be applied to the retort until one-

part of the liquor shall have distilled over; this, as it contains water, be rejected. The receiver being again applied, the residuum is to be de to dryness. A few slips of platina passed into the acid in the retort, the ebullition, which otherwise would be too violent. The specific weight of this acid is to the specific gravity of distilled water as 1·845 to 1000, and kept in well-closed vessels.

POSITION.—The composition of oil of vitriol or English sul-

acid is as follows:—

<table>
<thead>
<tr>
<th></th>
<th>Strongest (sp. gr. 1·845).</th>
<th>Commercial (sp. gr. 1·8433).</th>
</tr>
</thead>
<tbody>
<tr>
<td>sulphuric acid</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>vitriol</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

ACETATE.—Free sulphuric acid or the soluble sulphates are zed by a solution of any of the barytic salts, which throws heavy white precipitate (sulphate of baryta) insoluble in acids is. If this precipitate be ignited with charcoal, it is decom-

verted into sulphuret of barium, which, on the add-

of hydrochloric acid, evolves hydrosulphuric acid, known by its blackening paper moistened with acetate of lead. Sulphuric acid be heated with organic matter, sulphurous acid is put: this may be known by its odour, and by its occasioning mation of the blue iodide of starch, when mixed with iodic d starch. Oil of vitriol is redden by veratria, salicin, piperin, bitter almonds, phlorizine, &c.

Dr. ates whether sulphuric acid be free or combined with a base, Dr. in "Trattise on Poisons, ed. ed. p. 142.
do not decompose each other.” But this test is liable to objection: alum, sal enixum, sesquisulphate of iron, and other supersulphates, re-act on carbonate of lead like free sulphuric acid; and, furthermore, neutral sulphate of ammonia is decomposed at a boiling temperature by carbonate of lead.

Impurities.— Pure oil of vitriol should be colourless: the presence of organic matter, as cork, communicates a brownish or black colour. The acid of commerce usually contains traces of sulphate of lead: this may be detected either by adding water, when the white sulphate is precipitated; or by the addition of hydrosulphuric acid to the dilute sulphuric acid, when a very slight change of colour is observed, owing to the formation of sulphuret of lead. “What remains [i.e. sulphate of lead] after the acid has been distilled to dryness does not exceed the \(\frac{\pi}{10} \) part of its weight.”

Oil of vitriol frequently, or usually, contains an oxide of nitrogen. According to A. Rose it is generally the binoxide of nitrogen. A solution of the protosulphate of iron detects the binoxide of nitrogen, nitrous acid, or nitric acid, by the reddish brown or brownish black colour which it gives rise to, “if a sufficient quantity of pure sulphuric acid be added to the liquid to be examined” (A. Rose). Permanganate of potash is an excellent test of binoxide of nitrogen or nitrous acid in sulphuric acid, diluted with about six parts of water. If either of these substances be present, the permanganate is decolorized. This effect is not produced by the presence of pure nitric acid in diluted sulphuric acid. Hence it distinguishes binoxide of nitrogen and nitrous acid from nitric acid.

Latterly, in consequence of the high price of Sicilian sulphur, sulphuric acid has been extensively manufactured from iron pyrites, in which arsenic is usually contained; and in consequence the oil of vitriol of commerce has been found to be contaminated with arsenious acid. Dr. G. O. Rees\(^7\) found 22:58 grains of this acid in twenty fluidounces of oil of vitriol; and Mr. Watson\(^8\) states that the smallest quantity which he has detected is 35\(\frac{1}{2}\) grains in twenty fluidounces. The tests for this dangerous contamination are Marsh’s test and sulphuretted hydrogen\(^5\). In the application of these the acid must be previously diluted with distilled water.

Physiological Effects. a. On Vegetables.— In the concentrated state sulphuric acid chars the parts of plants to which it is applied. In the dilute form it destroys vegetables in a few hours\(^7\).

b. On Animals generally.— The action of sulphuric acid on animals generally is precisely the same as that on man. Thrown into the veins of a dog, Orfila found that it coagulated the blood, and caused immediate death\(^5\).

γ. On Man.—Properly diluted, and administered in small but repeated doses, sulphuric acid acts like the other mineral acids (see pp. 189, 193, 201, and 212). Thus it promotes the appetite, dimi-

\(^1\) London Medical Gazette for Feb. 5, 1841.

\(^2\) Ibid. for Feb. 1841. Mr. Watson states that a man had nearly lost his life in consequence of the inhalation of arseniuretted hydrogen, produced in the manufacture of hydrochloric acid, by the diluted, unpurified, pyrites sulphuric acid acting upon the iron retort employed.

\(^3\) See the article Arsenious Acid, in a subsequent part of this work, where full directions will be given for the application of these tests.

\(^5\) Toxicologie Générale.
nishes febrile heat, allays excessive thirst, checks profuse sweating, and, not unfrequently, reduces the frequency of the pulse. Sometimes it increases the secretion of urine, and likewise renders this fluid unusually acid. Under its use the milk frequently acquires a griping quality.

The continued use of it, however, generates a slow kind of gastrointestinal: heat and pain are experienced in the throat, stomach, and intestines: the digestive functions become disordered; gripings are experienced; sometimes purging, and subsequently fever. Of all the mineral acids, save the phosphoric, this may be administered for the longest period without occasioning the above symptoms.

Concentrated sulphuric acid acts as an energetic caustic poison, promptly disorganizing the different tissues with which it is brought into contact. Its chemical action depends principally on its affinity for water, so that it chars or carbonizes the parts with which it is placed in contact. But its power of coagulating albuminous liquids, of combining with albumen to form a sulphate of this organic substance, and of dissolving fibrin, as well as coagulated albumen, contributes to its energetic escharotic action on the animal tissues. The parts to which the acid is applied become, in the first place, white by the formation of sulphate of albumen. This effect is seen both in the skin and the cornea. By the more prolonged action of the poison, they assume a brownish or blackish appearance, so that we can thereby frequently distinguish poisoning by this from poisoning by nitric acid; since this last-mentioned agent produces a yellow colour when applied to the skin. Black spots are frequently observed in the stomachs of those who have swallowed the acid; and in the surrounding parts the blood is usually coagulated in the blood-vessels. Such are the topical chemical effects of this acid. But besides these there are other phenomena of a local nature which may be denominated vital, since they depend on the re-action of the living parts. I refer now to those indicating the production of inflammation in the tissues in the immediate neighbourhood of those destroyed.

When strong sulphuric acid has been swallowed, the symptoms of poisoning are the following:—Alteration, or even destruction, of the soft parts about the mouth; burning pain in the throat, stomach, and bowels; frequently alteration of the voice, from the swelling and disorganization of the parts about the larynx; breath fetid, from the decomposed tissues; constant and abundant vomiting of matters, which may be bloody or otherwise, but which effervesce by falling on a marble hearth; bowels variously affected, sometimes constipated, though usually purged, the stools being bloody. The constitutional symptoms are principally those arising from a disordered action of the vascular system: thus the pulse is frequent and irregular, feeble, often imperceptible; extremities cold; great feebleness, or even fainting, with cold sweats. The same constitutional symptoms are observed when the stomach is wounded or ruptured. One remarkable characteristic is, that the mental faculties are unaffected, even up to a few minutes before death.

Not unfrequently the acid fails to produce speedy death from cor-
roision and inflammation, but gives rise to a peculiar organic disease of the stomach and intestines, of which the patient slowly dies, sometimes after several months' suffering".

Uses.—Sulphuric acid, properly diluted, may be administered in febrile diseases, as a refrigerant, to diminish thirst and preternatural heat; though, in most of these cases, the vegetable acids are to be preferred. In the latter stage of fever (especially the kinds called typhoid) considerable benefit is sometimes gained by the use of a vegetable bitter (as calumba or cinchona) in combination with the diluted sulphuric acid. To assist the appetite and promote digestion, it is administered to patients recovering from fever. To check profuse sweating in pulmonary and other affections, whether phthisical or not, it is sometimes a valuable agent, as I have found on many occasions. No other remedy is so efficacious in relieving colliquative sweating as this. In hemorrhages, as those from the nose, lungs, stomach, and uterus, it is commonly administered as an astringent, but its efficacy is doubtful. So also in purpura haemorrhagica it is given with the same intention; but though I have several times employed it, I have not observed any evident benefit derived therefrom. In those forms of lithiasis attended with phosphatic sediments in the urine, the use of the mineral acids is at times beneficial. The sulphuric is preferred to the hydrochloric acid, since it can be continued for a longer period without occasioning gastric disorder. In skin diseases, especially lichen, prurigo, and chronic nettle-rash, it is sometimes serviceable. No remedy is so successful in relieving the distressing itching, formation, and tingling of the skin, as diluted sulphuric acid taken internally. In those forms of dyspepsia connected with an alkaline condition of the stomach, as in pyrosis, the sulphuric has been found to succeed better than hydrochloric acid.

As a local agent, sulphuric acid is employed as a caustic, irritant, or astringent. As a caustic it has no advantage over many other agents, except that which arises from its liquid form, which, in most cases, renders it disadvantageous. For example, the difficulty of localizing it would be an objection to its employment in the production of an issue, but would be an advantage in applying it to wounds caused by rabid animals or poisonous serpents, since the liquidity of the acid enables it to penetrate into all parts of the bites. In cataract, or that disease in which the eyelid is inverted, or turned inwards upon the eye, this acid has been applied as a caustic. In this complaint the friction of the eyelashes on the globe is most distressing, giving rise not only to inflammation, but even ulceration of the cornea. Now, when the disease is permanent, two modes of curing it have been proposed; either to remove a fold of the integument by the knife, so that, by the subsequent cicatrization, the lid may be drawn outwards—or to destroy a portion of the skin by a caustic, as sub-

* For further information respecting the topical action of sulphuric acid, the reader may consult (besides Dr. Christie's Treatise on Poisons) the observations of Dr. R. D. Thomson, in the Athenæum for 1840, pp. 779 and 798; also the Lancet for 1836-7, vol. i. p. 195; and Mr. Taylor, in the Guy's Hospital Reports, vol. iv.
SULPHURIC ACID.

473

phric acid. The latter plan of treatment has been practised successfu- 1 y by several eminent oculists, among whom I may name Mr. Guthrie and Mr. Lawrence. So also in ectropium, in which the lid is everted or turned outward, Mr. Guthrie has applied the concentrated acid to the inner side of the everted lid with advantage. An ointment containing sulphuric acid has been employed as a mbeacient in paralysis, and in the second stage of inflammation of the joints, when the violence of the disease has subsided; as a stptic to wounds, to suppress hemorrhage from numerous small vessels; and as a cure for scabies. Lastly, this acid, properly diluted, is employed as an astringent gargle in ulcerations of the mouth and throat; but after using it the mouth should be well rinsed, to prevent the action of the acid on the teeth.

ADMINISTRATION.—For internal use we generally make use of the diluted sulphuric acid, or the elixir of vitriol.

ANTIDOTES.—In cases of poisoning by sulphuric acid, the antidotes are chalk, whiting, or magnesia, suspended in water. In the absence of these, soap-suds, infusion of wood-ashes, weak solutions of the alkaline carbonates, white of eggs, gelatine, milk, oil, or in fact any mild diluent, should be immediately administered. The subsequent treatment is that for gastro-enteritis. External parts burnt with oil of vitriol should be washed with a solution of soap or simple water.

I. ACIDUM SULPHURICUM DILUTUM, L. E. D. Diluted Sulphuric Acid; Spirit of Vitriol, or Spiritus Vitrioli tenuis; Vitriol to clean Copper. (Sulphuric Acid, f.5iss. [f.3j. E.; one part, D.]; Distilled Water, f.5xivs. [f.5xijj. E.; seven parts, D.] Add the acid to the water gradually, and mix. When the acid and water are mixed, condensation ensues, and heat is evolved).—The white precipitate which forms is sulphate of lead. It is much to be regretted that the formule of the British colleges, for the preparation of this acid, should not have been uniform. The error which the Edinburgh College has fallen into, in consequence of this discrepancy, has been already pointed out. Diluted sulphuric acid, prepared according to the directions of the London College, has a sp. gr. of about 1.11, and a fluiddrachm of it, which weighs 60.7 g., saturates 28 grains of crystallized carbonate of soda; hence it contains 94 grains of strong oil of vitriol, or 7.7 g. of anhydrous sulphuric acid, and its per-centage composition will be as follows:

<table>
<thead>
<tr>
<th>By weight.</th>
<th>By weight.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhydrous Sulphuric Acid</td>
<td>12.8</td>
</tr>
<tr>
<td>Water</td>
<td>87.2</td>
</tr>
<tr>
<td>Strongest Oil of Vitriol</td>
<td>15.7</td>
</tr>
<tr>
<td>Water</td>
<td>84.3</td>
</tr>
</tbody>
</table>

Acidum Sulphuricum Dilutum, Ph. L., 100.0

100.0

The density of the Edinburgh diluted sulphuric acid is 1.090. The comparative strengths, by weight, of the Edinburgh and London preparations, are as 100 to 78: by volume the difference is still

See pp. 405 and 410, out-notes.
greater. The dose of diluted sulphuric acid is from \(\text{mL} \times 10\) to \(\text{mL} \times 100\), mixed with two or three table-spoonfuls of some mild liquid. A most convenient preparation of it is the Compound Infusion of Roses. It may also be exhibited in Conserve of Roses.

2. ACIDUM SULPHURICUM AROMATICUM, E. D. Aromatic Sulphuric Acid; Elixir of Vitriol, or Acid Elixir of Vitriol.—("The Edinburgh College orders of Sulphuric Acid (commercial) \(\text{mL} \times 10\) ; Rectified Spirit, Oij. ; Cinnamon, in moderately fine powder, \(\text{mL} \times 10\) ; Ginger, in moderately fine powder, \(\text{mL} \times 10\). Add the acid gradually to the spirit; let the mixture digest at a very slow heat for three days in a closed vessel; mix the powders, moisten them with a little of the acid spirit, let the mass rest for twelve hours, and then put it in a percolator, and transmit the rest of the acid spirit. This preparation may also be made by digesting the powders for six days in the spirit, and then straining the liquor.") — The Dublin College orders: Rectified Spirit Oij. [wine measure], Sulphuric Acid, by weight. Add the acid to the spirit gradually: digest the mixture in a closed vessel with an inferior heat, for three days; then add of Cinnamon bark, bruised, \(\text{mL} \times 10\) ; Ginger root, bruised, \(\text{mL} \times 10\). Digest the mixture again for six days; and, lastly, filter through paper placed in a funnel. When oil of vitriol and rectified spirit are digested together, bisulphate of the oxide of ethule (formerly called sulphuminic acid) is formed (see p. 370). The late Dr. Duncan, junior, ascertained that not a particle of gas is evolved by the mixture of alcohol and sulphuric acid in the proportions indicated. It is employed as an agreeable substitute for the diluted sulphuric acid; and is administered in the same doses. In a case of poisoning by ten drachms of the preparation, the symptoms were those of local irritation, with vomiting and purging of blood. The patient recovered.

3. UNGUENTUM ACIDI SULPHURICI, D. Sulphuric Acid Ointment (Sulphuric Acid, \(\text{mL} \times 10\); Prepared Hog’s Lard, \(\text{mL} \times 10\); Mix). The ingredients should be mixed in a glass or earthenware mortar. Precise changes which sulphuric acid effects on lard have not been studied; they are most likely analogous to those effected by the acid on olive oil. The sulphuric acid probably unites on the hand with the glycerine (oxide of glycerine) of the lard to form a bisulphate of glycerine, and on the other with the fatty acids (oleic, margaric (?) and stearic acids) of the lard. This ointment is of a buff colour. It is a powerful stimulant, and has been employed in paralysis, hemorrhages, and scabies, as before mentioned (see p. 416).

3. ACIDUM SULPHURO’SUM.—SULPHUROUS ACID.

History.—Homer mentions sulphur fumigations. Stahl, Scheele, and Priestley, were the first to submit this acid to an accurate e
SULPHUROUS ACID.

Situation. It has been termed *Volatile Sulphurous Acid*, and, from the old mode of procuring it, *Spirit of Sulphur by the Bell* (Spiritus Sulphuris per Campanam).

Natural History.—It escapes from the earth, in a gaseous form, in the neighbourhood of volcanoes.

Preparation.—For chemical purposes it is prepared by mixing two parts of mercury with three parts of strong sulphuric acid, applying heat, and collecting over mercury. The results are, the bisersulphate of mercury and sulphurous acid.

For medicinal purposes, however, it is rarely, if ever, necessary to procure it in this way. By the combustion of sulphur in atmospheric air this gas is readily obtained; and when we are about to employ it, either as a disinfectant or vapour bath, this method is always followed.

Properties.—At ordinary temperatures and pressures it is a colourless and transparent gas, and has a remarkable and well-known odour. It is neither combustible nor a supporter of combustion. It reddens litmus and bleaches some colouring matters, especially infusion of roses, but the colour is restored by sulphuric acid. It is irrespirable, and has a sp. gr. of 2.2. It readily dissolves in water: recently boiled water takes up 33 times its volume of this gas. By cold and pressure it is readily condensed into a limpid liquid.

Characteristics.—This acid is readily known by its peculiar odour (that of burning sulphur). If the puce-coloured or binoxide of lead be added to it, the white protosulphate of lead is formed. An aqueous solution of this acid, mixed with iodic acid, deoxidizes the latter, and sets iodine free, which may be recognized by its producing a blue colour with starch. A solution of an alkaline sulphite causes, with a soluble salt of barium, a white precipitate (*sulphite of baryta*).

The sulphites evolve sulphurous acid by the action of strong sulphuric acid.

Composition.—If 16 parts by weight of sulphur be burned in one volume or 16 parts (by weight) of oxygen gas, we obtain one volume or 32 parts (by weight) of sulphurous acid gas.

The composition of this substance may, therefore, be thus expressed:

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Resulting Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Oxygen</td>
<td>and 1 eq. Sulphur</td>
</tr>
<tr>
<td>16</td>
<td>= 16</td>
</tr>
</tbody>
</table>

| Sulphurous Acid | 1 | 32 | 100 | 100.000 |

Physiological Effects.

a. On Vegetables.—It is a most powerful poison to plants, even in very minute quantities

b. On Animals generally.—The effects on animals have not been examined; but they are probably those of an irritant and asphyxiating agent.

γ. On Man.—Applied to the skin this acid gas causes heat, pain,
and itching. If an attempt be made to inhale it in the pure state, it excites spasm of the glottis. Diluted with air it may be taken into the lungs, and there acts as a local irritant, causing cough, heat, and pain.

Uses.—It has been used as a disinfectant, as a remedy for the cure of itch, and as a nasal stimulant in syncope.

As a disinfectant it is mentioned by Homer. The mode of using it for this purpose is very simple. A pot containing burning sulphur is introduced into the room or place to be fumigated, and the doors and windows carefully closed.

As a remedy for itch, baths of sulphurous acid gas are mentioned by Glauber in 1659. They are commonly termed sulphur baths, and may be had at most of the bathing establishments of the principal towns of this country. At the Hôpital St.-Louis, in Paris, a very complete apparatus for the application of this remedy in diseases of the skin has been erected by D'Arcet 6. It is a kind of box, inclosing the whole body, with the exception of the head. The sulphur is placed on a heated plate in the lower part of the box. From ten to twenty baths, or even more, are requisite for the cure of itch. "Sulphurous fumigations," says Rayer 5, "which are employed in some hospitals, are not attended with expense, leave no unpleasant smell, and do not soil the linen; but the long continuance of the treatment necessary to relieve the disease, more than counter-balances these generally insignificant recommendations." There are various other diseases of the skin in which baths of sulphurous acid have been found more or less successful, such as chronic eczema, lepra, psoriasis, impetigo, and pityriasis 6.

As a stimulant in syncope or asphyxia this gas has been recommended by Nysten. It is readily applied by holding a burning sulphur match under the nose.

Antidotes.—When sulphurous acid gas has been inhaled, the patient should be made to respire the vapour of ammonia. A few drops of the solution of this substance should be swallowed.

4. Sulphuris iodidum.—Iodide of Sulphur.

History.—This compound was first described by Gay-Lussac 5.

Preparation.—It is prepared by heating gently, in a clean oil flask, four parts of iodine with one part of sulphur until fusion is effected. Part of the iodine volatilizes, and the remainder unites with the sulphur.

Properties.—It is a black crystallizable compound, having the
colour and radiated appearance of sesquisulphuret of antimony. It has the odour of iodine, and stains the cuticle, paper, &c. like this substance. Its elements are easily separated by heat.

Characteristics.—Boiled in water the iodine volatilizes with the steam, and the sulphur is deposited nearly in a state of purity.

Composition.—Its composition has not been determined. It is probably the following:

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodine</td>
<td>1</td>
<td>126</td>
<td>79.75</td>
</tr>
<tr>
<td>Sulphur</td>
<td>2</td>
<td>32</td>
<td>20.25</td>
</tr>
<tr>
<td>Iodide of Sulphur</td>
<td>1</td>
<td>158</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Physiological Effects.—a. *On Animals.*—Dr. Cogswell¹ gave three drachms to a bitch: the animal lost her appetite, was dull, and on the fourth day could not support herself properly upon her legs. On the twelfth day she was well.

b. *On Man.*—It has not been exhibited internally. It probably operates like iodine. Its local operation is that of a powerful stimulant and resolvent.

Uses.—Iodide of sulphur has been principally employed in the form of ointment, in various skin diseases. In lupus it has been found most efficacious by Biett¹, as well as Rayer³. The last mentioned writer places it in the foremost rank of local remedies for this disease. In acne indurata and rosacea it has proved highly useful in the hands of Biett¹, Rayer³, and Dr. Copland⁵. In lepra, Rayer has observed good effects from its use; but in one case in which I tried it, it caused so much irritation that its use was obliged to be discontinued. In herpes pustulosus labialis it has been employed with great success by Dr. Volmar⁶. In tinea capitis it has also been recommended⁷.

Dr. Copland⁸ has employed the inhalation of the vapour of this substance in humoral asthma with temporary advantage.

Unguentum Sulphuris Iodidi; Ointment of Iodide of Sulphur.—This is composed of iodide of sulphur and lard. The proportions vary according to circumstances: usually from 10 to 30 grains of the iodide to an ounce of lard. Magendie recommends 1 part of iodide to 18 or 19 of lard.

¹ Experimental Essay on Iodine and its Compounds.
² Cazenove and Schedel, Abrégé pratiqué sur les Maladies de la Peau.
³ Treatise on Diseases of the Skin, translated by Dr. Willis.
5. AMMONIUM HYDROSOULPHAS.—HYDROSULPHATE OF AMMONIA.

(Ammonia Hydrosulphuretum, D.)

History and Synonymes.—This compound is said to have been first prepared in the seventeenth century by Boyle or Beguin; hence the terms *Boyle's fuming liquor* and *Beguin's sulphuretted spirit* applied to one variety of it. The ordinary designation of it is *hydrosulphuret of ammonia, or hepitized ammonia*. Berzelius calls it *sulphuret of ammonia*.

Natural History..—It is evolved from decomposing animal matter (as in privies), along with hydrosulphoric acid and nitrogen.

Preparation..—The following are the directions given by the Dublin College for the preparation of this compound:

Take of Sulphuret of iron, reduced to a coarse powder, five parts; Sulphur Acid, seven parts; Water, thirty-two parts; Water of Caustic Ammonia, four parts. Pass the sulphuret into a retort, then gradually pour on it the acid, in diluted with water, and, in a suitable apparatus, cause the elastic fluid to pass through the Water of Ammonia. Toward the end of the process, apply moderate heat to the retort.

In this process the iron of the sulphuret is oxidized by the oxygen of the water, and the oxide of iron thus formed combines with the sulphuric acid to form sulphate of iron. The hydrogen of the water, unifying with the sulphur of the sulphuret forms hydrosulphuric acid (sulphuretted hydrogen).

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Sulphuret Iron</td>
<td>1 eq. Sulphur</td>
<td>1 eq. Sulphuretted Hydrogen</td>
</tr>
<tr>
<td>1 eq. Sulphur Acid</td>
<td>1 eq. Iron</td>
<td></td>
</tr>
<tr>
<td>1 eq. Water</td>
<td>1 eq. Hydrogen</td>
<td>1 eq. Oxygen</td>
</tr>
<tr>
<td>1 eq. Oxide</td>
<td>1 eq. Sulphate of Iron</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The sulphuretted hydrogen thus produced is conveyed into a solution of ammonia, with which it combines.

Properties..—As thus prepared, the solution of hydrosulphuret of ammonia is a liquid, having a greenish yellow colour, a very fetid odour, and an acrid disagreeable taste. The mineral acids decompose it, evolve hydrosulphuric acid, and precipitate sulphur. It forms, with a considerable number of metallic solutions, precipitates. With the salts of lead, bismuth, silver, and copper, the precipitates are blackish; with those of antimony, red; with those of cadmium and tin (persalts), and with the arsenites (on the addition of an acid yellow; lastly, with the salts of zinc, white. In these cases the precipitates are either sulphures or hydrated sulphures of the respective metals.

By exposure to the air part of the ammonia flies off, and some sulphur is deposited. It is now a bi- or poly-sulphuret of ammonium.
HYDROSULPHATE OF AMMONIA.

elds a red precipitate with the salts of lead, a yellow one with
metic, and a white one with arsenious acid.

Characteristics.—Its odour will readily distinguish it. As a sul-
or hydrosulphuret it is known by its actions on the metallic
us already noticed. Caustic potash causes the evolution of

Position.—Neutral hydrosulphate of ammonia has the follow-
position:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂SO₄</td>
<td>1</td>
<td>17</td>
<td>50-00</td>
</tr>
<tr>
<td>H₂S</td>
<td>1</td>
<td>17</td>
<td>50-00</td>
</tr>
<tr>
<td>Ammoniacal Gas</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

may be regarded as a *Sulphuret of Ammonium* (S + NH₃).

In a me ling liquor (*Liquor Fumans Bogii*) obtained by distilling four parts of
lime, two of hydrochlorate of ammonia, and one of sulphur, contains,
according to Gay-Lussac, hydrosulphate of ammonia, with excess of sulphur;
that state of combination has not been determined.

Biological Effects.

a. On Vegetables.—The vapour of this

liquid is injurious to vegetation.

b. In Animals.—I am unacquainted with any experiments made

on animals; but analogy leads us to believe that its action is

a powerful poison, analogous to other alkaline sulphurets, and

rosulphuric acid.

c. In Man.—In small but repeated doses it acts powerfully on the

organs, the action of which it promotes, but at the same
time odifies. Its principal influence is directed to the skin (on which
as a sudorific), and to the pulmonary mucous membrane. In

large doses it occasions nausea and giddiness. In still

doses it causes nausea, vomiting, diminished frequency of

giddiness, extreme languor, drowsiness, and sleep. *Excessive*

would, of course, produce death, though I am unacquainted with

use of this kind.

the gaseous state it acts, when inhaled, as a powerfully ac-
ing agent. Instances of its deleterious operation, in conjunc-

with hydrosulphuric acid, have occurred in France, in workmen

to the vapours from the pits (cesspools) of the necessaries.

They are, sudden weakness, insensibility, and death; or

the vapours are less concentrated, there are sometimes delirium

nervosum.

*s.—In this country it has been principally employed in diabetes,

with the view of reducing the morbid appetite and increased

of the stomach, as well as of the system in general*. Com-

with alcohol, F. Hoffmann administered it under the name of

anti-podagrificus, as a powerful sudorific in gout. It has also

sed in old pulmonary catarrhs; and by Brauw and Gruithuisen

catarrh*.

* * Cours de Chimie, Leçon 30.*
* Hullo, on Diabetes Mellitus, p. 28, ed. 2nd.*
* Vogt, Pharmacodynamik.*
ADMINISTRATION.—It is given in doses of from four to six drops, in some proper vehicle (distilled water is the best). On account of its speedy decomposition, it should be dropped from the bottle at the time of using it.

ANTIDOTES.—The antidotes for hydrosulphate of ammonia, as well as for hydrosulphuric acid, are chlorine and the chlorides of lime and soda. In cases of asphyxia by the inhalation of these substances, the treatment consists in placing the patient on his back in the open air, with his head somewhat elevated; applying cold affusion to the face and breast; producing artificial respiration of air, through which chlorine is diffused, by pressing down the ribs and forcing up the diaphragm, and then suddenly removing the pressure; using strong friction in the course of the vertebral column, chest, soles of the feet, &c., and injecting into the stomach, stimulants; as, a weak solution of chlorine (or of chloride of lime) or brandy, &c. In the event of hydrosulphuret of ammonia being by accident swallowed in poisonous doses, dilute solutions of chlorine, or of the chlorides of lime and soda, should be immediately given, and the contents of the stomach removed by the stomach-pump as soon as possible.

Class IX. Metallic Substances.

Order XI. COMPOUNDS OF POTASSIUM.

1. POTASH.Æ HYDRAS, L.—HYDRATE OF POTASH.

(Potassa, E.—Potassa caustica, D.)

HISTORY.—Caustic alkaline solutions were probably known to the Greeks and Romans. We learn from Pliny that soap was made in his time from tallow and wood-ashes; and we may therefore conclude that some method was known of depriving the alkaline carbonate of its carbonic acid. Geber describes the method of making caustic alkali. Black, however, in the year 1756, first distinguished, chemically, the caustic alkalis from their carbonates. Potash was formerly called kali, or the vegetable alkali. It is the Protoxide of Potassium.

NATURAL HISTORY.—Potash in combination with acids is found in both kingdoms of nature.

a. In the Inorganised Kingdom.—Potash is found, in the mineral kingdom, in combination with sulphuric, nitric, silicic, and perhaps carbonic acids. As an ingredient of rocks, it is more abundant than soda.

b. In the Organised Kingdom.—In organised beings potash is met with in combination with phosphoric, sulphuric, nitric, carbonic, and various organic acids. It occurs more abundantly in vegetables than in animals.

PREPARATION.—All the British Colleges give directions for the preparation of hydrate of potash.

The London College orders, of Solution of Potash, a gallon. Evaporate the
HYDRATE OF POTASH.

in a clean iron vessel over the fire, until the ebullition being finished, the
of Potash liquefies: pour this into proper moulds.

Edinburgh College directs any convenient quantity of Aqua Potassae to be
stated in a clean and covered iron vessel, increasing gradually the heat till
looking fluid remains; a drop of which, when removed on a rod, becomes
cooling: then pour out the liquid upon a bright iron plate, and as soon
lidifies break it quickly, and put it into glass bottles secured with glass

process of the Dublin College is essentially the same as that of the Edin-
College, except that the evaporation is to be effected in vessels of silver or
at the liquefied potash is to be poured out on a plate of silver or iron.

Properties.—The solid hydrate of potash of the shops, known as

*sa fusa (Kali purum; Lapis Infernalis sive Septicus; Cauterium

*taule) is usually more or less coloured (brownish, greyish, or

, and not completely soluble in water and alcohol, in conse-

on of the presence of foreign matters. Pure hydrate of potash,
er, is white, and dissolves in both water and alcohol. During
ation in water, heat is evolved. Its solubility in alcohol enables

than from the carbonate and bicarbonate of potash, both
ich are insoluble in this liquid. It has a strong affinity for
water and carbonic acid, which it rapidly attracts from the
phere, and in consequence becomes liquid. At a low red heat
and at a higher temperature is volatilized. It is odourless,
as a caustic, urinous taste. It rapidly decomposes organic
nces. It possesses the properties of an alkali in an eminent

acteristics.—Potash, free or combined with an acid to form a
l salt, is recognised by the following characters:—The hydro-
ets, ferrocyanides, and carbonates, produce no precipitate with
ations. Tartaric (in excess), perchloric, and carbazotic acids,
on precipitates of the bitartrate, perchlorate, and carbazotate
ash respectively. Chloride of platinum throws down a yellow
itate. Lastly, the potash salts communicate a violet tinge to
me of alcohol.

potash is distinguished from its salts by its communicating a
colour to the infusion of red cabbage or syrup of violets; by
dening turmeric, and restoring the blue colour of litmus reddened
acid; by its not whitening lime water, or effervescing on the
m of an acid; by its soapy feel; by its solubility in alcohol;
its dissolving alumina.

urities.—Potassa fusa of the shops contains various impurities,
ses oxides of iron, carbonate of potash, and silica. These,
er, do not materially affect its medicinal value.

ling water commonly leaves oxide of iron undissolved, which should not
1·25 per cent.; the solution neutralized with nitric acid gives a faint pre-
with a solution of nitrate of baryta, and more with solution of nitrate of
owing to the presence of impurities.” Ph. Ed.

nitrate of baryta detects sulphates, while nitrate of silver is a
Composition.—Pure anhydrous potash has the following composition:

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Berzelius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium</td>
<td>1</td>
<td>40</td>
<td>63.94</td>
<td>63.95</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>8</td>
<td>16.60</td>
<td>16.60</td>
</tr>
<tr>
<td>Potash</td>
<td>1</td>
<td>48</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The hydrate of potash is thus composed:

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Berzelius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potash</td>
<td>1</td>
<td>48</td>
<td>84.2</td>
<td>84</td>
</tr>
<tr>
<td>Water</td>
<td>1</td>
<td>9</td>
<td>15.8</td>
<td>16</td>
</tr>
<tr>
<td>Hydrate of Potash</td>
<td>1</td>
<td>57</td>
<td>100.00</td>
<td>100</td>
</tr>
</tbody>
</table>

Physiological Effects. a. On Vegetables.—Caustic potash promptly destroys the parts of living plants with which it is put in contact, and even in the dilute state kills haricots (Phaseolus vulgaris) in a few hours.

β. On Animals generally.—It acts on animals generally as an energetic caustic poison. It is, says Orfila, of all poisons, that which most frequently perforates the stomach. He found, that injected into the jugular vein of a dog, it coagulated the blood, and caused speedy death. It is, however, remarkable, that when mixed with the bile, it is not only does not coagulate it, but actually prevents its spontaneous coagulation. Magendie has observed, that the exhibition of alkaline to dogs, the urine acquires alkaline properties.

γ. On Man.—The general operation of alkaline has been already noted (see pp. 194 and 213). The local action of caustic potash, especially when in the solid form, is exceedingly energetic. It neutralizes free acid in the part to which it is applied, and decomposes substances. Ammoniacal salts may be present, causing the evolution of ammoniacal gas. It combines with fibrin and albumen, forming so-called compounds (fibrate and albuminate of potash). Hence, rubbed between the fingers, it corrodes and dissolves the epidermis, and gives rise to a soapy feel. Gelatine is also readily dissolved by and any phosphate of lime which may be present is deposited. These phenomena are to a certain extent comparable to those of saponification. As, then, potash and the other alkaline form so-called compounds with substances which enter largely into the composition of the organized tissues, we can readily explain an observation of Orfila, that alkaline are, of all corrosive poisons, those which frequently perforate the stomach; for the intestinal mucus readily solves in alkaline, whereas it is coagulated by acids; so that the former are much more quickly brought in contact with the living tissues. These resist, for a certain time, the chemical influence of the caustic, but the affinities being powerful, the vital properties soon cease to offer opposition—the part dies, and the tissues are speedily dissolved. Hence, if a large quantity of potash be swallowed, the most violent
HYDRATE OF POTASH.

symptoms are observed, though they are of the same general kind as
when the mineral acids have been taken (see p. 105).

When liquor potassae is taken in small doses, and properly diluted,
it saturates the free acids contained in the stomach, and which the
recent investigations of physiologists have shown to be essential to the
digestive functions. Hence the continued use of this or of any other
alkali must be always injurious, since it disorders the assimilative
process by altering the chemical properties of the healthy ventricu-
lar secretion.

If the quantity of potash swallowed be more than sufficient to neu-
tralize the free hydrochloric acid, but insufficient to exert any important
chemical action on the living tissues, it acts as a slight irritant, aug-
mens the secretions of the alimentary canal, becomes absorbed, and
alters the qualities of the secreted fluids, more particularly those of the
wine (see pp. 103 and 108). Moreover, the modification thus produced
in the quality of the renal secretion is accompanied by an increase in
the quantity, so that the alkalis rank among our most powerful diuretics
—an effect which may be in part owing to the local stimulus which they communicate to the secreting vessels in their passage through
them.

By continued use, the alkalis give rise to increased activity of the
different secreting organs, and of the absorbing vessels and glands;
effects which are analogous to those caused by mercury. In other
words, they act as liqueficiens and resolventes (see p. 194). After
some time the digestive function becomes disordered, the appetite
fails, the blood becomes thinner and darker coloured, and loses its
power of spontaneous coagulation when drawn from the body; the
whole system, and more particularly the digestive organs, become en-
feebled; and a state precisely similar to that of scurvy is brought on.
It is said if the alkalis be temporarily suspended the blood speedily
re-acquires its coagulability, but loses it again when we resume
their employment. These phenomena deserve especial notice, as be-
ing precisely analogous to those of scurvy—a disease which has been
usually supposed to be brought on by the use of salt and salted pro-
visions, and to be prevented or cured by vegetable acids (especially the
citric) and fresh provisions. It appears, therefore, in the highest de-
gree probable, that scurvy, and the effects caused by the long-
continued employment of the alkalis, are analogous conditions of
system (see the effects of ammonia, p. 312).

USES.—Caustic potash is employed for various purposes in medi-
cine, the principal of which are the following:—

a. As an escharotic.—Potassa fusa is sometimes used as a caustic,
though its employment is not free from objection; for its great delici-
oussence occasions some difficulty in localizing its action. It may
be employed for the production of an issue, but we must proceed
as:—Apply to the part one or two layers of adhesive plaster, in the
middle of which is an aperture of the exact size of the intended issue.
Then moisten the potassa fusa, or the potassa cum calce, and rub on
the part until discoloration is observed. Wash, and apply a linseed-
meal poultice; and when the eschar is detached, insert the see.
Issues, however, are speedily and more conveniently made by
necessity than by cautery. In bites by poisonous animals—as venom
serpents, mad dogs, &c., this escharotic may be used with advan
tage. Mr. Whatley recommends the potassa fusa as the agent for and
caustic bougies to be applied in strictures of the urethra; but prac
tice appears so dangerous (particularly on account of the quies
cence and violent action of the caustic), that I believe it is rarely, if ever, resorted to. There are many other cases in which
substance is employed as a caustic: for example, to destroy warts
and fungoid growths of various kinds, and to open abscesses, as
especially those in the groin; but for the latter purpose the lance
to be preferred.

\(\beta \). As an antacid we resort to the liquor potassæ in various a
ctions of the digestive organs, which are attended with an inordinate
secretion of acid, known by the acid eructations, cardialgia,
other dyspeptic symptoms. It must, however, be evident, that
neutralization of the acid is merely palliative. But the continu
employment of alkalis frequently diminishes, temporarily, the
tendency to acid secretion. Commonly it is found that the cases
calling for the employment of alkalis are those benefitted by tox
and hence I believe the alkali is, in most cases, best given in a
mild or tonic infusion; such, for example, as the infusion of calh
or of gentian, or of quassia; the disulphate of quina oftentimes
agreeing with the stomach in these cases: besides which, it would
be decomposed by the alkali. The beneficial effects of alkalis are
to be particularly observed in those forms of dyspepsia which result
from the inordinate use of spirituous liquors.

Of course the liquor potassæ would equally neutralize acid which
may have been accidentally or purposely swallowed; but it is not
given for this purpose, on account of its irritant qualities, and beca
many other agents (as chalk, whiting, magnesia, and soap) are equal
efficacious as antacids, while they are free from the objections which
exist in these cases to the use of the caustic alkalis.

\(\gamma \). To modify the quality of the urine, liquor potassæ is a
valuable agent. I have already stated (see p. 102) that, under
employment of alkalis, not only may the natural acidity of the urine
be destroyed, but even an alkaline property be communicated to it:
that, whenever the secretion of lithic acid, or of the lithates, is in
nate, the alkalis present themselves to our notice as chemical agents
for counteracting this condition. It has been supposed by some that
efficacy of the caustic alkalis in preventing the deposition of lithic
gravel, consists in their holding it in solution—an explanation
parenthetically inconsistent with the fact that the carbonated alkalis and
magnesia are equally efficacious, though they are incapable of dissolving
We are, therefore, led to the conclusion, that the alkalis, by their
chemical influence, actually prevent the formation of this acid,
neutralize the free acid in the urine, which is the immediate cause
of the precipitation of the lithic acid; whether by an action on

\[An \ Improved \ Method \ of \ Treating \ Strictures \ of \ the \ Urethra. \ \text{Lond. 1804.} \]
digestive organs or otherwise we know not. In resorting to these
agents in urinary deposits, we should be careful to avoid employing
them when there is any tendency to the deposition of the phosphates.
The phosphate of lime, which naturally exists in the urine, is
precipitated by the addition of a caustic alkali. It is generally
admitted that the use of alkalis may actually cause the appearance
of white sand (phosphates) in the urine; and in patients predisposed
to its formation, its quantity may be increased by alkalis. These
facts, then, have an important bearing on practice. "I have known,"
says Mr. Brande, "soda-water exhibited in a case of stone in the
bladder, produce abundance of white sand, which the ignorance of
the patient and his medical attendant led them to refer to the solvent
power of the medicine upon the stone, which they thought was
gradually giving way and being voided; whereas great mischief was
doing, by giving the urine more than its usual tendency to deposit
the phosphates, and, consequently, to augment the size of the calculi."
In the treatment of the lithic acid diathesis, it is to be remem-
bered that the use of alkalis is, to a certain extent, a palliative mode
treatment, and that, to be successful, it should be conjoined with
other means of cure.

6. As a liquefacent and resolvent (see p. 194).—The alkalis have
been lately celebrated for producing beneficial effects in those
inflammations which have a disposition to terminate in exudation and
adhesion; that is to say, those that frequently give rise to the forma-
tion of false membranes or of adhesions; such, for example, as
croup, pleurisy, and peritonitis. If experience should subsequently
confirm the assertions already made respecting their efficacy, we
shall have another analogy between the operation of alkalis and of
mercury. Theoretically, it has been argued, the alkalis are likely to
be beneficial in these diseases on two accounts; first, they have a
tendency to diminish the supposed plasticity of the blood, which
some have assumed (though without proof) to be connected with the
exudation; and, secondly, we find these albuminous deposits readily
dissolve, out of the body, in alkaline liquids: but arguments of this
kind are to be received with great caution. In conclusion, I may
add that Eggert recommends the alkalis as specifics against croup,
though Sundelin® found them ineffective. Hellwag employed them
to cause the removal of the deposited lymph; Menninger gave
them with benefit in hooping-cough; Mascagni in pleurisy and
peripneumony.® In the latter complaints the alkalis render the
expectorated matter less viscid, and at the same time act on the
kidneys and skin.

7. In induration and enlargement of the lymphatic and secreting
glands the alkalis have also been recommended: for example, in bron-
chocele, mammary tumors, affections of the testicle, diseases of the
mesenteric glands, induration of the liver and salivary glands, &c. I
have seen the liquor potassae remarkably beneficial in excess of the lenticular or glandular papillae at the base of the tongue.

2. In syphilis and scrofula also the alkalis have been employed with advantage. Some of the most obstinate and troublesome cases of scrofulous ulcers, to whom mercury is not only useless, but absolutely prejudicial, I have seen the liquor potassae, with the compound decoction of sarsaparilla, of great benefit. In the long-continued use of the caustic alkalis (as potash and alum), there has been attended with remarkably beneficial effects. Caustic was most extensively employed by Mr. Brandish, during many years in the treatment of scrofula and other chronic diseases, and, as to his report, with singular success. It is, however, more suitable in young than in old persons,—and in those of fair and light complexion than in the dark and the swarthy. That, in numerous instances, scrofulous patients are greatly benefited by its use, can be denied; but I doubt whether this, or any other medicine, has power of eradicating the disease from the system.

3. The alkalis have been employed as diuretics in dropsy, especially when this disease arises from glandular enlargements, or other causes likely to be relieved by these remedies.

4. In irritable conditions of the urinary organs a combined liquor potassae and tincture of opium will be frequently found beneficial, notwithstanding that alkalis are classed among the antipatholytic purgatives of opium.

There are several other diseases in which the employment of alkalis has been recommended; such as skin diseases, which are of various kinds (as lepra and psoriasis); chronic rheumatism; in uterine complaints as an emmenagogue; and in some chronic diseases of the skin. Sometimes a very dilute solution of potash has been used as a fomentation or a lating wash to ulcers.

Antidotes.—In poisoning by the alkalis, the antidotes are mineral acids or oil, both of which form salts with the alkalis, and destroy their causticity. Chereau prefers oil. Vinegar, lemon or other citruses, even the very diluted mineral acids, should be resorted to when at hand.

1. LIQUOR POTASSÆ, L.; Potassæ Aqua, E.; Potassæ Oxid. Aqua, D.; Solution of Potash; Water of Caustic Potash; Lye of Saponaria.—This is a solution of caustic potash.

The London College orders of Carbonate of Potash, 3xv.; Lime, 3v; distilled Water, boiling, Cong. j. Dissolve the Carbonate of Potash in half a gallon of water. Sprinkle a little of the water upon the lime in an earthen vessel, and the lime being slacked, add the rest of the water. The liquors being intimately mixed together in a close vessel, shake them frequently until they are well set by. Then set by [the mixture], that the Carbonate of Lime may subside. Keep the supernatant liquor, when poured off, in a well-stoppered glass bottle.

* Observations on the Use of Caustic Alkali in Scrofula and other Chronic Diseases. Lond.
The Edinburgh College directs of Carbonate of Potash, dry, 2iv.; Lime recently burnt, 3iv.; Water, f3xliv. Let the lime be slaked and converted into milk of lime, with seven ounces of the water. Dissolve the carbonate in the remaining thirty-eight fluidounces of water; boil this solution, and add to it the milk of lime in successive portions, about an eighth at a time,—boiling briskly for a few minutes after each addition. Pour the whole into a deep narrow glass vessel for twenty-four hours; and then withdraw with a syphon the clear liquid, which should amount to at least thirty-five fluidounces, and ought to have a density of 1°72.

The Dublin College employs of Carbonate of Potash, from Potashes of Commerce; Fresh burnt Lime, of each, two parts; Water, fifteen parts.—The process is not essentially different from that of the London College. The specific gravity of this product is 1°890.

In all these processes the lime abstracts carbonic acid from the carbonate of potash, forming carbonate of lime, and the potash thus set free dissolves in the water.

MATERIALS.

<table>
<thead>
<tr>
<th>Water</th>
<th>2eq. Carbonate</th>
<th>51eq. Potash</th>
<th>48</th>
<th>1eq. Potash</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1eq. Lime</td>
<td>28</td>
<td>1eq. Carbonic Acid</td>
<td>22</td>
<td>1eq. Carbonate</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lime</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>98</td>
<td></td>
<td>98</td>
</tr>
</tbody>
</table>

The liquid should be decanted or drawn off by a syphon. Filters are objectionable, as the potash decomposes and partially dissolves them. Cotton and linen are less acted on by it than paper or woollen cloth, which are readily decomposed by it. The air must be excluded as much as possible during the process of filtration, as the liquor abstracts carbonic acid from the air.

Liquor potassae is a limpid, colourless, transparent, inodorous liquid, having an acrid taste. Prepared according to the London Pharmacopoeia, its sp. gr. is 1°063; according to the Edinburgh Pharmacopoeia, 1°72; while, according to the Dublin College, it is 1°850. It has a soapy feel when rubbed between the fingers, and reddens yellow turmeric paper. It strongly attracts carbonic acid from the atmosphere, and, therefore, should be kept in closed vessels. It corrodes flint glass, and on that account should be preserved in green glass bottles.

It usually contains a small quantity of carbonate of potash, which may be detected by lime water, which renders the liquid turbid, or by a diluted mineral (sulphuric or nitric) acid, which causes effervescence. When pure liquor potassae has been saturated with diluted nitric acid, it gives no precipitate on the addition of carbonate of soda, chloride of barium, or nitrate of silver; if the first cause a precipitate, it would indicate some earthy or metallic impregnation; if there be a precipitate, insoluble in nitric acid with the second, we infer the presence of a sulphate; and, lastly, if the third occasions a precipitate, soluble in ammonia, but insoluble in nitric acid, a chloride is present.

The effects and uses of this liquid have been above described. The dose of it is ten drops, gradually increased to the extent of a.
fluidraehm, or even more, carefully watching its effects. It may be conveniently exhibited in the infusion of orange-peel. Table bunch completely disguises the nauseous flavour of the alkali, but the vegetable acid of the beer partly neutralizes the alkali, especially when the beer is sour. Veal broth is another liquid for its administration. Dr. Chittick's nostrum for the stone is said to be a solution of alkali in veal broth.

2. POTASSA CUM CALCE, L. E.; Potassa Caustica cum Calce, -Potash with Lime. The following are the directions for preparing this compound:

According to the London College, Hydrate of Potash, and Lime, of each ounce, are to be rubbed together, and kept in a well-stoppered vessel.

The Edinburgh College directs, that any convenient quantity of Aqua Potass be evaporated in a clean covered iron vessel to one-third of its volume; slacked lime till the fluid has the consistence of firm pulp; preserve the product in carefully covered vessels.

The process of the Dublin College is similar to that of the Edinburgh College.

By admixture with lime, hydrate of potash is rendered less dangerous. Potassa cum Calce is employed as an escharotic in the same cases as Potassa fusa. When used it is made into a paste with rectified spirit, and applied to the part to be cauterized.

Brandish's Alkaline Solution.—Take of best American Pearlashs, lb. Quicklime, fresh prepared; Woodashes (from the Ash), of each lb.; Boll Water, Conv. vj. Add first the lime, then the pearlashs, and afterwards the woodashes to the boiling water; then mix. In twenty-four hours the liquor may be drawn off. In this process the lime decomposes the carbonate of potash contained in pearlashs and woodashes, and combines with the carbonate of lime, setting free the potash. The liquid, therefore, is a solution of caustic potash, contaminated with some soluble alkaline salts (sulphate of potash and chloride of potassium). The solution is stronger than the official Liquor potassae, but liable to vary in strength, in consequence of the varying quality of the woodashes used.—Dose, according to Mr. Brandish, for an adult, is three (or even four) spoonfuls; for children, of from four to six years of age, one small teaspoonful; from six to eight years, a teaspoonful and a half; from eight to fifteen, two teaspoonfuls; and from fifteen to eighteen years, two teaspoonfuls and a half. The dose is to be taken twice daily, between breakfast and dinner, and at bedtime, fresh small beer or ale. A drop or two of oil of juniper covers the saponaceous taste, and gives a grateful smell. A generous regimen, and a careful avoidance of acids, were employed by Mr. Brandish, in conjunction with the alkaline liquor. In scrofulous tumours mercurial ointment was rubbed in.

2. POTAS'SII IO'DIDUM, L. E.—Iodide of Potassium. (Potassa Hydroiodata, D.)

History.—This salt, called also ioduret of potassium, and more commonly hydriodate of potash, was first employed in medicine by Dr. Coindet.

Natural History.—Iodine and potassium are contained in sea water as well as in sea-weeds, but whether the iodine is in combination with potassium or with some other metal (sodium or magnesium) it is impossible to say with certainty (see p. 232).

Preparation.—All the British Colleges give directions for the preparation of this salt.
IODIDE OF POTASSIUM.

The London College orders of Iodine 3½.; Carbonate of Potash, 3½.; Iron ggs, 3½.; Distilled Water, Ov.; Mix the Iodine with four pints of the water, and add the Iron, stirring them frequently with a spatula for half an hour. Apply a gentle heat, and, when a greenish colour appears, add four times of carbonate of potash, first dissolved in two pints of water, and strain it through a piece of boiling distilled water, and again strain the mixed liquor be evaporated, that crystals may be formed.

The Edinburgh College employs of Iodine (dry) 3½.; Fine Iron-Wire, 3½.; Ov.; Carbonate of Potash (dry), 3½. and 3½. The process is much the same as that of the London College, except that the solution of iodide of potash is to be concentrated till a dry salt be obtained, which is to be purified as little red oxide of iron and other impurities, by dissolving it in less than its weight of boiling water, or, still better, by boiling it in twice its weight of distilled spirit, filtering the solution, and setting it aside to crystallize. More salts will be obtained by concentrating and cooling the residual liquor.

The following is the theory of the above processes:—One equivalent of 126 parts of iodine combine with one equivalent or 28 parts of iron. The resulting iodide of iron is decomposed by one equivalent or 70 parts of carbonate of potash, by which one equivalent or 5 parts of iodide of potassium and one equivalent or 58 parts of tetracarbonate of iron are procured.

The following diagram illustrates the reaction between iodide of iron and carbonate of potash.

\[
\begin{array}{ccc}
\text{Iodide of Iron} & \text{Composition} & \text{Products} \\
1 \text{eq. Iodine} & 126 & 1 \text{eq. Iodide of Potash} \\
1 \text{eq. Iron} & 28 & \\
\text{Carbonate of Potash} & & 1 \text{eq. Prox. Iron} = 36 \\
70 & 224 & 1 \text{eq. Carbonate of Iron} = 58 \\
\end{array}
\]

Prepared by this process, iodide of potassium is apt to be contaminated with carbonate of potash.

The process of the Dublin College is as follows:—Take of Iodine, one part; shrefet of Iron, reduced to coarse powder, five parts; Sulphuric Acid, seven parts; Distilled Water, forty-eight parts; Water of Carbonate of Potash, a sufficient quantity; Rectified Spirit, six parts. Mix the iodine, by trituration, with ten parts of the water, and put the mixture into a glass vessel. Pour the mixture, previously diluted with thirty-two parts of water, upon the sulphuret in a glass, and from a tube, adapted to the neck of the matrass, and reaching to the bottom of the vessel containing the iodine and water, let the gas pass through the mixture until the iodine disappears. Having filtered the liquor, evaporate it out, delay, by a superior heat, to one-eighth part, and then filter it again. Add gradually as much water of carbonate of potash as will be sufficient to rate the acid, which is known by the cessation of the effervescence. Then use the mixture to heat until the residual salt is dry and of a white colour; rinse the spirit, and dissolve it with heat. Lastly, evaporate to dryness the liquor poured off from the residual salt, and preserve the residuum in a well-perforated vessel.

By the mutual action of sulphuret of iron, water, and sulphuric acid, we obtain, in this process, sulphuretted hydrogen and sulphate of iron (see p. 478). The sulphuretted hydrogen being conveyed into water with which iodine is mixed, a solution of hydriodic acid is obtained, and sulphur is deposited. When the hydriodic acid and carbonate of potash are mixed, mutual re-action occurs, and the products iodide of potassium, water, and free carbonic acid.
Another mode of preparing this salt was proposed by the late Mr. Turner. It consists in adding to a hot solution of caustic potash, much iodine as the liquid will dissolve, by which means a reddish-brown fluid is obtained. Then pass hydrosulphuric acid through the liquid until it becomes colourless. Apply a gentle heat, to evert any excess of the acid; filter, to get rid of the free sulphur, exactly neutralize the free acid present, with potash; then crystallize. When the potash comes in contact with iodine two salts are formed: iodide of potassium and iodate of potash: the latter is decomposed by the hydrosulphuric acid, the hydrogen of which forms water, combining with the oxygen of the iodate; sulphur is precipitated and iodide of potassium remains in solution.

Instead of decomposing, by sulphuretted hydrogen, the mixture of iodate of potash and iodide of potassium, it may be subjected to heat, in a crucible of platinum or iron. The iodate gives up its equivalents of oxygen, and is converted into iodide of potassium. A little iodate is, however, apt to escape decomposition.

Mr. Scanlan informs me, that if powdered charcoal be intermixed with the two salts before they are subjected to heat, the deoxidation of the iodate is more effectually carried on.

Properties.—This salt occurs in white, somewhat shining, transparent, or semi-opaque cubes, or octahedrons, belonging to the regular system. Its taste is acid saline, somewhat similar to common salt; it is without odour. It fuses at a red heat, and at a high temperature volatilizes unchanged. It decompounds when heated. Both water and alcohol readily dissolve it: it requires only two-thirds of its weight of water to dissolve it at 60° F. Its aqueous solution dissolves iodine, forming a liquid called ioduretted iodide of potassium.

Characteristics.—A solution of this salt is known to contain iodide by the following tests:—

1. A solution of bichloride of mercury occasions a vermillion-red precipitate (bismuthate of mercury), soluble in excess of iodide of potassium.
2. A solution of acetate of lead produces a yellow precipitate (iodide of lead).
3. A solution of nitrate of silver causes a pale yellow precipitate (iodide of silver).
4. Protionitrate of mercury or calomel occasions a greyish or a greenish yellow precipitate (protiodide of mercury).
5. On the addition of a cold solution of starch and a few drops of nitric acid (or solution of chlorine, or, still better, according to Devergie, a mixture of chlorine and nitric acid) a blue compound (iodide of starch) is formed, which is decolorized at a boiling temperature, or by caustic alkali.
6. Bichloride of platinum renders the solution brownish red (bismuthate of platinum).

That the base of the salt is potassium (or potash) is proved by the following characters:—

1. Perchloric acid occasions a white precipitate (perchlorate of potash), to which the supernatant liquor becomes yellowish brown, from a little free iodine.
2. Excess of a strong solution of tartaric acid produces a white crystalline precipitate (bitartrate of potash).
Carbazotic acid forms yellow needle-like crystals (carbazotyl of potash).

If a clean pack-thread be soaked in a solution of the iodide, and the wetted be immersed in melted tallow and applied to the exterior or blue cone of the me of a candle, this cone assumes a pale or whitish violet tint.

Composition.—This salt consists, as its name indicates, of iodine and potassium.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodine</td>
<td>1</td>
<td>125</td>
<td>76</td>
<td>76:2</td>
</tr>
<tr>
<td>Potassium</td>
<td>1</td>
<td>40</td>
<td>24</td>
<td>23:3</td>
</tr>
</tbody>
</table>

Iodide Potassium 1 166 100 100:0

The crystals contain no water of crystallization.

Adulteration.—Iodide of potassium is often largely adulterated with carbonate of potash. In 1829 I analyzed a sample, which contained 77 per cent. of the latter salt 4. In one specimen Dr. Bristison procured 74:5 per cent. of carbonate of potash, 16 of water, and only 9:5 of iodide of potassium 5. The impure salt may be distinguished by its wanting any regular crystalline form; by ting a few particles of it to lime-water, a milky fluid (carbonate of me) is obtained, whereas the liquid remains transparent if the iodide is pure; by its destroying the colour of tincture of iodine, whereas the pure salt does not affect it; and lastly, by alcohol, which dissolves iodide of potassium, but not carbonate of potash.

Traces of the chlorides and sulphates are not unfrequent in commercial iodide of potassium. To detect the chlorides, add nitrate of silver, which precipitates the carbonates, chlorides, and iodides, and in the precipitate in ammonia, which redissolves the chloride, it not the iodide of silver. On the addition of nitric acid to the ammoniacal solution, the chloride is thrown down, while the carbonate is converted into nitrate of silver. The sulphates may be detected by chloride of barium, which will occasion a white precipitate (sulphate of baryta) insoluble in nitric acid.

In the first edition of this work I mentioned that I had met with a triety of iodide of potassium, which, by keeping, underwent decomposition, evolved an odour of iodine, and became yellow. As it eluded me, on analysis, iodine and potash only, I was unable to account for the changes just referred to. Mr. Scanlan 1 has since explained them; and shown that this variety of iodide of potassium is contaminated with iodate of potash, the presence of which has been already accounted for (see page 490). It may be readily detected, by adding to a solution of the suspected iodide a solution of tartaric acid. If the iodide be pure, the resulting liquor is at first colourless, but becomes quickly yellow by the action of atmospheric oxygen on the hydriodic acid which is thus generated. If, however, iodate of potash be also present, a quantity of free iodine is instantly developed. This arises from the mutual re-action of the disengaged hydriodic

5 *Treatise on Poisons*, 3d edit. p. 182.
and iodic acids by which water and free iodine are generated. Whether iodate be present or absent, the addition of tartaric acid causes the precipitation of crystals of bitartrate of potash.

Iodide of potassium is readily contaminated with metallic matter derived from the vessels in which it is crystallized. I have samples of it, in octahedral crystals, which contain traces of lead and tin, derived, I presume, from the metallic vessels in which they have been prepared.

The following are the characters of pure iodide of potassium according to the London College:

Totally soluble in water and in alcohol. It alters the colour of turmeric either not at all or very slightly. It does not alter the colour of litmus. Subjected to heat it loses no weight. Sulphuric acid and starch added together it becomes blue. Ten grains of this salt are sufficient to decompose 10.24 grains of nitrate of silver; what is precipitated is partly dissolved by nitric acid, and partly altered in appearance; which is not the case when ammonia is added.

The non-action on turmeric proves the absence of alkali (or its carbonate) and acid. If it decompose more than the above quantity of nitrate of silver, the presence of chloride of potassium may be suspected.

The Edinburgh College gives the following characters of the pure iodide:

Its solution is not affected, or is merely rendered hazy, by solution of nitrate of baryta. A solution of five grains, in a fluidounce of distilled water, precipitated by an excess of solution of nitrate of silver, and then agitated in a bottle with a little aqua ammonia, yields quickly, by subsidence, a clear supernatant liquors, which is not altered by an excess of nitric acid, or is rendered merely hazy.

The nitrate of baryta will form a white precipitate with either an alkaline carbonate or sulphate. The nitrate of silver is used to detect any chloride.

Physiological Effects. a. On Vegetables.—The effects of this salt on vegetables have not been ascertained.

b. On Animals generally.—The experiments of Devergie on dogs, as well as those of Dr. Cogswell on rabbits, have shewn that, to these animals, iodide of potassium is a powerful poison. It operates as a local irritant, and thereby inflames the tissues with which it is placed in contact. Four grains injected into the jugular vein of a dog caused convulsions and death within a minute. Two drachms introduced into the stomach gave rise to vomiting and great depression; the latter increased until death, which occurred on the third day: after death, ecchymosis, ulceration, and redness of the stomach, were observed. Dr. Cogswell injected three drachms of the iodide beneath the skin of the back of a dog; the animal died on the third day. On chemical examination, iodine was detected in the blood from the heart, in the brain and spinal cord, the liver, spleen,
stomach, muscles, tongue, and the bones freed from their appendages; likewise in the contents of the bladder.¹

γ. On Man.—Both the physiological effects and therapeutical uses of iodide of potassium shew that its operation is analogous to that of iodine.

The local action of iodide of potassium is that of an irritant. When taken internally, in large doses, it not unfrequently occasions nausea, vomiting, pain and heat of stomach, and purging. Applied to the skin in the form of ointment, it sometimes produces slight redness. It is much less energetic in its action than free iodine; and, therefore, may be given in larger doses, and continued for a longer period, without evincing the same tendency to produce disorder of the stomach and intestinal canal. Lugol⁵ found that baths at 100° F., containing three ounces of iodide of potassium, produced temporary itching only; whereas baths at the same temperature, containing ten scruples of iodine, caused pricking, then itchiness, smarting, redness (which was not commensurate with the itchiness), punctuated, separated, or confluent, and subsequently desquamation of the epidermis. The chemical action of iodide of potassium on the tissues is slight, as, indeed, might be expected, seeing that no obvious changes are produced when a solution of this salt is mixed with albumen, fibrin, or gelatine, the three most abundant organic constituents of the animal body.

Iodide of potassium becomes absorbed and is carried out of the system by the different secretions, in which, as well as in the blood, it may be easily detected.¹ Moreover, it deserves especial notice, that it has been found in the urine several days after it has been swallowed. To detect it in the urine, add first starch to the cold secretion, then a few drops of nitric acid (or solution of chlorine), and the blue iodide of starch will be formed if the iodide be present.

The remote or constitutional effects of iodide of potassium are very analogous to those of iodine. Diuresis is a common consequence of its use. Relaxation of bowels is not unfrequent. Occasionally ptyalism has been observed. Dr. Wallace mentions that irritation of throat is produced by this salt. Atrophy of the mammea is a very rare effect of it, but a case is mentioned by Mr. Nesse Hill. Wasting of the testicle also is said to have resulted from its use. Headache, watchfulness, and other symptoms indicative of the action of this salt on the nervous system, have been noticed by Dr. Clendinning and Dr. Wallace. Increased secretion from, and pain of, the mucous membrane lining the nasal passages, have been observed. I have repeatedly remarked, that the pocket-handkerchiefs used by patients, who are taking this salt, acquire a distinct odour of iodine.

¹ Coganwell, op. cit. p. 91.
² Essays on the Effects of Iodine in Scrofulous Diseases, translated by Dr. O'Shaughnessy, p. 65. Lmd. 1831.
⁴ Chalmers, Treatise on Poisons, 2nd ed. p. 125.
Great discrepancy exists in the statements of authors as to the effects of given doses of iodide of potassium. "The average dose of this medicine," says Dr. Williams," is eight grains; carried beyond that quantity it purges; and even limited to that quantity requires some management to obviate nausea." In two cases of poisoning by Dr. Wallace a drachm of this salt taken in divided doses caused vomiting, colicky pains, slight diarrhoea, frequency of stool, and exhaustion. These statements, then, show that this salt possesses very active properties, and coincide with the experiences of many practitioners, and with the results obtained from experiments on animals. But we have, in opposition to the above evidence of Dr. Elliotson and of Dr. Buchanan, the fact that six drachms may be given daily (in doses of two drachms) for many weeks without inconvenience; and the second statement was that an ounce may be given at a dose without producing pain in the stomach or bowels, purging, or any hurtful effect. Further, both physicians vouch for the purity of the salt employed. It is difficult to explain such discrepancies. But I cannot help being convinced that peculiarities of constitution and morbid conditions of the stomach (especially affections of the stomach) are principally concerned in modifying (either increasing or diminishing) the tolerance of the salt. I do not think that the different effects observed can be ascribed to alterations in the quality or adulterations of the medicine employed, though I have published a case, showing that the iodide of potassium was much less active than the pure salt.

Uses.—Having so fully detailed (p. 240 et seq.) the uses of this medicine, it is unnecessary to notice at any length those of iodide of potassium, since they are for the most part identical. Thus it has been employed in bronchocele, scrofula, in chronic diseases accompanied with induration and enlargement of various organs, in leucoderma, secondary syphilis, periostitis, articular rheumatism, dropsy, etc. As a remedy for the hard periosteal node brought on by syphilis it was first employed by Dr. Williams, who obtained with it a great deal of success. At the end of from five to ten days its mitigating effects are felt; the pains are relieved, the node begins to subside, the majority of cases disappears altogether. In these cases Dr. Clendenning has also borne testimony to its efficacy. In the various forms of venereal eruptions, Dr. Williams found it beneficial. In Dr. Wallace's lectures are some valuable observations on the use of iodide of potassium in venereal diseases. In chronic rheumatism accompanied with alteration in the condition of the tissues of the joint, it is, in some cases, remarkably successful. As an inguinal

10 Ibid. vol. i. 1831-2, p. 728.
12 Ibid. vol. xvii. p. 839.
13 Ibid. vol. xiv. p. 42.
14 Ibid. vol. xv. p. 633.
15 Lancet, for 1833-34, vol. ii. and for 1836 and 1837, vol. i. and ii.
for baths, Lugol found the iodide would not answer alone, but that it was useful as a solvent means for iodine.

Administration.—Iodide of potassium may be employed alone or in conjunction with iodine, forming what is called ioduretted iodide of potassium. *Internally* it has been given alone in doses varying from three grains to half an ounce (see p. 494). To be beneficial, some think it should be given in small, others in large doses. Not having had any experience of the effects of the enormous doses before referred to, I can offer no opinion thereon. It may be administered dissolved in simple or medicated water, or in some bitter infusion. The more usual mode of exhibiting it is in combination with iodine.

Antidotes.—No chemical antidote is known. In a case of poisoning, therefore, the first object will be to evacuate the contents of the stomach, exhibit demulcent and emollient drinks, combat the inflammation by the usual antiphlogistic measures, and appease the pain by opiates.

1. **UNGUENTUM POTASSII IODIDI; Unguentum Potassae Hydriodatis, D. Ointment of Iodide of Potassium.** (Iodide of Potassium, ᵃ⁄₃; Prepared Hog's-Lard, ᵃ⁄₃. Mix.)—By keeping, this ointment is apt to acquire a yellowish colour, obviously from a little iodine being set free. In some cases this may depend on the iodide being contaminated with a little iodate of potash. It usually, however, arises from the action of the fatty acid (contained in the rancid fat) on the potassium of the iodide. When pure and fresh made, this ointment does not stain the skin like the compound ointment of iodine. It is, however, seldom employed. If used, its strength should be twice or thrice that of the Dublin preparation.

2. **UNGUENTUM IODINII COMPOSITUM, L. Unguentum Iodinei, E. Compound Ointment of Iodine; Ointment of Ioduretted Iodide of Potassium.** (Iodine, 5ss.; Iodide of Potassium, ᵃ⁄₃; Rectified Spirit, ᵃ⁄₃; Lard, ᵃ⁄₃. First rub the iodine and iodide of potassium with the spirit, then mix with the lard, L. The *Edinburgh College* omits the spirit, but uses the same proportions of the other ingredients).—This ointment is employed in bronchocele, enlargement of the lymphatic glands, &c.

3. **TINCTURA IODINII COMPOSITA, L. Compound Tincture of Iodine.** (Iodine, ᵃ⁄₃; Iodide of Potassium, ᵃ⁄₃; Rectified Spirit, Oij. Macerate until they are dissolved, and strain).—This solution may be mixed with water, without any deposition of iodine. The dose at the commencement is ᵃ⁄₃x. which may be gradually increased to ᵃ⁄₃ or more. When wine is admissible, sherry is a good vehicle for its exhibition.

4. **LIQUOR POTASSII IODIDI COMPOSITUS, L. Compound Solution of Iodide of Potassium; Solution of Ioduretted Iodide of Potassium."**
(Iodide of Potassium, grs. x.; Iodine, grs. v.; Distilled Water, 0 Mix, that they may be dissolved).—It is a brown-coloured solution having the peculiar smell and taste of iodine. It may be diluted with water without suffering any change. It may be usefully employed in the diseases of children.—Dose for adults, from ½ij to 1½ij or even beyond this.

Solutions of Ioduretted Iodide of Potassium, of various strengths, have been employed for different purposes by Lugol. The following are the most important:

α. Lugol’s Concentrated Solution of Iodine in Iodide of Potassium consists of Iodine, 3½i.; Iodide of Potassium, 3½i.; Distilled Water, 3½ij. Mixed with 3 part and 13 fluidounces of water, it forms a solution equal in strength to the Lug Potassii Iodidi compositus, L.

β. Lugol’s Ioduretted Mineral Water is prepared of three degrees of strength No. 1. No. 2. No. 3.

<table>
<thead>
<tr>
<th></th>
<th>gr. ¾</th>
<th>i</th>
<th>¼</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodide of Potassium</td>
<td></td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>Distilled Water</td>
<td>⅞vii</td>
<td>⅞vii</td>
<td></td>
</tr>
</tbody>
</table>

The solutions are yellowish or orange-coloured, and are quite transparent. When sweetened it is readily taken by children, but the sugar should be added at the time of administration, as in the course of a few hours it affects a change in the solution. From six to eight ounces should be taken daily.

γ. Lugol’s Caustie, Rubefacient, and Stimulant Solutions, are composed of the same ingredients, but in different proportions.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>No. 2</td>
<td>No. 3</td>
</tr>
<tr>
<td>Iodine</td>
<td>gr. ii</td>
<td>gr. iii</td>
</tr>
<tr>
<td>Hydriodide Potash</td>
<td>gr. iv</td>
<td>gr. iv</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>lb. i</td>
<td>lb. i</td>
</tr>
</tbody>
</table>

Lugol uses the stimulating washes in scrofulous ulcers, ophthalmia, fistula, abscesses, &c. When the scrofulous surfaces require stronger excitement than usual, he employs the rubefacient solution. In tubercular tumours which have obstinately resisted all other forms of treatment, the rubefacient solution may be applied in admixture with linseed meal (forming the ioduretted cataplasma of Lugol). To prepare the mixture, the poultice is first made in the ordinary manner; and when moderately cool, a sufficient quantity of the rubefacient liquid is poured on it with a wooden measure. The caustic solution is used for touching the eyelids and nasal fossae, to repress excessive granulations, &c.

δ. Lugol’s Ioduretted Baths.—These are employed in the treatment of scrofulous ulcers. They are to be made in wooden vessels.

IODURETTED BATHS FOR CHILDREN.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 to 7</td>
<td>(Quarts.)</td>
<td>(Troy Grains.)</td>
<td>(Troy Grains.)</td>
</tr>
<tr>
<td>7 to 11</td>
<td>36</td>
<td>90 to 95</td>
<td>60 to 72</td>
</tr>
<tr>
<td>11 to 14</td>
<td>75</td>
<td>48 .. 60 .. 72</td>
<td>96 .. 120 .. 144</td>
</tr>
<tr>
<td>No. 1</td>
<td>200</td>
<td>144 .. 192</td>
<td></td>
</tr>
</tbody>
</table>

IODURETTED BATHS FOR ADULTS.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>280</td>
<td>20</td>
<td>144 .. 192</td>
</tr>
<tr>
<td>No. 2</td>
<td>300</td>
<td>20</td>
<td>144 .. 192</td>
</tr>
<tr>
<td>No. 3</td>
<td>300</td>
<td>20</td>
<td>144 .. 192</td>
</tr>
</tbody>
</table>

Lugol’s Essays on the Effects of Iodine in Scrofulous Diseases; translated by Dr. O’Shangnessy, p. 167. Lond. 1831.
3. POTASSIUM BRO'MIDUM, L.—BROMIDE OF POTASSIUM.

HISTORY.—This salt, also called hydrobromate of potash, was first described by Balard in 1826.

PREPARATION.—The London College direct it to be prepared as follows:

Take of Bromine, \(\frac{2}{3} \) j. ; Carbonate of Potash, \(\frac{3}{2} \) j. and \(\frac{3}{2} \) j.; Iron Filings, \(\frac{3}{2} \) j.; Distilled Water, \(\frac{3}{2} \) j. First add the Iron, and afterwards the Bromine, to a pint and a half of the distilled water. Set them by for half an hour, frequently stirring with a spatula. Apply a gentle heat, and when a greenish colour occurs, pour the carbonate of potash dissolved in a pint and a half of water. Strain and wash what remains in two pints of boiling distilled water, and again strain. Let the mixed liquors be evaporated so that crystals may be formed.

In this process bromide of iron is first formed: this is afterwards decomposed by carbonate of potash, by which protocarbonate of iron and bromide of potassium are produced.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Brom' Iron 106</td>
<td>1 eq. Bromine 78</td>
<td>1 eq. Bromide of Potassium 118</td>
</tr>
<tr>
<td>1 eq. Iron 28</td>
<td>1 eq. Potassium 40</td>
<td>1 eq. Prot. Iron 30</td>
</tr>
<tr>
<td>1 eq. Carb. Pot 70</td>
<td>1 eq. Oxygen 8</td>
<td>1 eq. Carb. Acid 22</td>
</tr>
<tr>
<td>1 eq. Potassium 40</td>
<td>1 eq. Prot. Iron 30</td>
<td>1 eq. Carbonate of Iron 58</td>
</tr>
<tr>
<td>176</td>
<td>176</td>
<td>176</td>
</tr>
</tbody>
</table>

Another mode of procuring this salt is to mix bromine with a solution of caustic potash, by which bromide of potassium and bromate of potash are formed. The bromate of potash may be converted into bromide of potassium by heat or by hydrosulphuric acid (See Iodide of Potassium, p. 490).

PROPERTIES.—This salt crystallizes in whitish transparent cubes, or rectangular prisms. It is inodorous: its taste is pungent, saline, and similar to common salt, but more acrid. It is permanent in the air. When heated it decrystallizes, and at a red heat fuses without suffering decomposition. It is very soluble in both cold and hot water, and slightly so in alcohol.

Characteristics.—That this salt is a bromide is known by the characters before mentioned (see p. 251) for this class of salts. That its base is potassium (or potash) is shewn by the tests already given of this substance (see p. 481).

COMPOSITION.—This salt consists of bromine and potassium in the following proportions:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromine</td>
<td>1</td>
<td>78</td>
<td>66.1</td>
<td>65.56</td>
</tr>
<tr>
<td>Potassium</td>
<td>1</td>
<td>40</td>
<td>33.9</td>
<td>34.44</td>
</tr>
<tr>
<td>Bromide of Potassium</td>
<td>1</td>
<td>118</td>
<td>100.0</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The crystals may contain water lodged mechanically between their plates, but no combined water (water of crystallization).
PURITY.—The purity and goodness of this salt may be known by the following characters:—The form of the crystals, their freedom from colour, and their neutrality with respect to litmus and tartar emetic. A solution of this salt should give no precipitate with chloride of barium, shewing the absence of carbonates and sulphates.

The method employed by Rose for detecting minute quantities of chlorides in bromides, is the following:—If pure bromide of potassium is mixed with excess of bicarbonate of potash be distilled with concentrated sulphuric acid in a tubulated retort, to which is adapted a receiver containing excess of solution of caustic ammonia, pure bromine distils over, and the ammoniated liquor remains perfectly colourless. But if the bromide contained a chloride, both bromine and the chloride of chromium distil over, and the ammoniated liquor becomes yellow: chromic acid may be detected in the solution by usual tests.

The characters of good bromide of potassium are, according to Dr. May, as follows:

1. Totally dissolved by water. It does not alter the colour of litmus or turn starch added together render it yellow. Subjected to heat it loses no weight.
2. Ten grains of this salt are capable of acting upon 14-28 grains of nitrate of silver and precipitating a yellowish bromide of silver, which is dissolved by ammoniacal and but very little by nitric acid.

If more nitrate of silver than the quantity above stated be decomposed by the bromide, the presence of a chloride may be suspected.

PHYSIOLOGICAL EFFECTS. a. On Vegetables.—The effects of bromide of potassium on plants have not been ascertained.

b. On Animals.—Thirteen grains of bromide of potassium dissolved in water, and injected into the jugular vein of a dog, coagulated the blood, caused convulsions and death, in a few minutes. The same experimenter introduced a drachm of the salt into the stomach of a dog without any ill effects, save vomiting. But two drachms, even a drachm and a half, killed dogs in three days, when retained in the stomach by a ligature of the gullet, with marks of inflammation in the gastro-intestinal membrane. Maillet gave two ounces to a horse without any ill effect; and he observes, that according to the principle, that the dose of a saline substance for the horse should be three times that for the dog, a pound of bromide of potassium would have no ill effect on horses.

c. On Man.—The effects of bromide of potassium on man require further investigation. They appear to be analogous to those of iodide of potassium. Dr. Williams gave five grains of this salt three times daily for fourteen months, without any injurious effect. I have given the same dose to a boy of about 14 years old, affected with enlargement of the spleen consequent on intermittent fever, for several weeks, with
SULPHURET OF POTASSIUM.

marked effect. By the application of starch and a few drops of me to the urine, a yellow bromide of starch was obtained, shew-
se presence of a bromide in the urine. The case is now under
rent; but the volume of the spleen appears to be lessening,
most cases it acts as a diuretic. In irritable conditions of the
ute tube it is apt to occasion diarrhoea. Three cases are
ed by Dr. Williams, in which, on account of this state of the
more than four or five grains could not be exhibited at a time,
en then it was occasionally necessary to give opium. Under
continued use of it, enlargements of the spleen and liver, and
ings of the lymphatic glands, have disappeared; so that it ap-
to agree with iodine, mercury, and the alkalies, in being lique-
et and resolvent (see p. 194). Dr. Williams thinks that it possesses
ual, if not specific, powers in the cure of diseases of the
es.—In 1828, Pourchée employed this salt with benefit in the
ent of bronchocele and scrofula: it was taken internally, and
d externally in the form of ointment. In 1836 it was intro-
to the London Pharmacopeia, in consequence of the great
is obtained from the use of it in a case of enlarged spleen, under
re of Dr. Williams. In this, and in three other successful
of the same disease, it was used internally only. Dr. Williams
ave it with success in a case of ascites. Magendie employs it
anti-scrofulous remedy, as an emmenagogue, and against hyper-
the ventricles. Prieger applied it externally in the form
ment in lineae capitis.

NINISTRATION.—It is exhibited in the form of pill or solution in
of from four to ten grains three times a day.

IDOTES.—In a case of poisoning by this salt the treatment will
same as for iodide of potassium.

CENTUM POTASSII BROMIDI. Ointment of Bromide of Potas-
—This is composed of from 2 f. to 3 f. of bromide to 3 f. of lard.
ne is sometimes added.

AS'SII SULPHURE'TUM, L. E.—SULPHURET OF POTASSIUM.

(Potassa Sulphuretum, D.)

ORY.—Geber was acquainted with the solubility of sulphur alkaline solution; but Albertus Magnus taught the method of
ing sulphuret of potassium by fusion. The preparation kept
shops is a mixture of the sulphuret of potassium and sulphate
ash, and was formerly called Sulphuret of Potash or Liver of

10 Formulaire, 8th éd. 1833.
11 Dienbach, Die neueste Entdeck. in der Mal. Méd. 1837.
12 Invention of Verdis, Ch. vi.
PREPARATION.—The process for the preparation of this compound is the same in all the British pharmacopoeias.

Take of Sulphur, $\frac{3}{4}$; Carbonate of Potash, $\frac{3}{4}$. Rub them together, and place them upon the fire, in a covered crucible, until they have united.

When sulphur and commercial carbonate of potash are thoroughly mixed together, water and carbonic acid are evolved. Part of the potash is decomposed; its potassium combining with sulphur to form the sulphuret of potassium; while its oxygen unites with sulphur to form one or more acids which combine with some undecomposed potash. A portion of the carbonate of potash remains undecomposed.

PROPERTIES.—When fresh prepared, it has a liver-brown colour and hence its name hepar sulphuris. Its taste is acrid, bitter and alkaline. If quite dry it is inodorous, but when moistened it has the odour of hydroxysulphuric acid. Exposed to the air it undergoes decomposition, from the action of the aqueous vapour and of light. It becomes green and moist, and ultimately whitish. This change depends on the absorption of oxygen, in consequence of which a portion of the sulphur is deposited, while a portion of the sulphuret of potassium is converted into hyposulphite, afterwards into sulphite, and ultimately into sulphate of potash. Sulphuret of potassium is insoluble in water.

Characteristics.—Hydrochloric acid causes the evolution of sulphuric acid gas and the precipitation of sulphur; the solution of the sulphuret in water produces a reddish or black precipitate of solution of lead. That it contains potassium may be detected thus:—Add excess of hydrochloric acid to a solution of it; boil and filter. The before-mentioned tests for potash (see p. 481) may now be applied.

"Fresh broken it exhibits a brownish-yellow colour. Dissolved in water in almost any acid, it exhaled a smell of hydroxysulphuric acid. The solution is of a yellow colour. What is thrown down by acetate of lead is red, and it afterwards blakens."—Ph. L.

COMPOSITION.—Berzelius¹ says, that if 100 parts of carbonate of potash be fused with 58.22 of sulphur, the product is a mixture of three equivalents of tersulphuret of potassium and one equivalent of sulphate of potash; and he adds, that if less than the above proportion of sulphur be employed, a portion of carbonate of potash remains undecomposed. But Winckler² has shewn, that if the carbonates employed be quite pure, and the operation be very carefully conducted, no sulphate is obtained, but hyposulphite and sulphite of potash. He fused together 900 grs. of crystallized basic carbonate of potash with 550 grs. of pure sulphur.

¹ Berl. Acta, 1832, p. 76.
SULPHURET OF POTASSIUM.

Potash (dried at 210° F.) with 518 grs. of washed flowers of sulphur. The per-centlage composition of the product was as follows:—

<table>
<thead>
<tr>
<th>Substance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tersulphuret of Potassium</td>
<td>53·2905</td>
</tr>
<tr>
<td>Hyposulphite of Potash</td>
<td>29·4580</td>
</tr>
<tr>
<td>Sulphite of Potash</td>
<td>6·8613</td>
</tr>
<tr>
<td>Sulphate of Potash</td>
<td>0·7730</td>
</tr>
<tr>
<td>Carbonate of Potash</td>
<td>2·8780</td>
</tr>
<tr>
<td>Loss</td>
<td>6·7392</td>
</tr>
<tr>
<td>Hepar Sulphuris</td>
<td>100·0000</td>
</tr>
</tbody>
</table>

Physiological Effects. a. On Vegetables.—There can be no doubt but that this compound is a powerful poison to plants, though I am not acquainted with any experiments made with it.

b. On Animals generally.—From the experiments of Orfila on dogs, sulphuret of potassium appears to be a powerful narcotic-acrid poison. Six drachms and a half, dissolved in water, and introduced into the stomach, caused convulsions and death in seven minutes.

g. On Man.—In small doses (as from four to ten grains) it acts as a general stimulant; increasing the frequency of the pulse, augmenting the heat of the body, promoting the different secretions, more especially those of the mucous membranes, and sometimes exciting local irritation, marked by pain, vomiting, and purging. By continued use it acts as a resolvent or alterative; and, on this account, is employed in certain forms of inflammation.

In large doses it is an energetic narcotic-acrid poison. In two instances it proved fatal in fifteen minutes: the symptoms were, acrid taste, slight vomiting, mortal faintness, and convulsions, with an important chemical sign, the tainting the air of the chamber with the dour of hydrosulphuric acid.

Its local action is that of a powerful irritant: hence the acrid taste, burning pain, and constriction in the throat, gullet, and stomach, with vomiting and purging. But the nervous system also becomes affected; as is proved by the faintness, the almost imperceptible pulse, the convulsions, and (in some cases) sopor. These symptoms are analogous to those caused by hydrosulphuric acid; which, in fact, is copiously developed in the stomach.

Uses.—Internally, it has been administered in very obstinate skin diseases, such as lepra and psoriasis, which have resisted all the ordinary means of cure. It has also been employed as a resolvent in inflammations attended with lymphatic exudation, as croup, and in glandular enlargements. In chronic rheumatism, gout, hooping-cough, and various other diseases, against which it was formerly employed, it is now rarely if ever administered. It ought not to be given as an antidote for metallic poisoning, since it is itself a powerful poison.

Externally, it is applied in the form of lotions, baths, or ointment, in chronic skin diseases, such as eczema, scabies, lepra, &c.

Administration.—Internally it may be administered in the dose

* Toxicologie Générale.
* Christison, Treatise on Poisons, p. 228.
of three or four grains gradually increased. It may be given either in
solution, or in the form of pill made with soap. For external
use, it is employed in solution in water, either as a bath or wash, or
in the form of ointment. Lotions are sometimes made by dissolving
four ounces of the sulphuret in two or three quarts of water. The oint-
ment is composed of 5 ss. of sulphuret to \(\frac{5}{2} \) j of lard.

Antidotes.—In the event of poisoning by this substance, the
antidote is a solution of chloride of soda, or of chloride of lime.

1. **Solutio Potassii Sulphureti;** *Potassæ Sulphuretæ Aqua*

 (Washed Sulphur, 1 part; Water of Caustic Potash, 11 parts.
 During ten minutes, and filter through paper. Let the liquor be
 in well-closed vessels. The sp. gr. of this liquid is 1·117).—By
 mutual reaction of sulphur and potassa, aided by the water and
 hydrochloric acid, a solution of sulphuret of potash is obtained. The
 colour of this preparation is deep orange. It is sometimes adminis-
 tered in scabies, tinea capitis, and other austeries of the body.
 The Dose, from \(\frac{1}{2} \) x. to \(\frac{1}{2} \) j, sufficiently diluted
 water.

2. **Balneum Sulphuratum;** *Sulphurated or Sulphurous Bath*

 This is prepared by dissolving \(\frac{3}{2} \) iv. of sulphuret of potash in
 gallons of water (Rayer). It should be prepared in a wooden
 vessel.—Used in obstinate skin diseases, as lepra and scabies.
 An acid be added to this bath, sulphur is precipitated and sulphuric
 acid is evolved. Care must be taken, lest asphyxia be produced
 by the inhalation of the latter.

3. **Balneum Sulphuratum et Gelatinosum;** *Dupuytren's Gela-

 This is prepared by adding one pound of Flax
 glue (previously dissolved in water) to the sulphuretted bath as
 described.—It may be used as a substitute for the waters of Bar-
 laque; the glue representing the Baregine, an organic matter found in
 these waters. Barèges waters have been celebrated for cleansing
 ulcers, healing old wounds, and curing obstinate skin diseases.

5. **Potassæ Bisulphæs, L. E. D.—Bisulphate of Potash**

 History and Synonymes.—The mode of preparing this salt
 was discovered by Lowitz and Link, at the latter end of the last cen-
 tury. The salt has had various names, such as *Supersulphate of Potash,*
 Sal Enixum, Acid Vitriolated Tartar, and *Sal Auri Philosophicum.*

 Preparation.—All the British Colleges give formulas for the
 preparation of this salt.

 The London and Edinburgh Colleges direct it to be prepared by adding sulphuric
 acid to a solution of the salt which remains after the distillation of pure
 nitric acid. The London College uses 1 lb. of the salt, 1 lb. of sulphuric
 acid, and 2 oz. of boiling water. The Edinburgh College employs the same quan-
 tity of salt and water, but only 3 of acid.

 The *Dublin College* prepares it from Sulphuric Acid of commerce, two parts
 Carbonate of Potash, from Potassæ, as much as may be sufficient; Wi-
six parts. Let one portion of the sulphuric acid, mixed with the water, be saturated by the carbonate of potash, then let another portion of the acid be added to the mixture. Let the liquor evaporate until, on cooling, crystals are formed.

The salt which remains in the retort after the preparation of the Acidum Nitricum, L. & E., is bisulphate of potash. When "the solution is allowed to crystallize, it occasionally happens that some sulphate and sesquisulphate are mixed with the bisulphate, owing to the partition of the excess of sulphuric acid between the water and the sulphate of potash. This inconvenience is remedied by the addition of sulphuric acid now directed to be employed."

Properties.—It is crystallizable; the crystals belong to the right prismatic system. It has a very acid taste, and reacts strongly as an acid on vegetable colours, and decomposes the carbonates with effervescence. It is soluble in about twice its weight of water at 60°. By a red heat it evolves sulphuric acid, and is converted into the neutral sulphate of potash.

Composition.—It consists of—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphuric Acid</td>
<td>2</td>
<td>80</td>
<td>54.80</td>
<td>54.77</td>
</tr>
<tr>
<td>Potash</td>
<td>1</td>
<td>48</td>
<td>32.87</td>
<td>32.83</td>
</tr>
<tr>
<td>Water</td>
<td>2</td>
<td>18</td>
<td>13.33</td>
<td>13.20</td>
</tr>
<tr>
<td>Crystallized Bisulphate Potash</td>
<td>1</td>
<td>146</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Characteristics.—The presence of sulphuric acid may be recognised by the chloride of barium (see p. 469). When subjected to a red heat, bisulphate of potash loses half of its acid. The residue is the neutral sulphate; the potash of which may be detected by the characters already mentioned for this substance (see p. 481). From the neutral sulphate of potash it is distinguished by its acid taste, its action on litmus and on the alkaline carbonates, and by its greater solubility.

Physiological Effects and Uses.—It is rarely used as a medicine. It possesses the combined properties of sulphuric acid and sulphate of potash. The excess of acid renders its local operation that of an astringent. When swallowed it operates as a mild purgative, and may be employed in the same cases as the sulphate, over which it has the advantage of greater solubility. Conjoined with rhubarb it covers the bitter taste of the latter without injuring its medicinal properties. Dr. Barker says it may be used to form a cheap effervescing purgative salt, as follows:—73 grains of bisulphate of potash and 72 grains of crystallized carbonate of soda, to be separately dissolved in two ounces of water, and taken in a state of effervescence.

Administration.—The dose of it is from gr. x. to 5ij, properly diluted.

* Mr. R. Phillips, Translation of the Pharmacopoeia, p. 205. 4th edit.
6. POTAS'SÆ SUL'PHAS, L. E. D.—SULPHATE OF POTASH.

History and Synonymes.—The mode of preparing this salt was taught by Oswald Croll, in 1643. It has been known by various appellations, such as Specificum Purgans Paracelsi, Arcanum duplicatum, Vitriolated Kali, Vitriolated Tartar, Sal Polychrest (literally signifying salts of many uses or virtues), Sal de Duobus, &c.

Natural History.—Sulphate of potash is found in both kingdoms of nature.

a. In the Inorganised Kingdom.—It has been met with in small quantities in some mineral waters of Saxony and Bohemia, in native alum, in alum-stone, and in a mineral called polyhalite, in which Strömeyer found no less than 27° per cent. of the sulphate of potash.

b. In the Organised Kingdom.—It has been found in the root of Polygala Senega, Winter's bark, the bulb of garlic, myrrh, opium, &c. The blood and urine of man also contain it.

Preparation.—It is prepared from the residuum of the distillation of nitric acid.

The London College orders of the salt which remains after the distillation of Nitric Acid, lbij.; Boiling Water, Cong. ij. Ignite the salt in a crucible until the excess of sulphuric acid is entirely expelled, then boil it in the two gallons of water until a pellicle floats, and the liquor being strained, set it aside that crystals may be formed. The liquor being poured off, dry them.

The Edinburgh and Dublin Colleges order the salt left after the distillation of nitric acid to be dissolved in water, and its excess of acid to be saturated. The Edinburgh College employs for this purpose white marble (carbonate of lime), while the Dublin College uses carbonate of potash. The neutral solution of sulphate of potash is then to be evaporated and crystallized.

The heat employed by the London College is to drive off the excess of sulphuric acid.

Properties.—It usually crystallizes in single or double six-sided pyramids. The two pyramids are sometimes united at a common base, or are separated by a short intervening prism (fig. 79). These

![Fig. 79.](image-url)
Common bipyramidal crystal.

![Fig. 80.](image-url)
Ditto modified.

![Fig. 81.](image-url)
Compound crystal composed of three so united that their upper edges meet at angles of 120°.

forms agree very closely with those belonging to the rhombohedral
SULPHATE OF POTASH.

But they have been shewn by Dr. Brewster to be composite crystals; being composed of several crystals belonging to the right prismatic system, agglutinated so as to simulate the forms of the rhombohedral system. If a plate, cut perpendicular to the axis of the double pyramid, be examined by polarized light, it presents the tessellated structure shewn in fig. 82; and each of the six equilateral triangles are found to have two axes of double refraction.

Crystals of sulphate of potash are hard, inodorous, have a saline bitter taste, and are unchanged by exposure to the air. When heated they decrepitate. At 60° F. they require sixteen times their weight of water to dissolve them; they are insoluble in alcohol. A solution of them is decomposed by tartaric acid, which forms crystals of bitartrate of potash.

Characteristics.—I have already stated these, when describing the bisulphate.

Composition.—The crystals contain no water of crystallization. They are thus composed:

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Wenzel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphuric Acid</td>
<td>1</td>
<td>40</td>
<td>45.45</td>
<td>45.45</td>
</tr>
<tr>
<td>Potash</td>
<td>1</td>
<td>48</td>
<td>54.55</td>
<td>54.55</td>
</tr>
<tr>
<td>Sulphate of Potash</td>
<td>1</td>
<td>88</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Physiological Effects.—It acts as a very mild purgative, without occasioning any heat, pain, or other symptoms of irritation. Its operation is, in fact, too mild for ordinary use.

Uses.—It is particularly serviceable as a laxative in disordered conditions of the alimentary canal, as diarrhoea and dyspepsia, in hepatic disorders, and in hemorrhoidal affections. It is best given in combination with rhubarb. Thus, from five to ten grains of rhubarb, with from fifteen grains to two drachms of this salt, will be found to act mildly and efficiently in many cases of dyspepsia and diarrhoea. It is an excellent aperient for children. The objections to its employment are its slight solubility, and that when given in large doses to children it is apt to produce vomiting. It is useful, on account of its hardness, for triturating and dividing powders, as in the *pulvis ipseacuanhe compositus*. Its powder is an excellent dentifrice: the only objection to its use is its taste.

Dosage.—It is given in doses of from fifteen grains to four or five drachms.

POTASSIUM SULPHAS CUM SULPHURE, E.; *Sal Polychrestum Glaseri*; Glaser's *Sal Polychrest*. (Nitrate of Potash, and Sulphur, equal
parts; mix them thoroughly; throw the mixture, in small successive portions, into a red-hot crucible; and when the deflagration is over, and the salt has cooled, reduce it to powder, and preserve it in well-closed bottles).—The sulphur is oxidized at the expense of the oxygen of the nitric acid, and the resulting compound consists principally of sulphate of potash, mixed probably with some sulphite; but the precise nature of the compound has not been carefully determined. Dr. Duncan says that in its medical effects and exhibition it agrees with the sulphureous mineral waters, which contain a portion of neutral salt.”—Dose, 5ss. to 5j.

7. POTAS'SÆ NI'TRAS, L. E. D.—NITRATE OF POTASH.

History.—At what time this salt became known is difficult now to determine. As it is found in various parts of the East, on the surface of the earth, it appears probable that it must have been known at a very early period. Furthermore, if the Chinese and Hindoos were acquainted with the art of making gunpowder and fireworks at a very early period of history, they must have employed, and, therefore, been acquainted with, nitre. Geber, however, is the first who distinctly mentions it. He describes the mode of making nitric acid from it. But the terms neter of the Old Testament, translated nitre,—virens of Herodotus and Theophrastus—and nitrum of Pliny, appear to have been applied either partially or exclusively to natron. The word saltpetre, usually applied to nitre, is evidently derived from sal petre, literally signifying rock salt.

Natural History.—This salt occurs in both kingdoms of nature.

a. In the Inorganised Kingdom.—In the East Indies, Egypt, Persia, Spain, and other parts of the world, large quantities of nitre are found in the soil. It would appear to be formed below, and to be brought to the surface of the soil by efflorescence. It has been usually supposed that the nitric acid was formed by the direct union of the nitrogen and oxygen of the air; but there are no facts which justify this opinion. It is much more probable that it is formed by the oxidation of ammonia (which is a constant constituent of the atmosphere); the products being nitric acid and water. The simultaneous oxidation of hydrogen is necessary to effect the union of oxygen with nitrogen. The cause of this is that the acid and water unite, so that water may be said to be a condition of nitric

Nitration. Azotised animal matter is no further necessary than as yielding ammonia. In a nitre-cave in Ceylon, Dr. Davy found nitre without animal matter. The potash of the nitrate is in most cases easily accounted for, being found in some of the constituents of the soil, as feldspar and mica.

b. In the Organised Kingdom.—This salt has been found in various plants, as in the roots of Cissampelos Pareira, Genus urbanum, &c. &c.

* Edinburgh Epitomistary.
* Invention of Verdiy, ch. xiii.
* Proverbs, ch. xxv. 50; Jeremiah, ch. ii. 22.
* Exeter, xxvii.
* De Ignite.
* See Beckman’s History of Inventions and Discoveries, vol. iv.
* See Soda Carbonates and Soda Supercarbonates.
* Account of the Interior of Ceylon.
EXTRACTION.—The nitrate of potash consumed in this country is
exported from India, where it is obtained from natural sources. In
the parts of Europe it is obtained artificially.
The district of Tipu in Bengal, is more productive of nitre than
other place in India. It is most abundant in those parts con-
ning a redundancy of carbonate of lime. An average sample of the
sill analyzed by Mr. Stevenson gave the following composition:

<table>
<thead>
<tr>
<th>Material</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter insoluble in three Mineral Acids</td>
<td>30.3</td>
</tr>
<tr>
<td>Matter soluble in ditto</td>
<td>44.3</td>
</tr>
<tr>
<td>Silex</td>
<td>37.5</td>
</tr>
<tr>
<td>Carbonate of Lime</td>
<td>3.7</td>
</tr>
<tr>
<td>Sulphate of Soda</td>
<td>0.9</td>
</tr>
<tr>
<td>Matter of ditto</td>
<td>0.5</td>
</tr>
<tr>
<td>Muriate of lime</td>
<td>0.9</td>
</tr>
<tr>
<td>Nitrate of Lime</td>
<td>0.7</td>
</tr>
<tr>
<td>Nitrate of Potash</td>
<td>100.0</td>
</tr>
</tbody>
</table>

"In the month of November the leonahs, or native manufacturers
saltpetre, commence their operations, by scraping off the surface
of old mud heaps, mud buildings, waste grounds, &c. where the
petre has developed itself in a thin white efflorescence, resem-
ling frost rind. This saline earth being collected at the factories,
the operator first subjects it to the process of solution and filtration.
It is Is effected by a large mud filter, lined on the inside with stiff
clay." has a false bottom of bamboo, covered with close wrought grass mats,
which are placed vegetable ashes. Upon these the nitrous earth is
spread. Water is then added to dissolve the saline matters of the earth,
and the solution thus obtained, filtering through the mats, drops into
an empty space between the real and false bottom, and is conveyed
by an earthen receiver. In its passage through the wood-
excitement the carbonate of potash contained in the latter reacts on the
rate of lime of the solution, and produces nitrate of potash and
carbonate of lime. The solution is afterwards evaporated in earthen
vessels, filtered, and put aside to crystallize. The impure nitre thus
separated is termed dhonah: it contains from 45 to 70 per cent. of
the nitrate of potash. It is re-dissolved and crystallized by the
Bengal merchants, who supply the Calcutta bazaars, and when thus
refined is called by the natives kalmine.

ROUGH NITRE.—Saltpetre is imported into this country principally
from Calcutta, but some comes from Madras. It is brought over in
hessian bags, which contain from 150 to 175 lbs. each. Its quality varies
considerably. It is always more or less impure: but the common
sorts, which have a dirty yellowish appearance, are termed rough
crude saltpetre, or grough petre, while the purer and cleaner looking
kinds are called East India refined. The loss which it suffers
through the refining, or, in other words, the impurities which it contains, are
technically designated refraction. This varies greatly in different
samples, but is usually between 5 and 15 per cent.

PURIFICATION.—Refined rough nitre is purified by dissolving it in
water, boiling the solution, removing the scum, and, after the liquid has

been allowed to settle, it is strained, while hot, through a hempen cloth, and set aside to crystallize. At the Waltham Abbey powder-mills the crystallization is effected in copper pans. When it has been dissolved and crystallized once only it is called singly refined nitre: when twice, doubly refined. Its purity may be ascertained by testing it with nitrate of silver, chloride of barium, and oxalate of ammonia. The first detecting the chlorides, the second the sulphates, and the third the calcareous salts.

The Dublin College orders Purified Nitrate of Potash (Potassae Nitratum purificatum) to be thus prepared: Take of Nitrate of Potash, one part. Dissolve in two parts of hot water, filter the liquor, and set it aside, that, on cooling, crystals may be formed.

NITRE FROM ARTIFICIAL SOURCES.—The artificial preparation of nitre is practised in several parts of Europe. The establishments in which it is carried on are called Artificial Nitrières. The mode adopted varies, however, in different places.

At Appenzel, a canton in Switzerland, nitre is formed from the urine of animals. A hole is dug near to stables, and in this is put a sandy kind of earth, which is kept moistened with the water running from the stables. In two or three years this earth yields nitre.

In Sweden, where each landed proprietor is compelled to furnish a certain quantity of nitre, it is prepared as follows:—Decomposing animal and vegetable matters, mixed with cinders, lime, or marl, are placed in heaps (called nitre beds) under cover, the mass being occasionally moved, or holes made in it, so that they are exposed to the air. From time to time they are watered with urine. At the end of two or three years the nitrogen has combined with oxygen, and this with bases to form nitrates. By lixiviation the salts may be separated, and any nitrate of lime present may be converted into nitrate of potash by adding wood-ashes, which contain carbonate of potash.

In Prussia nitre-walls are employed instead of nitre-beds. These have two advantages,—they economize land, and they expose a large surface to the air.

PROPERTIES.—Nitrate of potash usually crystallizes in the form of

Fig. 83. Fig. 84.

Crystal of Nitre. Primitive right rhombic prism.

* Colonel Moody informs me that the rough nitre now supplied to the Waltham Abbey powder-mills has about 3 per cent. of water, and requires one crystallization only to render it sufficiently pure for the manufacture of gunpowder.

* For full details of this process consult Thénard, Traité de Chimie, t. iii, p. 239, 5th ed. Paris, 1827; Dumas, op. supra cit.; and Kuhlmann, Mem. Acad. Sciences de Lille, 1838, and in Liebig's Annalen xxiv. 572.

** Berzelius, Traité de Chimie, t. iii. p. 391.

* Dumas, op. cit.
NITRATE OF POTASH.

Aided prism with diédral summits, which belongs to the right
ptic system. It has, therefore, two axes of double refraction, and
its a double system of rings in polarized light (see figs. 35 and 36,
). When pure the crystals are transparent and colourless, have a
cooling taste, and undergo no change by exposure to the air.
heated, nitrate of potash fuses, and when cast in moulds forms
rum Tabulatum, or, from its having formerly been cast into small
and stained of a plum colour, Sal Prunelle. At a strong red
t is decomposed, with the evolution of oxygen and the forma-
of hyponitrite of potash, which, when rubbed to powder and
with sulphuric acid, emits red fumes (composed of nitrous acid
nioxide of nitrogen). One hundred parts of water at 32° dis-
el three parts of this salt, but at 77° they dissolve 18 parts.
g the solution cold is generated. In pure alcohol nitre is
ble.

teristics.—This salt is known to be a nitrate by the charac-
ready detailed (p. 289) for this class of salts. That its base is
is shewn by the tests before mentioned (p. 481) for this
ence.

Composition.—Nitrate of potash has the following composition:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
<td>13:75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>6</td>
<td>48</td>
<td>47:10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>1</td>
<td>40</td>
<td>39:15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physiological Effects. a. On Vegetables.—Nitrate of potash
ved in 300 times its weight of water promotes vegetation: but
ution containing \(\frac{1}{7} \) part of nitre is injurious to the growth of

On Animals generally.—Orfila found that when introduced into
omach of dogs it acts as an irritant poison. If administered in
of two or three drachms, it is capable, when not vomited up, of
g death. Its operation is that of a narcotico-acid poison.
plied to the cellular tissue it produces, according to this exten-
talist, local effects only, and does not become absorbed. But
ro states, on the authority of J. E. M. Smith, that half an
plied to the thigh killed a dog in thirty-six hours. Eight
s dissolved in a pint of water, and swallowed, killed a horse in
y-four hours with all the symptoms of violent intestinal irrita-
Veterinarians use nitre as a diuretic and refrigerant in doses
m two to four drachms.

On Man.—In very large doses (such, for example, as one ounce
re) nitre has in several instances caused death; but the effects of

1. Quarterly Journal of Science, vol. xv. p. 284; also Miller, in Philosophical Magazine, for
2. Agricultural Chemistry.
3. Dié, General.
4. Steine Légale.
it are not uniform, since, in other cases, this quantity has
peared to have any very remarkable or obvious effect. For
Dr. Christison knew an instance in which one ounce was tak-
out occasioning any other unpleasant symptom than vomit-
it was retained on the stomach for above a quarter of an h
those cases where violent effects followed the ingestion of
symptoms were twofold: on the one hand, those indicating in-
tion of the alimentary canal (such as pain, vomiting, and p
on the other hand, an affection of the nervous system (mark
edness, convulsions, failure of pulse, tendency to fainting
pupil, insensibility, and palsy). It is probable that the open
nitre is influenced by the quantity of aqueous liquid in wh
salt is dissolved, and that the more we dilute, the less po
does it act as a poison. In no other way can we reconcile t
pant statements in regard to the effects produced by an oun
cd.
If nitre (or any other neutral alkaline salt) be mixed with
coloured venous blood out of the body, it communicates to i
or arterial hue. Now as this salt, when taken into the sto
comes absorbed, it is not unreasonable to suppose that whi
with the circulating blood it might have an analogous effe
Stevens asserts, that in the last stage of fever, when the bl
black, it has this effect. Moreover, he tells us (p. 154), that
which occurred in America, where a person swallowed an
nire, by mistake, in place of Glauber's salts, the blood whe
from a vein was completely florid, and remained as fluid as if
had been added to it out of the body.

In moderate doses nitre acts as a refrigerant, diuretic, and
retic. Its refrigerant properties are best seen when the bod
ternaturally hot, as in febrile disorders. Mr. Alexander, in
with it, made on himself, experienced a sensation of chillin
each dose, but he could not recognise by the thermometer a
ution of heat in the external parts of his body. He found,
of his experiments, that it had a powerful influence over th
system, and surprisingly diminished, in a very short period
the number of pulsations. Thus, on several occasions, a dr
this salt, within a few minutes, reduced the frequency of th
from 70 to 60 beats. Sundelin says nitre diminishes the
plasticity of the blood, perhaps by a chemical action on th
and fibrin. Diuresis is another, and very generally observe
As the nitre can be detected in the urine, its operation as a
depends, perhaps, on the local stimulus which is communi-
the renal vessels while the salt is passing through them. L
of the neutral salts of the alkalies, the continued use of it p
palvinal evacuations. Full doses frequently produce pain in

3 For some remarks on the effects of nitre on the blood, by Mr. Carlyon, see Lond.
vol. viii. p. 626; and on nitre as a therapeutic agent, by Dr. Hancock, see Lancet for 1825
p. 766.
5 Heilmittel, Bd. 1. S. 99.
CHLORATE OF POTASH.

As a diaphoretic it is usually given in combination with emetic tartar.

Uses.—It follows, from what has been now stated in regard to the physiological effects of nitre, that this substance is indicated when we wish to diminish preternatural heat, and to reduce the force and frequency of the pulse, as in febrile disorders, inflammatory affections, (except, perhaps, those of the stomach, bowels, kidneys, and bladder), and hemorrhages (especially hemoptysis). In continued fever it is frequently given in combination with emetic tartar, and sometimes also with calomel. It is not often used as a diuretic, because its activity in this respect is not very great; but it is adapted for those cases which are accompanied with arterial excitement. In sore throat it is mixed with white sugar, and gradually swallowed. A mixture of nitre and powdered gum has long been a favourite remedy for diminishing the scalding of gonorrhoea. Nitre is rarely employed as an external agent, except as a means of producing cold. Thus, five ounces of nitrate of potash, with five ounces of muriate of ammonia, dissolved in sixteen ounces of water, reduces the temperature 40° F.; that is, from 50° to 10°, according to Mr. Walker. Hence, therefore, we sometimes employ this mixture, placed in a bladder, as an external application (see p. 33).

On the belief that fever, cholera, and other malignant diseases, were produced by a deranged state of the blood, and that this derangement depended on, or consisted in, a diminution or entire loss of the saline parts of the blood, Dr. Stevens employed nitre, chloride of sodium, and other alkaline salts, in the treatment of these diseases.

Nitre, in large doses, has been employed in the treatment of scurvy, and with considerable success, according to the statement of Mr. Cameron.

Administration.—It may be given in doses of from ten grains to half a drachm, in the form of powder, mixed with sugar, or in solution. If administered as a refrigerant, it should be dissolved in water and immediately swallowed, in order that the coldness of the solution may assist the action of the salt. If employed as a diuretic, we ought to give mild liquids plentifully, and keep the skin cool.

Antidote.—No chemical antidote for this salt is known. In case of poisoning, therefore, we should remove the poison from the stomach as speedily as possible, and administer tepid emollient drinks. Opiates, perhaps, may be advantageously administered. The inflammatory symptoms are to be combated by the usual antiphlogistic measures.

8. POTAS'SŒ CHLORAS, L.—CHLORATE OF POTASH.

History.—Chlorate of potash (also called oxynitrurate or hyper-nitrurate of potash) was first procured by Mr. Higgins, who seems

1 Ghena, Medical Cases and Remarks, Part II. On Nitre in Hemorrhagy, 2d ed. Sudbury, 1811.
2 On supra cit. pp. 266, 266.
3 Bell's Chirur. Review, March, 1820, p. 487.
to have confounded it with muriate of potash. In 1786 it was distinguished by Berthollet.

Preparation.—It is prepared by passing chlorine gas slowly through a cold solution of carbonate of potash placed in a Woulfe’s bottle. The liquid is allowed to stand for twenty-four hours in a cool place, and is then found to have deposited crystals of chlorate of potash. These are to be drained, washed with cold water, dissolved in hot water, and re-crystallized.

When chlorine gas comes in contact with a solution of carbonate of potash, three salts are formed: chloride of potassium, hypochlorite of potash, and bicarbonate of potash.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Carbonate Potash 140</td>
<td>2 eq. Bicarb Potash 144</td>
</tr>
<tr>
<td>2 eq. Carbonate Potash 140</td>
<td>2 eq. Carbonic Acid 44</td>
</tr>
<tr>
<td>2 eq. Carbonate Potash 140</td>
<td>1 eq. Potash 48</td>
</tr>
<tr>
<td>2 eq. Carbonate Potash 140</td>
<td>1 eq. Oxygen 8</td>
</tr>
<tr>
<td>2 eq. Carbonate Potash 140</td>
<td>1 eq. Potassium 40</td>
</tr>
<tr>
<td>2 eq. Chlorine 72</td>
<td>1 eq. Hypochlorite A 44</td>
</tr>
<tr>
<td>2 eq. Chlorine 72</td>
<td>1 eq. Chlorite Potash 36</td>
</tr>
<tr>
<td>2 eq. Chlorine 72</td>
<td>1 eq. Chlorine 36</td>
</tr>
<tr>
<td>2 eq. Chlorine 72</td>
<td>1 eq. Chlorite Potash 36</td>
</tr>
<tr>
<td>2 eq. Chlorine 72</td>
<td>1 eq. Chloride Potash 36</td>
</tr>
</tbody>
</table>

In proportion as the quantity of chlorine increases, the bicarbonate becomes decomposed: carbonic acid is evolved, and a further quantity of hypochlorite of potash and chloride of potassium is produced. By the reaction of the carbonic acid on some hypochlorite of potash, a portion of hypochlorous acid is set free, which gives the liquor a yellow tinge.

When the solution is strongly charged with hypochlorite, the action of the chlorine on the potash is somewhat changed: it abstracts the potassium from the potash, and thereby forms chloride of potassium, while the oxygen thus set free combines with some hypochlorite of potash, and thereby converts it into the chlorate, the greater part of which crystallizes.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 eq. Chlorine 144</td>
<td>4 eq. Chloride Potash 20</td>
</tr>
<tr>
<td>4 eq. Potash 192</td>
<td>1 eq. Chloride Potash 20</td>
</tr>
<tr>
<td>4 eq. Potash 192</td>
<td>1 eq. Oxygen 32</td>
</tr>
<tr>
<td>4 eq. Potash 192</td>
<td>1 eq. Chlorite Potash 20</td>
</tr>
<tr>
<td>4 eq. Potash 192</td>
<td>1 eq. Chloride Potash 20</td>
</tr>
</tbody>
</table>

The residual liquor contains a little chlorate, some free hypochlorous acid, and a considerable quantity of hypochlorite of potash and chloride of potassium.

The preceding process is attended with some practical difficulties, to obviate which Professor Graham* recommends that carbonate of potash be mixed intimately with an equivalent quantity of dry hydrate of lime, and the mixture exposed to chlorine gas: the products are carbonate of lime, chlorate of potash, and chloride of potassium.

* Proceedings of the Chemical Society, No. 1.
Properties.—Chlorate of potash crystallizes in nearly rhomboidal plates belonging to the oblique prismatic system. Its taste is cool, and somewhat similar to nitre. When rubbed in the dark it becomes luminous. 100 parts of water at 32° F. dissolve 3.5 parts of chlorate: at 59° F. 6 parts: at 120° F. 19 parts.

Characteristics.—This salt is known to be a chlorate by the following characters:—When heated, it fuses, gives out oxygen, and is converted into chloride of potassium: when thrown on a red-hot coal it deflagrates—a property, however, common to several other salts. Sulphuric acid gives it an orange-red colour, evolves chorous acid (peroxide of chlorine), known by its yellow colour, and great explosive power when heated. Rubbed with sulphur or phosphorus it explodes violently. Mixed with hydrochloric acid and then with water, it forms a bleaching liquid. The base of the salt is known to be potash, by the tests for this substance already mentioned (see p. 481).

Composition.—It is an anhydrous salt.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloric Acid</td>
<td>1</td>
<td>76</td>
<td>61.39</td>
<td>61.903</td>
</tr>
<tr>
<td>Potash</td>
<td></td>
<td>48</td>
<td>33.70</td>
<td>38.4917</td>
</tr>
<tr>
<td>Chlorate of Potash</td>
<td>1</td>
<td>124</td>
<td>100.69</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Impurity.—Chloride of potassium is the usual impurity. This may be detected by a solution of nitrate of silver producing a white precipitate (chloride of silver). Pure chlorate of potash undergoes no obvious change on the addition of nitrate of silver to its solution.

Physiological Effects. a. On Animals generally.—In one series of experiments, Dr. O'Shaughnessy injected from 10 to 60 grains of chlorate of potash, dissolved in three ounces of tepid water, into the cervical vein of a dog: no ill effect was observed; the pulse rose in fullness and frequency, the urine was found in a short time to contain traces of the salt, and the blood of the tracheal veins had a fine scarlet colour. In another series of experiments the animal was stupefied by hydrocyanic acid or hydrosulphuric acid gas: the brachial vein was exposed, and a few drops of excessively dark blood could with difficulty be procured. Half a drachm of the chlorate dissolved in water of the temperature of the blood was injected slowly into the jugular vein: the pulsation of the heart almost immediately began to return, and in the course of eight minutes scarlet blood issued from the divided brachial veins. In twenty minutes the animal was nearly recovered, and passed urine copiously, which was found to contain the chlorate.

b. On Man.—The action of this salt on man requires further investigation. It appears to be refrigerant and diuretic, analogous to nitrate of potash. Wöhler and Stehberger have recognised chlorate of potash in the urine of patients to whom it had been exhibited, so that it does not appear to undergo any chemical change in its passage through the system. This fact is fatal to the hypothesis of the chemico-physiologists, who fancied that it gave oxygen to the system, and was,
therefore, well adapted for patients affected with scorbutive complaints, which were supposed to depend on a deficiency of this principle. Excessive doses of the chlorate, like those of the nitrate, would produce an affection of the nervous system; but I am not aware of any satisfactory case in proof. Duchateau says that 18 carats taken at thrice caused convulsions and delirium; but the observation is probably erroneous; for others have not experienced these effects from much larger doses. Dr. Stevens says chlorate of potash produces a beautiful arterial colour to the venous blood, and redens the skin much faster than mercury.

Uses.—Chlorate of potash was originally employed as a medicine for supplying oxygen to the system, where a deficiency of this principle was supposed to exist. With that view it was successfully administered by Dr. Garnett in a case of chronic scurvy. Dr. Ferrier also tried it in scurvy with success. It was subsequently applied in the venereal disease and liver complaints as a substitute for mercurials, whose beneficial effects were thought to depend on the oxygen which they communicated to the system. It has also been in cases of general debility, on account of its supposed tonic properties, but failed in the hands of Dr. Ferrier. In a case of dropsy under the care of the latter gentleman, it operated successfully as a diuretic. More recently, it has been used by Dr. Stevens and others as a remedy for fever, cholera, and other malignant diseases, if it be supposed that a deficiency of saline matters in the system. There is a difference, however, between the use of this salt and the carbonate of soda, in that the former is a chloride, while the latter is a carbonate. It is imposed to determine what share the chlorate had in producing the beneficial effects said to have been obtained by what is called the saline treatment of these diseases. Köhler tried it in phthisis, without experiencing benefit from it.

It appears, then, that most of the uses of this salt have been founded on certain views of chemical pathology, some of which are now considered untenable. It is very desirable, therefore, that no one, unbiassed by theoretical opinions, would carefully investigate its effects and uses, which I am inclined to think have been overrated.

Administration.—The usual dose of it is from ten or fifteen grains to half a drachm. Dr. Wittman, in one case, gave 160 grains with a little hydrochloric acid immediately after it, to decompose the effects were hot skin, headache, quick, full, and hard pulse, profuse perspiration, and augmentation of urine.

Mérat et De Lins, Dict. Mat. Méd.

On the Blood, p. 152.

Drummond’s Annals of Medicine, 1297.

*See the Reports of Mr. Cruikshank and Dr. Wittman, in Dr. Rollo’s *Cases of Diabetes* 2d edit. pp. 504 and 563; also, Dr. Chisholm’s Letter in the same work, Preface, p. 2.

History.—It is probable that the ancient Greeks, Romans, and Egyptians, were acquainted with this salt. Pliny\(^1\) describes some of the uses of wood-ashes, and mentions a lye of them (cineris liciniius). For a long period carbonate of potash was confounded with carbonate of soda. Geber\(^2\), in the eighth century, describes the method of procuring it by the combustion of tartar. It has been known by various names; such as, Salt of Tartar, Mild Vegetable Alkali, Fixed Nitre, and Subcarbonate of Potash.

Natural History.—Reuss\(^3\) found carbonate of potash in the waters of the Wuissokow, and in the chalybeate of Twer.

It is formed, during the combustion of inland plants, by the decomposition of the vegetable salts of potash (the acetate, the malate, and the oxalate, but principally the first). Hence it is procured in great abundance from wood-ashes. In some few cases it has been supposed to exist ready formed in plants, as in a fern referred to by Mr. Parkes\(^4\), the expressed juice of which is employed by the poor weavers of Yorkshire, in the cleansing of cloth at the fulling-mills.

Preparation. a. Of Potashas and Pearlashes.—It is principally obtained from Wood-ashes (Cineres Vegetabilium, seu Cineres e Lignis combustis). These are procured by burning wood piled in heaps on the ground, sheltered from the wind, or in pits\(^5\). The soluble constituents of the ashes are, carbonate, sulphate, phosphate, and silicate of potash, and chlorides of potassium and sodium. The insoluble constituents are, carbonate and subphosphate of lime, alumina, silica, the oxides of iron and manganese, and a dark carbonaceous matter. In America the ashes are lixiviated in barrels with lime, and the solution evaporated in large iron pots or kettles, until the mass has become of a black colour, and of the consistence of brown sugar. In this state it is called by the American manufacturers Black Salts (Cineres clavelatis crudus). The dark colour is said by Dumas to be owing to ulmate of potash.

To convert this substance into the Potashes of commerce (Cineres clavelatis calcinati), it is heated for several hours, until the fusion is complete, and the liquid becomes quiescent. It is then transferred by large iron ladles into iron pots, where it congeals in cakes. These are broken up, packed in tight barrels, and constitute the Potashes of commerce. Its colour varies somewhat, but it is usually reddish, in consequence of the presence of sesquioxide of iron.

To make the substance called Pearlash (Potassa impura, Ph. L.; Lixivus Cinis, Ph. D.) the mass called black salts, instead of being fused, is transferred from the kettles to a large oven-shaped furnace, constructed so that the flame is made to play over the alkaline mass,
which in the meantime is stirred by means of an iron rod. The
nition is in this way continued until the combustible impurities are
burnt out, and the mass, from being black, becomes dirty blue
white: this is pearlash. The colouring matter is probably m
aganesite of potash.

The following table shows the composition of various kinds of
ash and pearlash, according to Vauquelins:

<table>
<thead>
<tr>
<th>Kinds of Potash</th>
<th>Caustic Hydrate of Potash</th>
<th>Sulphate of Potash</th>
<th>Chloride of Potassium</th>
<th>Insoluble residue</th>
<th>Carbonic Acid and Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Potash</td>
<td>837</td>
<td>154</td>
<td>20</td>
<td>2</td>
<td>119</td>
</tr>
<tr>
<td>Russian Potash</td>
<td>772</td>
<td>65</td>
<td>3</td>
<td>6</td>
<td>224</td>
</tr>
<tr>
<td>American Pearlash</td>
<td>794</td>
<td>80</td>
<td>4</td>
<td>6</td>
<td>308</td>
</tr>
<tr>
<td>Potash of Treves</td>
<td>720</td>
<td>165</td>
<td>44</td>
<td>24</td>
<td>199</td>
</tr>
<tr>
<td>Bracken Potash</td>
<td>603</td>
<td>122</td>
<td>14</td>
<td>79</td>
<td>204</td>
</tr>
<tr>
<td>Potash of Vosges</td>
<td>444</td>
<td>148</td>
<td>510</td>
<td>54</td>
<td>15</td>
</tr>
</tbody>
</table>

In this table it will be observed, that the American potash contains
the largest quantity of caustic potash: this arises, probably, from the
use of lime in its manufacture. Moreover, pearlash contains a
carbonate of potash than potashes: this must arise from the absorp-
tion of carbonic acid during its preparation. The potash and pear-
lash employed in this country are principally imported from the
British North American colonies, from Russia, and from the United
States of America.

β. Of Refined Potashes; Potassae Carbonas, L. E.; Potassae
bonas e Lixivo Cinere, D.—The London and Dublin Colleges
give directions for the preparation of this substance.

The London College orders of impure Carbonate of Potash, ibid.: Distill
Water, Oss. Dissolve the impure Carbonate of Potash in the water, and as
then pour it into a proper vessel, and evaporate the water, that the liquor
thicken; afterwards stir it constantly with a spatula until the salt concretes.
The Dublin College directs of Pearlash, in coarse powder, of Cold Water, of
one part. Mix, by rubbing them together, and macerate during a week in
an open vessel, occasionally shaking the mixture. Then filter the lixivium, and
let it evaporate to dryness in a perfectly clean silver or iron vessel. Towards
the end of the evaporation let the saline mass be continually stirred with an iron
rod. Thus reduced to a coarse powder, let it be laid by in close vessels. If
Potashes be not sufficiently pure, before they are dissolved, let them be roasted
a crucible until they become white.

By the above proceedings the earthy impurities, insoluble in water,
are got rid of.

γ. Of Pure Carbonate of Potash; Potassae Carbonas purum,
Potassae Carbonas e Tartari Crystallis, D.—All the British Colleges
give directions for the preparation of this substance.

The London College states that Carbonate of Potass may be prepared more
purely from the crystals of Bicarbonate of Potash, heated to redness.

United States Dispensatory.
* Ann. de Chim. xl. 373.
* For the mode of estimating the quantity of alkali present, see Mr. Faraday's Chemical Meas-
 urement; also, Braude's Manual of Chemistry, 5th edit.
The Edinburgh College observes, that Pure Carbonate of Potash may be most easily obtained by heating crystallized Bicarbonate of Potash to redness in a crucible, but more cheaply by dissolving Bitartrate of Potash in thirty parts of boiling water, separating and washing the crystals which form on cooling; heating those in a loosely-covered crucible to redness so long as fumes are discharged; shaking down the mass and roasting it in an open crucible for two hours, 1/2h occasional stirring, liquimating the product with distilled water, filtering the solution thus obtained, evaporating the solution to dryness, granulating the salt, and the <s>close the <s>brisk agitation, and heating the granular salt nearly to redness. The product of either process must be kept in well-closed vessels.

The process of the Dublin College is as follows:—Take of Crystals of Tartar required quantity; heat them to redness in a silver crucible lightly covered, till they cease to emit vapours. Let the residue be reduced to a coarse powder, and roasted in the same crucible without a cover, with frequent stirring, during 12 hours; then boil it with twice its weight of water during a quarter of an hour, and after the requisite subsidence pour off the clear liquor. Let this be done three times. Filter the mixed washings, and let them evaporate in a silver vessel. Let the residual salt, whilst becoming dry, be reduced by frequent stirrings to a granular form; then let it be heated to an obscure red. Before it is perfectly cooled take it from the vessel, and preserve it in well-stoppered bottles.

When bicarbonate of potash is submitted to a low red heat it loses all its carbonic acid, and is converted into the carbonate.

When bitartrate is ignited various volatile substances are evolved, and the residue in the crucible is a mixture of charcoal and carbonate of potash, and is denominated black flux. “If made with raw tartar, which contains nitrogen, it is contaminated with bicyanide potassium” (Turner). By roasting, the charcoal is burnt off, and the pure carbonate of potash is obtained from the residue by crystallization.

The high price of pearlash has occasionally led to the manufacture of carbonate of potash from Sal Enizum (bisulphate of potash), by heating it in a reverberatory furnace with charcoal. This yields a sulphuret of potassium, in consequence of the carbon deoxidizing the sulphonate. By roasting, this sulphuret is decomposed, and converted into carbonate of potash; the sulphur being dissipated, and the potassium combining with oxygen and carbonic acid.

Properties.—Carbonate of potash is usually kept in a granular condition, on account of the difficulty of crystallizing it. In this state it is commonly denominated Subcarbonate of Potash (Potassae subcarbonas) or Salt of Tartar (Sal Tartari; Sal Absinthii; Kali preparatum). It is white, inodorous, and strongly alkaline to the taste. It reacts powerfully as an alkali on turmeric. It renders the red sulphate of red cabbage blue, and restores the blue colour of reddened litmus. It is fusible at a red heat; has a strong affinity for water, so that by exposure to the air it attracts water, and becomes quid, forming the Oleum Tartari per deliquium. It is insoluble in alcohol, but is very soluble in water.

Pure carbonate of potash may, though with some difficulty, be crystallized from its aqueous solution. The crystals are rhombic octahedrons, and belong to the right prismatic system.

Characteristics.—It is known to be a carbonate by its effervescing with the strong acids, and by a solution of it causing a white precipitate (soluble in acetic acid) with lime water or with chloride of
barium (see the tests for the carbonates, p. 334). That it is a potash salt is determined by the tests for potash already mentioned p. 481). From the bicarbonate of potash it is distinguished solution of bichloride of mercury causing a brick-red precipitate. The presence of chloride of sodium checks or prevents the formation of this precipitate. Sulphate of magnesia produces a white precipitate with the carbonate of potash, and not with the bicarbonate. This test, however, will not recognise the carbonate when mixed with a large quantity of bicarbonate.

Composition.—Mr. Phillips says, 100 parts of the carbonate of potash of the shops loses about 16 parts of water when heated to dryness. Hence, supposing the carbonate to have been pure (which that of commerce never is), its composition would be as follows:

	Atoms	Eq.Wt.	Cent.	Per
Potash	1	48	57.5	1
Carbonic Acid	1	22	26.4	1
Water	16	13.5	10.9	2

| Pure Granulated Carb. Potash | 1 | 83.5 | 100.9 |
| Crystallized Carbonate Potash | 1 | | |

Impurities.—The ordinary impurities in this salt are water, stannic acid, the chlorides, and sulphates. The first is detected by the weight which the salt suffers by heat; the second is recognised by supersaturating with hydrochloric acid, evaporating, and igniting the residue: the silicic acid is insoluble in water. The other impurities are detected by supersaturating the salt with nitric acid: if the resulting solution give a white precipitate with nitrate of silver, the presence of a chloride is to be inferred; if it produce a white precipitate with chloride of barium a sulphate is present.

The London College states the following to be the character of good carbonate of potash:—

Almost entirely dissolved by water; in an open vessel it spontaneously crystallises. It changes the colour of turmeric brown. When supersaturated with nitric acid, neither carbonate of soda nor chloride of barium throws down any titrate of silver but little. 100 parts lose 16 of water by a strong heat; the same quantity loses 26.3 parts of carbonic acid on the addition of dilute phuric acid.

The Edinburgh College states, that—

"100 grains of commercial carbonate of potash lose not more than 20 ounces on account of barium (see the tests for the carbonates, p. 334). From the bicarbonate of potash it is distinguished solution of bichloride of mercury causing a brick-red precipitate. The presence of chloride of sodium checks or prevents the formation of this precipitate. Sulphate of magnesia produces a white precipitate with the carbonate of potash, and not with the bicarbonate. This test, however, will not recognise the carbonate when mixed with a large quantity of bicarbonate.

Composition.—Mr. Phillips says, 100 parts of the carbonate of potash of the shops loses about 16 parts of water when heated to dryness. Hence, supposing the carbonate to have been pure (which that of commerce never is), its composition would be as follows:

	Atoms	Eq.Wt.	Cent.	Per
Potash	1	48	57.5	1
Carbonic Acid	1	22	26.4	1
Water	16	13.5	10.9	2

| Pure Granulated Carb. Potash | 1 | 83.5 | 100.9 |
| Crystallized Carbonate Potash | 1 | | |

Impurities.—The ordinary impurities in this salt are water, stannic acid, the chlorides, and sulphates. The first is detected by the weight which the salt suffers by heat; the second is recognised by supersaturating with hydrochloric acid, evaporating, and igniting the residue: the silicic acid is insoluble in water. The other impurities are detected by supersaturating the salt with nitric acid: if the resulting solution give a white precipitate with nitrate of silver, the presence of a chloride is to be inferred; if it produce a white precipitate with chloride of barium a sulphate is present.

The London College states the following to be the character of good carbonate of potash:—

Almost entirely dissolved by water; in an open vessel it spontaneously crystallises. It changes the colour of turmeric brown. When supersaturated with nitric acid, neither carbonate of soda nor chloride of barium throws down any titrate of silver but little. 100 parts lose 16 of water by a strong heat; the same quantity loses 26.3 parts of carbonic acid on the addition of dilute phuric acid.

The Edinburgh College states, that—

"100 grains of commercial carbonate of potash lose not more than 20 ounces on account of barium (see the tests for the carbonates, p. 334). From the bicarbonate of potash it is distinguished solution of bichloride of mercury causing a brick-red precipitate. The presence of chloride of sodium checks or prevents the formation of this precipitate. Sulphate of magnesia produces a white precipitate with the carbonate of potash, and not with the bicarbonate. This test, however, will not recognise the carbonate when mixed with a large quantity of bicarbonate.

Composition.—Mr. Phillips says, 100 parts of the carbonate of potash of the shops loses about 16 parts of water when heated to dryness. Hence, supposing the carbonate to have been pure (which that of commerce never is), its composition would be as follows:

	Atoms	Eq.Wt.	Cent.	Per
Potash	1	48	57.5	1
Carbonic Acid	1	22	26.4	1
Water	16	13.5	10.9	2

| Pure Granulated Carb. Potash | 1 | 83.5 | 100.9 |
| Crystallized Carbonate Potash | 1 | | |

Impurities.—The ordinary impurities in this salt are water, stannic acid, the chlorides, and sulphates. The first is detected by the weight which the salt suffers by heat; the second is recognised by supersaturating with hydrochloric acid, evaporating, and igniting the residue: the silicic acid is insoluble in water. The other impurities are detected by supersaturating the salt with nitric acid: if the resulting solution give a white precipitate with nitrate of silver, the presence of a chloride is to be inferred; if it produce a white precipitate with chloride of barium a sulphate is present.

The London College states the following to be the character of good carbonate of potash:—

Almost entirely dissolved by water; in an open vessel it spontaneously crystallises. It changes the colour of turmeric brown. When supersaturated with nitric acid, neither carbonate of soda nor chloride of barium throws down any titrate of silver but little. 100 parts lose 16 of water by a strong heat; the same quantity loses 26.3 parts of carbonic acid on the addition of dilute phuric acid.

The Edinburgh College states, that—

"100 grains of commercial carbonate of potash lose not more than 20 ounces on account of barium (see the tests for the carbonates, p. 334). From the bicarbonate of potash it is distinguished solution of bichloride of mercury causing a brick-red precipitate. The presence of chloride of sodium checks or prevents the formation of this precipitate. Sulphate of magnesia produces a white precipitate with the carbonate of potash, and not with the bicarbonate. This test, however, will not recognise the carbonate when mixed with a large quantity of bicarbonate.

Composition.—Mr. Phillips says, 100 parts of the carbonate of potash of the shops loses about 16 parts of water when heated to dryness. Hence, supposing the carbonate to have been pure (which that of commerce never is), its composition would be as follows:

	Atoms	Eq.Wt.	Cent.	Per
Potash	1	48	57.5	1
Carbonic Acid	1	22	26.4	1
Water	16	13.5	10.9	2

| Pure Granulated Carb. Potash | 1 | 83.5 | 100.9 |
| Crystallized Carbonate Potash | 1 | | |
uantity of the presence of carbonic acid, which diminishes the properties of the base. When it is taken into the stomach in quantities, it acts as a powerfully caustic poison, sometimes causing death in twelve hours, and producing symptoms similar to those caused by the mineral acids: at other times, however, the recovery from the immediate effect of the alkali, but, in consequence of the altered condition of the alimentary canal, the assimilation cannot be carried on; and, after dragging on a miserable existence for a few weeks, the unfortunate sufferer dies of absolute on. And, lastly, in some cases, the caustic operation of the alkali is principally confined to the oesophagus, causing stricture and In one case, related by Sir Charles Bell, a patient swallowed es; this produced inflammation, which terminated in stricture. gerated for twenty years, and died literally starved. Several cases have been detailed. In one case no vomiting occurred, the proof of death took place from suffocation. A weak solution of carbonate of potash produces no change in the sanguineous particles drawn from the body: a saturated solution slightly and gradually diminishes the

This salt is employed, in medicine, in most of the cases mentioned when describing the uses of caustic potash. For example, as an antacid in dyspeptic affections; as a diuretic; as an antacid in that form of lithiasis which is accompanied with an increase of lithic acid, or the lithates; in those forms of inflammation in which there is a tendency to the formation of false stones; in gout, &c. On the recommendation of Mascagni, it is employed in peripneumonia and other inflammatory diseases with marked benefit. Mixed with cochineal it is a popular remedy for gout. Externally, it has been applied in the form of a wash to wounds; as an injection in gonorrhoea; as a collirium in affections of the cornea, &c. Lastly, it is sometimes employed in the manufactory of the common effervescing draught, made with the citric or tartaric acid.

Carbonate of Potash are 17 grs. of commercial crystals of Citric Acid,

| Rate by about | 18 grs. of crystals of Tartaric Acid, | 15 grs. of Lemon Juice. |

NITRATION.—It may be given either in the solid or liquid state. In the solid state it is given in doses of from gr. x. to 3ss.

NOTES.—When swallowed as a poison, the antidotes are oils of turpentine, as already mentioned for caustic potash.

IR POTASSÆ CARBONATIS, L.; Potassæ Carbonatis Aqua, D.; Kali; Solution of Carbonate of Potash. (Carbonate of Potash,
3xx.; Distilled Water, Oj., dissolve and strain, \(L \).—Carbonate of Potash from crystals of Tartar, one part; Distilled Water, \(parts \). Dissolve and filter. The sp. gr. of this solution is 1.478. A colourless, inodorous solution. Prepared according to the London Pharmacopoeia, its sp. gr. is 1.473.—Dose, \(\text{m} \text{x} \) to \(\text{f} \text{z} \).

10. POTAS'SE BICAR'BONAS, L. E. D.—BICARBONATE OF POTASH

History.—This salt, formerly called carbonate of potash or alka, was first prepared by Cartheuser, in 1752.

The \textit{London College} orders it to be prepared with Carbonate of Potash, Distilled Water, \(\text{Cm} \text{g} \), Dissolve the Carbonate of Potash in the Water, and pass Carbonic Acid through the solution to saturation. Apply a gentle stream of the solution, that the crystals may be again produced: the liquor being off, dry them.

Carbonic Acid is very easily obtained from chalk, mixed with water, to the consistence of a syrup, upon which Sulphuric Acid is then poured, diluted with an equal weight of Water.

The process of the \textit{Dublin College} is similar, except that when the solution becomes turbid [from the precipitation of silicic acid], it is to be filtered again exposed to the stream of carbonic acid gas. The gas is order to bicarbonate.

In this process each equivalent of carbonate of potash unites an additional equivalent of carbonic acid, and thereby forms bicarbonate. The silicic acid is separated partly while the carbonic acid is passing through the solution, and partly during the crystallization of the bicarbonate.

At Apothecaries' Hall, London, the process is conducted in iron vessels; in one of which carbonic acid is generated (by the action of sulphuric acid on whiting), in the other is contained solution of carbonate of potash, through which the carbonic acid is passed. "The following proportions may be used for the preparation of bicarbonate of potassa upon the large scale:—100 lbs. of purified carbonate of potassa are dissolved in 17 gallons of water, which, when saturated with carbonic acid, yield from 35 to 40 lbs. of crystallized bicarbonate; 50 lbs. of carbonate of potassa are added to the mother-liquor, with a sufficient quantity of water to make up 17 gallons, and the operation repeated (Hennelly)." Sulphuric acid is preferable to muriatic acid for generating carbonic acid, as being both cheaper and less volatile.

The \textit{Edinburgh College} directs it to be prepared from Carbonate of Potash and Carbonate [Hydrated Sesquicarbonate] of Ammonia, \(\text{z} \text{ijs} \). Triturate Carbonate of Ammonia to a very fine powder; mix with it the Carbonate of Potash; triturate them thoroughly together, adding by degrees a very little Water, till a smooth and uniform pulp be formed. Dry this gradually at a temperature not exceeding 140°, triturating occasionally towards the close, and

the desiccation till a fine powder be obtained, entirely free of ammoniacal vol.

In this process the volatility of the ammonia, and the affinity of carbonate of potash for more carbonic acid, together cause the deposition of the sesquicarbonate of ammonia: the ammonia with a small portion of carbonic acid is disengaged, while the remaining acid converts the carbonate into the bicarbonate of potash.

The process adopted by the Edinburgh College is that commonly known as Cartheuser's process. MM. Henry and Guibourt give the following directions for its performance:

1. Dissolve 500 parts of (pure) carbonate of potash in 1000 parts of distilled water, and filter: place the solution in a porcelain capsule in a water bath, and gradually add 300 parts of pulverized carbonate of ammonia; slightly agitate the liquor until only a feeble disengagement of ammonia is perceived, then filter over a heated vessel, and allow to cool. The proportions employed by Geiger are somewhat different: they are, a pound of carbonate of potash, sixteen quarts of water, and six ounces of carbonate of ammonia.

Properties.—It is a crystalline, colourless solid. The crystals belong to the oblique prismatic system. The primary form is, accord-

Fig. 85. Fig. 86.

Prism of Carbonate of Potash. Prism derived by Cleavage.

No Mr. Brooke's, a right oblique-angled prism. It is inodorous, has an alkaline taste, and re-acts very feebly as an alkali on vegetable tars. It is soluble in four times its weight of water at 60° F., is insoluble in alcohol. When exposed to the air it undergoes change. When exposed to a red heat it gives out half its carbonic acid, and becomes the carbonate.

Characteristics.—The presence of carbonic acid and potash in this is known by the tests for these substances before mentioned. In the carbonate of potash it is best distinguished by a solution of dichloride of mercury, which causes a slight white precipitate or no reaction with it; whereas with the carbonate it causes a copious red precipitate. This test, however, will not, under all circumstances, detect the carbonate; as when the quantity is very small;
or when chloride of sodium is present. Sulphate of magnesia
will not prove the absence of all carbonate, as I have before stated (p. 518).

COMPOSITION.—The composition of this salt is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potash</td>
<td>1</td>
<td>48</td>
<td>47.58</td>
<td>48.92</td>
</tr>
<tr>
<td>Carbonic Acid</td>
<td>2</td>
<td>44</td>
<td>43.99</td>
<td>42.01</td>
</tr>
<tr>
<td>Water</td>
<td>9</td>
<td>9</td>
<td>9.92</td>
<td>9.07</td>
</tr>
<tr>
<td>Crystallized Bicarbonate Potash</td>
<td>1</td>
<td>101</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

IMPURITIES.—The presence of chlorides and sulphates may be recog-
nised in this salt as in carbonate of potash (see p. 518). Bichlo-
ride of mercury may be employed to detect carbonate of potash, with
which it forms a brick-red coloured precipitate.

Totally dissolved by water, the solution changes the colour of turmeric.
Sulphate of magnesia throws down nothing from this solution, unless it be held
From 100 parts, 30-7 are expelled by a red heat. After the addition of excess
of nitric acid, chloride of barium throws down nothing, and nitrate of silver
little, if any thing. *Ph. Lond.*

"A solution in 40 parts of water does not give a brick-red precipitate
of solution of corrosive sublimate; and when supersaturated with nitric acid, is
not affected by solution of nitrate of baryta or nitrate of silver," *Ph. Ed.*

PHYSIOLOGICAL EFFECTS.—The effects of this salt are similar to
those of the carbonate of potash, except that its local action is more
less energetic, in consequence of the additional equivalent of carbon
acid. Hence it is an exceedingly eligible preparation in lithiasis and
other cases where we want its constitutional, and not its local, action.

USES.—It may be employed for the same purposes that we use
caustic potash (vide Potash), except that of acting as an escharot
Thus, it is used as an antacid, to modify the quality of urine, in phly-
monic inflammation, in glandular diseases, affections of the urinary
glands, &c. But its most frequent use is that for making efferves-
cing draughts, with either citric or tartaric acid. The proportions are
as follows:

20 grs. of Crystallized Bicarbonate of Potash are saturated by about
14 grs. of Commer* Crystals of Citric Acid,
15 grs. of Crystallized Tartaric Acid,
514 of Lemon Juice.

Where there is great irritability of stomach, I believe the efferv-
sing draught, made with bicarbonate of potash and citric acid, to be
more efficacious than that made with carbonate of soda and tartaric
acid; the resulting *Citrate of Potash (Potassic Citras)* being, in my
opinion, a milder preparation than the tartrate of soda. The citric acid
promotes slightly the secretion of the alimentary canal, the cutaneous
transpiration, and the renal secretion; and, like other vegetable
salts of potash, renders the urine alkaline.

ADMINISTRATION.—This salt may be given in doses of from gr. to gr. xiv., or to the extent of half a drachm, or even a drachm.

1. LIQUOR POTASSI EFFERVESCENS, L.—*Potassae Aqua Efferves
cens E.; Effervescing Solution of Potash.* (Bicarbonate of Potash,
Distilled Water, Oj). Dissolve the Bicarbonate of Potash in
ACETATE OF POTASH.

Water, and pass into it of Carbonic Acid, compressed by force, more than sufficient for saturation. Keep the solution in a well-stoppered vessel. This is a solution of bicarbonate of potash, surcharged with carbonic acid. It is an agreeable mode of exhibiting bicarbonate of potash, without injuring its medicinal power. It may be extemporaneously imitated by pouring a bottle of soda-water (i.e. carbonic acid water) into a tumbler containing grs. xx. of bicarbonate of potash.

2. LEMON AND KALI.—Under this name is kept in the shops a mixture of powdered white sugar, dried and powdered citric acid, and powdered bicarbonate of potash. It is employed as an extemporaneous effervescent draught. As it abstracts water from the atmosphere, it must be preserved in a well-stoppered bottle (See Pulveres Effervescentes, Ph. Ed.)

11. POTAS'S ACETAS, L. E. D.—ACETATE OF POTASH.

HISTORY.—It appears to have been first clearly described by Raymond Lully, in the thirteenth century, and has been known by several appellations; such as Terra Foliata Tartari, Diuretic Salt, &c.

NATURAL HISTORY.—Geiger says this salt is found in some mineral springs. It probably exists in most of those plants which, by incineration, yield carbonate of potash. The sap of the elm, and of most trees, winter’s bark, linseed, senna leaves, the rhizome of ginger, &c. are said to contain it.

PREPARATION.—All the British Colleges give directions for the preparation of this salt.

The London College orders of Carbonate of Potash, jb. ; Acetic Acid, f3xxvij.; Distilled Water, fxxix. Add the carbonate of potash to the acid, first mixed with water, to saturation, then strain. Evaporate the liquor in a sand-bath, the heat being cautiously applied, until the salt is dried.

The Edinburgh College orders of Pyroligneous Acid, Oiss.; Carbonate of Potash (dry), xvi., or a sufficiency. Add the carbonate gradually to the acid till complete neutralization is accomplished. Evaporate the solution over the vapours, till it is so concentrated as to form a concrete mass when cold. Allow it to cool and crystallize in a solid cake; which must be broken up, and immediately put into well-closed bottles.

The Dublin College gives the following directions for its preparation:—Take of Carbonate of Potash from Crystals of Tartar any required quantity. Pour on it, by repeated additions, Distilled Vinegar of a medium heat, and in quantity about five times the weight of the salt. When the effervescence shall have ceased, and the liquor have given off vapours during some time, let the additions of distilled vinegar be repeated at intervals, until effervescence shall have completely ceased. By continued evaporation the salt will become dry, and by a moderate increase of the heat it is to be cautiously liquefied. When the salt has cooled, let it be dissolved in water; filter the liquor, and boil it down until, when removed from the fire, on cooling, it forms a mass of crystals.

In this process the acid unites with the potash of the carbonate, and disengages carbonic acid.
Properties.—It is usually met with as a colourless, white solid, with a foliated texture (which is given to it by fusion and cooling), odourless, but having a pungent saline taste, and a soapy feel. It is exceedingly deliquescent; and, therefore, ought to be preserved in a well-stoppered bottle. It is very soluble both in water and alcohol; indeed, in water, it is one of the most soluble salts we are acquainted with. At 60°, 100 parts of the salt will dissolve in 10² parts of water. When heated, it fuses, and is decomposed into acetone or pyroacetic spirit (C²H²O) and carbonate of potash. One equivalent of this spirit contains the elements of one equivalent of acetic acid, minus those of one equivalent of carbonic acid.

Characteristics.—See the tests for the acetates, p. 397, and for potash, p. 481. Its deliquescence is a characteristic.

Composition.—Its composition is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potash</td>
<td>1</td>
<td>48</td>
<td>48³ 5</td>
<td>50 15</td>
</tr>
<tr>
<td>Acetic Acid (dry)</td>
<td>1</td>
<td>51</td>
<td>51² 9</td>
<td>49² 5</td>
</tr>
<tr>
<td>Acetate of Potash</td>
<td>1</td>
<td>99</td>
<td>100² 0</td>
<td>100 00</td>
</tr>
</tbody>
</table>

Impurity.—It should be white and perfectly neutral. Frequently, however, it re-acts as an alkali, owing to a slight excess of potash. The presence of chlorides may be detected by nitrate of silver; of sulphates, by chloride of barium; of metals, by hydrosulphuric acid, or ferrocyanide of potassium.

Physiological Effects.—Two or three drachms cause purging, which is sometimes accompanied with griping. In smaller cases, more especially if largely diluted, this salt acts as a mild diaphoretic. In its passage to the kidneys it becomes decomposed, and is converted into the carbonate of potash, which may be detected in the urine. Probably the pulmonary excretions of those who employ it also become impregnated with this salt, since it has been said that in persons with delicate lungs it acts as an irritant to these organs.

Uses.—In this country it is rarely employed, except as a diuretic in dyspeptic complaints. It is a valuable adjunct to other renal excipients. On the continent, it is administered in various diseases, as an alterative or resolvent. Thus in scirrhous of the pylorus, chlorosis, and visceral and glandular enlargements. It may be employed, in the lithic acid diathesis, to render the urine alkaline. It is of course improper when phosphatic deposits are observed in the urine.

Administration.—It is given as a diuretic in doses of from a scruple to a drachm and a half, dissolved in some mild diluent. In larger doses, as two or three drachms, it acts as a purgative.

History.—In its impure form, as a deposit from wine, it must have been known at a very early period. "It is called tartar," says Paracelsus, "because it produces oil, water, tincture, and salt, which burn the patient as hell does." Scheele, in 1769, first explained its
BITARTRATE OF POTASH.

525

nature. Its synonyms are Cream of Tartar, Superbitartrate of Potash, and Acidulous Tartrate of Potash.

NATURAL HISTORY.—It is a constituent of many vegetables: thus is found in Grapes, Tamarinds, Cetraria islandica, &c.

PRODUCTION.—All the bitartrate of commerce is obtained during theious fermentation. It exists in solution in grape juice; but being very slightly soluble in a mixture of alcohol and water, it deposits during fermentation (that is, when alcohol is produced), and forms a rust on the sides of the cask. In this state it is known in commerce under the name of Crude Tartar (Tartarus crudus), or Argol, and which is termed White or Red (Tartarus albus vel Tartar us ruber), according as it is obtained from white or red wine.

Argol, or Crude Tartar, occurs in crystalline cakes of a reddish colour, and is composed of the bitartrate of potash, tartrate of lime, and sometimes biracemate of potash), colouring and extractive matter, &c.

At Montpellier, bitartrate of potash is procured thus:—Argol is boiled in water, and the solution allowed to cool, by which a deposit of crystals is obtained; these are washed with cold water, and dissolved in boiling water, containing charcoal and alumina (clay); the latter substances being employed to remove the colouring matter with which they precipitate. The clear liquor is allowed to cool slowly, by which crystals of the bitartrate are formed. These constitute the Tartarum depuratus or Crystalli Tartari of the older chemists. If a hot saturated solution of tartar be cooled, the surface of the liquid becomes coated by a layer of very fine crystals of bitartrate: hence this crust was called Cream of Tartar (Cream Tartar).

PROPERTIES.—As met with in commerce, this salt forms a white crystalline mass, without odour, but having an acidulous and gritty

Fig. 87. Fig. 88.

An ordinary perfect Crystal of Bitartrate of Potash.

Common Crystal of ditto.

According to Mr Brooke its crystals are right rhombic prisms (figs. 87 and 88). Liebig, however, says they are oblique rhombic prisms. It is unaltered by exposure to the air; but when heated, it decomposes, swells up, evolves various volatile products, gives out an odour of caramel, and is converted into Black Flux (Fluor niger),—compound of charcoal and carbonate of potash (see p. 517). If the

* Turner's Chemistry, 7th ed.
bitartrate be deflagrated with nitrate of potash, the residue is White Flux (Fluor album), or carbonate of potash (see p. 517). Bitartrate of potash is very slightly soluble in water, and is insoluble in alcohol.

Characteristics.—One character of this salt is derived from the phenomena attending its conversion into black flux, as above mentioned. If black flux be digested in water we obtain a solution of carbonate of potash, known by the properties before mentioned (p. 517). Another character of the bitartrate is its slight solubility in water, and its solution reddening litmus. The addition of caustic potash increases its solubility, whereas alcohol diminishes it. Acetate of lead added to a solution of the bitartrate forms a copious white precipitate; lime water has the same effect. Mixed with alkaline carbonates it produces effervescence. Boracic acid, or borax, very much increases the solubility of this salt in water, forming what has been termed Soluble Cream of Tartar (Cremor Tartar solubilis), or Tartarus Boraxatus of some writers.

Composition.—Crystallized bitartrate of potash has the following composition:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potash</td>
<td>1</td>
<td>48</td>
<td>28'90</td>
</tr>
<tr>
<td>Tartaric Acid</td>
<td>2</td>
<td>122</td>
<td>79'60</td>
</tr>
<tr>
<td>Water</td>
<td>1</td>
<td>9</td>
<td>4'7</td>
</tr>
<tr>
<td>Crystallized Bitartrate of Potash</td>
<td>1</td>
<td>189</td>
<td>100'0</td>
</tr>
</tbody>
</table>

Impurity.—Bitartrate of potash usually contains from 2 to 5 per cent. of tartrate of lime, and hence a little carbonate of lime may be detected in black flux. This is of no material consequence in a medicinal point of view. If the powdered bitartrate be adulterated with either alum or bisulphate of potash, the fraud may be detected by chloride of barium, which causes a white precipitate (sulphate of baryta) insoluble in nitric acid.

It is sparingly dissolved by water. It renders the colour of litmus red. At red heat it is converted into carbonate of potash. Ph. Lond.

"Entirely soluble in 40 parts of boiling water: forty grains in solution neutralized with 30 grains of crystallized carbonate of soda; and when the precipitated by 70 grains of nitrate of lead, the liquid remains precipitable by more of the test." Ph. Ed.

Physiological Effects.—When taken in small doses, diluted with water, it acts as a refrigerant and diuretic: in larger doses (as two or three drachms) it purges, and frequently creates flatulence and griping. By continued use it disorders the digestive functions, and causes emaciation, most probably from defective nutrition. In excessive doses it produces inflammation of the stomach and intestines. A fatal case has been recorded by Mr. Tyson. A man, to relieve the effects of drunkenness, swallowed four or five tablespoonsfuls of cream of tartar. It caused violent vomiting and purging, and other symptoms of gastro-enteritis, and pain in the loins. The
thighs and legs appeared paralyzed. He died on the third day. On a post-mortem examination the stomach and intestines were found inflamed.

Uses.—Bitartrate of potash is frequently employed to form a refrigerant drink in febrile and inflammatory diseases. It allays thirst, diminishes preternatural heat, and reduces vascular action. As a diuretic in dropsical complaints it is used either in the same way, or taken in the form of an electuary. As a purgative it is not usually exhibited alone, but, in general, with jalap, sulphur, senna, or some other purgative. Thus, in dropsical complaints, a very valuable hydragogue cathartic is a mixture of jalap and bitartrate of potash. In skin diseases and affections of the rectum (as piles, stricture, and prolapsus), a very useful purgative is an electuary composed of sulphur, bitartrate of potash, and confection of senna. An effervescing aperient may be prepared by mixing three drachms of the bitartrate with two and a half drachms of carbonate of soda: the resulting salt is the potashbitartrate of soda. As a tooth-powder, bitartrate of potash is sometimes used on account of its gritty qualities: a very good dentifrice consists of equal parts of bitartrate, powdered rhubarb root, and myrrh (see some observations on dentifrices at p. 219).

Administration.—As a hydragogue cathartic the dose is from our to eight drachms: as an aperient, one or two drachms: as a diuretic, in repeated doses of a scruple to a drachm (See Pulvis Jalapae Compositus).

1. Imperial; Tisana Imperialis.—It is formed by dissolving one drachm or a drachm and a half of cream of tartar in a pint of boiling water, and flavouring with lemon-peel and sugar. When cold the solution may be taken, ad libitum, as a refrigerant drink in febrile complaints, and as a diuretic.

2. Serum lactis tartarizatum; Cream of Tartar Whey.—This is prepared by adding about two drachms of the bitartrate to a pint of milk. It may be diluted with water, and taken in febrile and dropsical complaints.

History.—This salt was known to Lemery. It has been termed Tartarized Tartar, Tartarized Kali, Soluble Tartar, or Vegetable Salt.

Preparation.—All the British Colleges give directions for the preparation of this salt.

The London College orders of Bitartrate of Potash, powdered, lbij.; Carbonate of Potash, xviij.; or as much as may be sufficient; Boiling Water, Ovij. Dissolve the carbonate of potash in the boiling water, then add the bitartrate of potash, and boil. Strain the liquor, and afterwards boil it down until a pellicle is, and set it aside that crystals may be formed. The liquor being poured off, these, and again evaporate the liquor that crystals may be produced.

The processes of the Edinburgh and Dublin Colleges are essentially the same.

In this process the excess of acid in the bitartrate is saturated by the potash of the carbonate: the carbonic acid escapes.
Properties.—It is usually met with in the shops in a granular state, but it ought to be crystallized. Its crystals are right rhombic prisms. To the touch this salt is saline, and somewhat bitter; it deliquesces when exposed to the air, is soluble in its own weight of water at 50°, and its solution decomposes by keeping.

Characteristics.—When heated to redness it is decomposed, leaving as a residue coal and carbonate of potash. A solution of the tartrate produces white precipitates, while solutions of acetates of lead, nitrate of silver, and chloride of calcium; the precipitate is soluble in nitric acid. Bichloride of platinum, assisted by alcohol, causes a black precipitate in a solution of this salt. When heated the salt evolves the odour of caramel. If an excess of any strong acid (as the sulphuric) be added to a solution of this salt, we obtain crystals of the bitartrate. Hence acids, and most acidulous salts, are incompatible with it; as also are tamarinds. The tartrate is readily distinguished from the bitartrate by its deliquescent property, its greater solubility, and its want of acidity.

Composition.—The following is the composition of this salt:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potash</td>
<td>1</td>
<td>48</td>
<td>42'</td>
<td>41'31</td>
</tr>
<tr>
<td>Tartaric Acid</td>
<td>1</td>
<td>66</td>
<td>57'9</td>
<td>58'89</td>
</tr>
<tr>
<td>Tartrate of Potash</td>
<td>1</td>
<td>114</td>
<td>100'0</td>
<td>100'00</td>
</tr>
</tbody>
</table>

The large crystals contain, according to Dr. Thomson, two valents of water. The same authority states, that he has had crystals of this salt in needles which seemed to contain no water of crystallization.

Impurity.—It may contain excess of acid or of base, either of which is easily recognised; the one by litmus, the other by turmeric. Sulphates may be detected by chloride of barium throwing down a white precipitate insoluble in nitric acid.

Physiological Effects.—This salt is a gentle purgative, anodyne in its action to the sulphate of potash, from which it differs in being milder in its operation, and partially digestible; for, like the vegetable salts of the alkalies, it is decomposed in the system, converted into the carbonate, in which state it is found in the urine.

It is said to have the power of preventing the griping of other active cathartics, as senna and scammony; but, from my own personal observations, I doubt the correctness of this statement.

Uses.—It is employed as a mild purgative in dyspepsia, in the commencement of diarrhea, in some liver complaints, &c. Sometimes it is used as an adjunct to other more active purgatives; as the infusion of senna.

Administration.—It may be given in doses of from two or three drachms to half an ounce, or even an ounce.

ORDER XII.—COMPOUNDS OF SODIUM.

SODII CHLORIDUM, L.—CHLORIDE OF SODIUM.

(Sode Murias, R. D.)

History.—As this salt is a necessary and indispensable seasoning food, it doubtless must have been known to, and employed by, all individuals of our race. The earliest notice of it occurs in the prose of Moses⁴, and Homer⁵. It has received various names, Common Salt, Culinary Salt, and Muriate or Hydrochlorate of

Natural History.—It occurs in both kingdoms of nature.

The Inorganised Kingdom.—An enormous quantity of this salt is contained in the waters of the ocean. At an average calculation sea water contains 3.5% of chloride of sodium⁶. It is found also in great abundance in brines⁷. It has not hitherto been found in the oldest stratified rocks⁸, but with all the later formations. Thus Mr. Featherstonhaugh⁹ states, that brine springs occur in certain parts of the United States, in the old slate rocks. Salt springs occur in various parts of England, in the coal and red sandstone groups. The salt of Ichil, in the Austrian Alps, to the palaeozoic group, as does also that found in the basins in Switzerland. In some districts of salt near Cardona, in Spain, and which has been studied by Dr. Traillⁱ⁰, occurs in the cretaceous group. The salt deposit of Cracow, belongs to the supracretaceous group. Lastly, in the salt is said to be daily accumulating in the inland lakes.

The Organised Kingdom.—It is found in plants which grow by the sea the blood and urine of man, &c.

Preparation.—The salt consumed in this country is procured by evaporation of the water of brine springs. The salt districts are, Southend, Middlewich, and Nantwich, in Cheshire; Shirleywick, Fordshire; and Droitwich, in Worcestershire. In Cheshire rock salt (called also Fossil Salt, Sal Fossilis or Sal Gemme) consists of two beds, which vary in thickness from 4 to 180 feet, separated by a bed of clay, 10 or 12 feet thick; the upper bed of salt being 30 or more feet from the surface of the earth. The most part of a reddish colour, but is also met with

⁴ Ex. 36; Lev. ii. 13.
⁵ Ex. 34: 214.
⁶ cit. 273.
⁸ Le Geyne, Researches in the Volcan., 31.
¹⁰ account of the American salt formation, consult J. Van Rensselaer's Essay on Salt, 1833. This author states that the salt formation occurs in the old red sandstone.
¹⁵ Le Geyne, op. cit. p. 263.
¹⁶ p. 270.
in transparent, colourless n... is called merce... rock, and exported...ification.

Springs...with both...and below...level of...rock salt.

The...pumped...cisterns...oblong...iron...pans, which...usually...with...fires. If...be...saturated...chloride...a little...added to...the evapor...water...deposits...mals. The...ties separate...form...which is...shaped...skillet),...diment...scale,...pan...or...pan-bak...grains...of...salt...vary...according...degree of...employed...preparation...small-grain...is formed...strongest...h...The Wharton Salt Mine, on the River Wye, Cheshire.
CHLORIDE OF SODIUM.

Fig. 91.

The butter, stoved, lump, or basket salt of commerce; while the larger crystals, forming the bay and fishery salts of commerce, are formed at a lower temperature.

In some parts of the world chloride of sodium is obtained from sea water: but the mode of extracting it varies according to circumstances. In France and on the shores of the Mediterranean, it is procured by solar evaporation, and is then called Bay Salt.

The French salt marshes are shallow basins or pans of clay, excavated along the sea shore. The water is admitted, by a sluice, into a reservoir, where evaporation goes on while mechanical impurities are deposited. It then passes by a subterraneous communication into a series of rectangular pans, and proceeds by a very circuitous route through them to another subterranean gutter, by which it is conveyed into a long, narrow, circuitous canal. From this it passes into a second, and subsequently into a third series of salt pans. During the whole of this time it is undergoing evaporation, and when it arrives at the third series of pans it is so concentrated that crystallization is soon effected. The salt is then withdrawn from the pans, and collected upon shovels, in conical or pyramidal heaps, when it drains and dries. Operations begin in March and finish in September.

Wilmington, in Hampshire, salt is prepared from the sea water, as admitted into a reservoir or pond, and from this successively...
into three series of brine-pits or salt-pans, where the water is partially evaporated by solar heat. When the liquid has acquired a sufficient density, it is conveyed into rectangular iron pans, where it is evaporated. Eight hours are required to boil each charge to dryness.

The salt is then removed into wooden troughs or cisterns, perforated holes in the bottom, where it is allowed to drain, and is afterward moved to the warehouse, where it also drains. The drainage from the wooden trough drop on upright stakes (old broom handles, and on these the salt concretes, in the course of ten or twelve months, forming large stalactitic masses called salt-cats, each weighing about 80 lbs. The residual liquor (bittern or the bitter liquor) is recycled into underground pits, and during the winter season is used in the manufacture of Epsom salt (see Sulphate of Magnesia).

In cold countries, congelation is resorted to as a means of concentrating sea water; for when a weak saline solution is exposed to cold, it separates into two parts: one almost pure water, which freezes, and the other which remains liquid, and contains the larger proportion of salt. Another method of concentration is by graduated houses: these are skeletons of houses, in which the water is put up, and allowed to fall on heaps of brushwood, thorns, &c., by which it is divided and agitated with the air, and evaporation promotes the further concentration is effected by heat.
Purification.—The *Edinburgh College* gives the following directions for the preparation of Pure Chloride of Sodium (*Soda Muriate, E.*)

"Take any convenient quantity of Muriate of Soda; dissolve it in boiling water; filter the solution, and boil it down over the fire, skimming off the crystals which form; wash the crystals quickly with cold water and dry them."

A solution of this pure salt "is not precipitated by solution of carbonate of ammonia followed by solution of phosphate of soda; a solution of 9 grains in distilled water, is not entirely precipitated by a solution of 26 grains of nitrate of silver."

The carbonate of ammonia and phosphate of soda are employed to detect the presence of any magnesian salt.

Properties.—It crystallizes in colourless cubes, or more rarely in regular octohedrons. In the salt pans the little cubes are frequently aggregated as to form hollow, four-sided pyramids, whose sides have some resemblance to a series of steps: these are technically called *hoppers*. The specific weight of salt is 2·17. The taste is pure saline. When free from all foreign matters, chloride of sodium is permanent in the air, but ordinary salt is slightly deliquescent, owing to the presence of small quantities of chloride of magnesium. When heated it decrèpitates (more especially the coarse-grained or rainy salt), at a red heat fuses, and at a still higher temperature volatilizes. Rock salt is translucent or diathermanous: that is, it transmits radiant heat much more readily than many other transparent bodies, as glass (see p. 7). It is soluble in water, and slightly so in alcohol. Hot and even boiling water dissolves very little more salt than cold water. At 60° it requires about twice and a half its weight of water to dissolve it.

Characteristics.—Its characters as a soda salt are the following:—

Its solution produces no precipitate with the hydrosulphurets, ferrocyanides, phosphates, or carbonates. From the salts of potash it is distinguished by causing no precipitate with perchloric or tartaric acid, or with bichloride of platinum, and by the yellow tinge which it communicates to the flame of alcohol. As a chloride it is known by nitrate of silver throwing down a white precipitate (*chloride of silver*), soluble in ammonia, but insoluble in nitric acid. Lastly, chloride of sodium is odourless, and devoid of bleaching properties.

Composition.—Pure chloride of sodium has the following composition:

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Atoms} & \text{Eq.Wt.} & \text{Per Cent.} & \text{Ure.} \\
\hline
\text{Sodium} & 1 & 24 & 40 \text{ 39·98} \\
\text{Chlorine} & 1 & 36 & 60 \text{ 60·02} \\
\text{Chloride of Sodium} & 1 & 60 & 100 \text{ 100·00} \\
\hline
\end{array}
\]

The crystals contain no water in chemical combination with them, but a little is frequently mechanically lodged between their plates.

Impurities.—The commercial salt of this country is sufficiently pure for all dietetical and therapeutical purposes; and its low price is a sufficient guarantee against adulteration. In France, however,
serious accidents have happened in consequence of the use of sophisticated salt.*

COMPOSITION OF VARIOUS KINDS OF SALT (HENRY).

1000 Parts by Weight consist of

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Ube's</td>
<td>960</td>
<td>trace</td>
<td>3</td>
<td>3</td>
<td>325</td>
<td>44</td>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>St. Martin's</td>
<td>959</td>
<td>do.</td>
<td>34</td>
<td>34</td>
<td>22</td>
<td>6</td>
<td>35</td>
<td>13</td>
</tr>
<tr>
<td>Oleron</td>
<td>964</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Scotch (common)</td>
<td>934</td>
<td>28</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>5</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>Scotch (Sunday)</td>
<td>971</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>6</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>Lympington (common)</td>
<td>937</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>35</td>
<td>5</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Ditto (cat)</td>
<td>986</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Crushed rock</td>
<td>983</td>
<td>0.1/2</td>
<td>0.1/2</td>
<td>0.1/2</td>
<td>0.1/2</td>
<td>0.1/2</td>
<td>0.1/2</td>
<td>0.1/2</td>
</tr>
<tr>
<td>Fishery</td>
<td>986</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Common</td>
<td>984</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Stoved</td>
<td>983</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

PHYSIOLOGICAL EFFECTS. a. On Vegetables.—In minute quantities chloride of sodium is injurious to very few, if any, plants, and some it appears to be beneficial. Used moderately it is a most excellent manure to certain soils. In large quantities it is injurious though unequally so, to all plants.²

b. On Animals.—To marine animals, common salt is a necessary constituent of their drink. It is relished by most land animals. "The eagerness with which many quadrupeds and birds press towards salt springs and lakes, situated in inland districts, for the purpose of tasting their contents, indicates," says Dr. Fleming,³ "a constitutional fondness for salt." In the Ruminantia the salutary effects of salt are especially observed. "They contribute powerfully," observes Moiroud,⁴ "to prevent, in these animals, the influence of rainy seasons and wet pasturage, as well as damaged fodder. Given to animals intended for fattening, it gives more consistence to the flesh and more taste to the meat." It appears to be offensive and injurious to many of the lower animals: hence when rubbed on meat, it prevents the attack of insects, and when applied to the skin of lepers it causes vomiting.

g. On Man.—Chloride of sodium serves some important essential uses in the animal economy. It is employed, on account of its agreeable taste, by the people of all nations, from the most savage to the most barbarous; but the quantity taken varies with different individuals (see the Dietetical Effects of Salt at p. 72). It is an invariable constituent of the healthy blood. Dr. Stevenson has shown that in certain states of disease (as cholera) there is a deficiency of the saline matter in the blood, and in those cases the

* Philosophy of Zoology, vol. i. p. 316.
* On the Blood.
as a very dark or black appearance. Some of the properties sanguineous fluid, such as its fluidity, its stimulating qualities, power of self-preservation, are probably more or less con- with its saline constituents. The chloride of sodium found in f the secretions, as the bile and tears, doubtless serves some int purposes.
said that persons who take little or no salt with their food are xpective to intestinal worms. Lord Somerville, in his address to ard of Agriculture, states that the ancient laws of Holland and men to be kept on bread alone unmixed with salt, as the t punishment that could be inflicted upon them in their moist s; the effect was horrible: these wretched criminals are said been devoured by worms engendered in their own stomachs." arshall tells us of a lady who had a natural aversion to salt: s most dreadfully affected with worms during the whole of
considered in a therapeutical point of view, it is an irritant in its operation. Thus, applied to the skin and the mucous mem- it causes redness. Taken into the stomach in large quantity de dose of a table-spoonful or more) it excites vomiting; and, brown into the large intestines, produces purging. In moderate quantities it promotes the appetite, and assists digestion and ation. If used too freely it occasions thirst. The long-cont employment of salted provisions occasions scurvy: of the cor t of this statement there cannot exist, I think, a shadow of notwithstanding the bold denial given to it by Dr. Stevens e; I the more remarkable, since Dr. Stevens admits he has never single case of the disease! His opinion is evidently founded ethical grounds, and is in direct opposition to the best medi- imony we possess. In large doses it operates as an irritant
A man swallowed a pound of it in a pint of ale, and died twenty-four hours, with all the symptoms of irritant poisoning. mach and intestines were found excessively inflamed d. e some diseases the moderate use of salt produces the effects of a it acts as a stimulant to the mucous membranes, the absorbent and glands. Occasionally, it seems to merit the designation facient, alterative, and resolvent (see p. 196). I have already ed (see p. 105) Liebig's notion of the action of the alkaline s the tissues.
early diluted and injected into the veins, in cholera, it acts as rful stimulant and restorative; the pulse, which was before nptile, usually becomes almost immediately restored, and, in eses, re-action and recovery follow. A solution of common nduces no change in the size and form of the sanguineous par-t of the body e. Dr. Macleod injected a solution of common

3 Christieon, Treatise on Poisons.
4 Müller's Physiology.
salt into the jugular vein of a rabbit which had been asphyxiated, but without restoring or producing resuscitation.

Uses.—The following are some of the most important therapeutic uses of chloride of sodium.

As a vomit it has been recommended in malignant cholera, in preference to other emetics. In narcotic poisoning, in the absence of the stomach-pump and the ordinary emetic substances, it may also be employed. The dose of it is one or two table-spoonfuls in a tumblerful of water. A tea-spoonful of flour of mustard assists its action. As a purgative it is seldom employed except in the form of enema. One or two table-spoonfuls of common salt dissolved in a pint of gruel form a very useful catheter for promoting evacuations from the bowels.

It has been used, in some diseases, with the view of restoring the saline qualities of the blood. In cholera the blood is remarkably black, incapable of coagulating, and contains more albumen and hematosine, but less water and saline parts, than natural; while the enormous discharges from the bowels consist of a weak solution of albumen containing the salts of the blood. The obvious indications, therefore, in the treatment of this disease, are to restore the water and saline matters to the blood. Hence originated what has been called the saline treatment of cholera. This, at first, consisted in the exhibition of certain alkaline salts by the mouth, and in the form of enemata. The following are formulae which have been recommended:

- Take of Carbonate of Soda.... half a drachm.
- Chloride of Sodium..... a scruple.
- Chlorate of Potash..... seven grains.

Dissolve in half a tumblerful of water.

This to be repeated at intervals of from 15 minutes to an hour, according to circumstances. (Dr. Stevens, op. cit. p. 459.)

- Take of Phosphate Soda.......... 10 grains.
- Chloride of Sodium..... 10 grains.
- Carbonate of Soda......... 2 grains.
- Sulphate of Soda........ 10 grains.

Dissolve in six ounces of water.

The mixture to be repeated every second hour. (Dr. O'Shaughnessy, op. cit. p. 34.)

This plan, however, was followed by that of injecting saline solution into the veins: which was, I believe, first practised by Dr. Latta. The quantity of saline solution which has been in some cases injected is enormous, and almost incredible. In one case 120 ounces were injected at once, and repeated to the amount of 330 ounces in twelve hours. In another, 376 ounces were thrown into the veins between Sunday at 11 o'clock, A.M., and Tuesday at 4, P.M.: that is, in the course of fifty-three hours, upwards of thirty-one pounds. The solution that was used consisted of two drachms of muriate and two scruples of carbonate of soda to sixty ounces of water. It was at the temperature of 108 or 110 deg. F. In another series of cases 40 lbs. were injected in twenty hours: 192 ounces in the first two hours; 8 lbs. in half an hour.

3 Dr. O'Shaughnessy, *Report on the Chemical Pathology of the Malignant Cholera,* 1832.
large majority of cases, were most astonishing: restoration of pulse, improvement in the respiration, voice, and general appearance, return of consciousness, and a feeling of comfort. In many instances, however, these effects were only temporary, and were followed by collapse and death. In some, injurious consequences resulted, as phlebitis, owsiness, &c. The reports as to the ultimate benefit of the saline treatment in cholera are so contradictory, that it is exceedingly difficult to offer the student a correct and impartial estimate of its value. At it failed in a large proportion of cases after an extensive trial, and greatly disappointed some of its staunchest supporters, cannot be doubted. Dr. Griffin states, that all the published cases of injection which he can find recorded amount to 282, of which 221 died, while only one recovered: but he thinks that the average recovery in collapse by this method of treatment far exceeded the amount of any other treatment in the same disease and under the same circumstances.

Common salt has been employed as an antihelmintic. For this purpose it is exhibited in large doses by the mouth, or, when the worms are lodged in the rectum, a strong solution is administered in the form of enema. When leeches have crept into the rectum, or have been incidentally swallowed, a solution of salt should be immediately used. A chemical antidote chloride of sodium may be administered in poisoning by nitrate of silver. As an alternative and tonic it is useful in scrofula and glandular diseases. As an astringent, in hemorrhages, senery, and diarrhea, it has been administered in combination with the juice of lemon juice. It is frequently used as a dentifrice (p. 219).

As an external application salt has been used for various purposes. As a saturated solution, applied with friction, is employed, as an irritant and disinfectant, in glandular enlargements and chronic cases of the joint; as a stimulant, it is rubbed on the chest in asthmatic and asphyxia. A solution of salt is employed for baths (cold or warm), affusion, the douche, &c. (See Sea Water, p. 263.)

ADMINISTRATION.—As a tonic and alternative, the dose of salt is from one grain to a drachm. As an emetic, from two to three tablespoonfuls in five or six ounces of warm water. As a cathartic, from one ounce to an ounce. In the form of elysy, it is used to the extent of two or even three tablespoonfuls. (See Saline or Brine waters, p. 270.)

2. SO'DE HYPOCHLOORIS.—HYPOCHLORITE OF SODA.

(Liquor Soda Chlorinate, L.)

History.—The disinfecting power of this substance was discovered

"Ibid. vol. x. p. 453.
"Ibid. p. 447.
"Ibid. vol. x. p. 717.
"Memoir of the late Dr. Wright, p. 222."
salt into the jugular vein of a rabbit which
without restoring or producing resusci-
tation. As a purgative it has been
in contact with a solution of carbonate of
soda above directed.

The essential and characteristic properties of this solution depend
on the hypochlorite of soda. The changes which take place in the
manufacture of chlorine have been already explained (p. 225).

In this process a double decomposition is effected; hypochlorite of
soda is formed in solution, while carbonate of lime precipitates. The
process is more easy of execution than the previous one. By using
the proportions here directed the solution is weaker than that pre-
pared by the process of the London Pharmacopoeia.

Properties.—The solution of hypochlorite of soda (Liquor Soda
Chlorinata, L.) has a yellowish colour, an astringent taste, and an
odour of hypochlorous acid. It destroys the colour of vegetable
substances; as litmus, turmeric, and sulphate of indigo. Previous to
bleaching them, it reacts as an alkali on turmeric paper, and infusion
of red cabbage. By evaporation, crystals are obtained, which by re-
solution in water re-produce the disinfecting liquid. By exposure to

Hypochlorite of soda.

When soda undergoes decomposition, and crystals of carbonic acid form, the following are the essential characters of this compound: oxide of indigo. On the addition of hydrochloric acid, chlorine and carbonic acid are formed. A solution of nitrate of silver will turn a white precipitate (chloride of silver), soluble in nitric acid. Lime water causes a white precipitate (carbonate of lime). Oxalate of ammonia occasions no effect, showing the absence of lime. Bichloride of platinum forms no yellow precipitate, proving the absence of potash and chlorine. That the base of the solution is soda may be shown in various ways: evaporated to dryness, we obtain a residuum which renders the outer cone of the flame of a candle, or the flame of a spirit lamp yellow; saturated with hydrochloric acid and evaporated to dryness, common salt is procured; this may be recognised by the peculiar odour of ammonia before mentioned (p. 533).

COMPOSITION.—Some chemists regard this compound as a mixture of chlorate of soda and bicarbonate of soda. But the view usually adopted is that it consists of the hypochlorite of soda, chloride of sodium, and bicarbonate of soda.

PHYSIOLOGICAL EFFECTS. a. On Animals.—A solution of the hypochlorite of soda acts more or less powerfully as a local irritant, according to the degree of its concentration. From the experiments of Parish it appears, that, besides the irritant operation, and its direct inflammatory action on the organic solids, it exercises an evident influence over the blood, and, in consequence, over the whole economy. In an experiment referred to by Dr. Chris- tophorus, two ounces of Labarraque's solution introduced into the peritoneum of a dog excited palpitation, oppressed breathing, constant vomiting, and death in ten minutes.

On Man.—I am unacquainted with any experiments made to examine the physiological effects of chloride of soda on man. That chloride, in large doses, act as a powerful local irritant, and, if swallowed, give rise to symptoms of gastro-enteritis, cannot, I think, be disputed. Mérat and De La Cens state that the immediate consequence of the predominate symptom produced by a glass of Eau de Bleue (a solution of chloride of potash) was general rigidity, which gave way to demulcent drinks. This observation agrees with one by Segalas in his experiments on dogs, namely, that chloride of sodium caused tetanic spasms. It is probable, therefore, that the hypochlorites of the alkalis exercise a specific influence on the nervous system.

Chloride of soda, in moderate or small doses, has been denominated
by Labarraque about 1820. In the French Codex this solution is called *Hypochloris Sodicus Aquæ solutus*. It is commonly known in the shops under the name of *Chloride of Soda*, *Liqueur de Labarraque*, or *Labarraque’s Soda Disinfecting Liquid*. Other synonyms for it are *Chloruret of the Oxide of Sodium*, and *Oxymuriate of Soda*.

Preparation.—There are two methods in use for preparing a solution of hypochlorite of soda.

The following is the process of the *London Pharmacopoeia*—Take of Carbonate of Soda, iij.; Distilled Water, fxxxviii.; Chloride of Sodium, iii.; Binoxide of Manganese, iii.; Sulphuric Acid, iv. Dissolve the Carbonate of Soda in two pints of Water; then put the Chloride of Sodium and Binoxide of Manganese, rubbed to powder, into a retort; and add to them the Sulphuric Acid, previously mixed with three fluidounces of the Water, and cooled. Heat the mixture, and pass the Chlorine first through five fluidounces of the Water, and afterwards into the solution of the Carbonate of Soda above directed.

When chlorine gas comes in contact with a solution of carbonate of soda, three salts are formed: chloride of sodium, hypochlorite of soda, and bicarbonate of soda.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Carb's Soda 108</td>
<td>2 eq. Carb's Acid 44</td>
<td>2 eq. Bicarb's Soda 113</td>
</tr>
<tr>
<td>2 eq. Carbonate Sodal. 108</td>
<td>1 eq. Sodal. 32</td>
<td>1 eq. Hypochlor's Soda 72</td>
</tr>
<tr>
<td>2 eq. Chlorine 72</td>
<td>1 eq. Chlorine 36</td>
<td>1 eq. Chlor'ed Sodal. 66</td>
</tr>
</tbody>
</table>

The essential and characteristic properties of this solution depend on the hypochlorite of soda. The changes which take place in the manufacture of chlorine have been already explained (p. 225).

In the *French Codex* this solution is directed to be prepared as follows:—Dissolve one part of dry chloride of lime (hypochlorite of lime) through 30 parts of water. Then add two parts of crystallized carbonate of soda, previously dissolved in I parts of water. Filter the mixture.

In this process a double decomposition is effected; hypochlorite of soda is formed in solution, while carbonate of lime precipitates. This process is more easy of execution than the previous one. By using the proportions here directed the solution is weaker than that prepared by the process of the London Pharmacopoeia.

Properties.—The solution of hypochlorite of soda (*Liquor Soda Chlorinata*, L.) has a yellowish colour, an astringent taste, and an odour of hypochlorous acid. It destroys the colour of vegetable substances; as litmus, turmeric, and sulphate of indigo. Previous to bleaching them, it reacts as an alkali on turmeric paper, and infusion of red cabbage. By evaporation, crystals are obtained, which by resolution in water re-produce the disinfecting liquid. By exposure to

the air the solution undergoes decomposition, and crystals of carbonate of soda are formed.

Characteristics.—The following are the essential characters of this solution:

It decolorizes sulphate of indigo. On the addition of hydrochloric acid it evolves chlorine and carbonic acid. A solution of nitrate of silver throws down a white precipitate (chloride of silver), soluble in ammonia, but insoluble in nitric acid. Lime water causes a white precipitate (carbonate of lime). Oxalate of ammonia occasions no precipitate, showing the absence of lime. Bichloride of platinum produces no yellow precipitate, proving the absence of potash and ammonia. That the base of the solution is soda may be shown in two ways: evaporated to dryness, we obtain a residuum which renders the outer cone of the flame of a candle, or the flame of a spirit lamp, yellow; saturated with hydrochloric acid and evaporated to dryness, common salt is procured: this may be recognised by the characters before mentioned (p. 533).

Composition.—Some chemists regard this compound as a mixture of chloride of soda and bicarbonate of soda. But the view usually taken of it is that it consists of the hypochlorite of soda, chloride of sodium, and bicarbonate of soda.

Physiological Effects. a. On Animals.—A solution of the chloride of soda acts more or less powerfully as a local irritant, according to the degree of its concentration. From the experiments of Segalas it appears, that, besides the irritant operation, and its direct and sympathetic action on the organic solids, it exercises an evident influence over the blood, and, in consequence, over the whole economy, by means of absorption. In an experiment referred to by Dr. Chrisison, two ounces of Labarraque’s solution introduced into the peritoneum of a dog excited palpitation, oppressed breathing, constant restlessness, and death in ten minutes.

β. On Man.—I am unacquainted with any experiments made to determine the physiological effects of chloride of soda on man. That it would, in large doses, act as a powerful local irritant, and, if swallowed, give rise to symptoms of gastro-enteritis, cannot, I think, be doubted. Mérat and De Lens state that the immediate consequence of, and predominating symptom produced by, a glassful of Éau de Javelle (a solution of chloride of potash) was general rigidity, which gave way to demulcent drinks. This observation agrees with one made by Segalas in his experiments on dogs, namely, that chloride of soda caused tetanic spasms. It is probable, therefore, that the chlorides (hypochlorites) of the alkalis exercise a specific influence over the nervous system.

Chloride of soda, in moderate or small doses, has been denominated

* Journ. de Chirn. Méd. t. 1er, p. 271.
* Treatise on Poisons, 3d edit. p. 221.
* Chrisison, op. cit. p. 221.
stimulant, tonic, astringent, antiseptic, and febrifuge. But these terms
give no real explanation of the nature of those organic changes pro-
duced by it, whereby we obtain such benefit from its employment in
various diseases. In fever, I have seen dampness of the skin follow
its use. Increased secretion of urine is a common effect of it. In
fevers it improves the qualities of the evacuations. Under the con-
tinued employment of it, glandular enlargements and chronic muco-
ous discharges have disappeared, from which circumstance chloride of
soda has been denominated alterative and resolvent. All these effects
depend probably on the alteration which the chloride gives rise to in
the condition of the blood, and the change thereby produced in the
action of the different organs. We must not overlook the important
fact that the solution of chloride of soda used in medicine contains
bicarbonate of soda, to which perhaps in many cases its beneficial
effects are, in part at least, to be referred.

Uses.—The solution of chloride of soda is employed as a disinfect-
ant, antiseptic, and antidote (in cases of poisoning by the hydro-
sulphuric and hydrocyanic acids). But for most of these purposes the chloride of lime is employed instead of chloride of sod,
since its properties are analogous, and being manufactured on a
very extensive scale for the use of bleachers, it can be obtained
more conveniently and cheaply. On this account, therefore, and to
avoid repetition, I must refer to the article Hypochlorite of Lime for
information respecting the above uses of chloride (hypochlorite) of
soda. I would remark, however, that in several cases where I have
carefully tried and compared the two chlorides (hypochlorites), I give
the decided preference to the chloride of soda. As an antiseptic
Labarraque also preferred the latter preparation, on the ground that
by the process of disinfection it becomes chloride of sodium, which
is not a deliquescent salt; whereas the chloride of calcium generated by
chloride (hypochlorite) of lime, attracts water from the atmosphere
and thereby furnishes one of the conditions (viz. moisture) neces-
sary to the putrefactive process. Hence, in his opinion, while chloride of
lime will serve equally well for mere disinfection, chloride of soda is
preferable where we wish at the same time to prevent a renewal of
putrefaction.

Chloride of soda is employed internally in all diseases commonly
termed putrid or malignant, as typhus fever, scarlatina maligna, &c.
It is indicated where there are great prostration of strength, febrile
evacuations, and a dry and furred tongue. In such cases I have seen
it of essential service, improving the quality of the secretions, pro-
ducing a moist state of the skin, preventing collapse, and altogether
acting most beneficially. It may be administered both by the mouth
and the rectum.

There are many other diseases in which it has been administered
internally with apparent success, but in which a more extended ex-
perience of its effects is required to enable us to place confidence in
the results. I refer now to its employment as a substitute for the di-
sulphate of quinia, in intermittents, recommended by Lalesque and
HYPOCHLORITE OF SODA.

"... to its use in the treatment of secondary syphilis, as practiced by Dr. Scott¹, and by Cazenove²: to its administration in chronic seases, and as a substitute for chlorine in bilious disorders, by Rling³; in scrofula, by Godier⁴; and in plague, by Neljoubin⁵. In these cases (as in syphilis and scrofula) the benefit observed may have resulted from the bicarbonate of soda present in the fluid of the shops.

Local remedy, we employ chloride of soda in all cases of fetid discharges, not merely as a disinfectant and antiseptic—that is, as a chemical agent destroying fetor, and preventing refaction of dead matters (as gangrenous parts, the discharges sounds and ulcers, &c.), though in these respects it is most useful—but as a means of stopping or relieving morbid action by resorption produced on the living tissues. It frequently puts a stop to the further progress of gangrene; promotes the separation of membranes from the living parts; improves the quality of the secretions, and, at the same time, diminishes their quantity, when this is the case. We apply it to ulcers of all kinds (whether common, chronic, cancerous, syphilitic, or scrofulous) when attended with discharges or a disposition to slough. We employ it with the greatest benefit in affections of the mucous surfaces. Thus it is used with great success in pharyngitis and ulceration of the mouth, whether from ulceration and sloughing of the throat. In coryza and catarrh it has been injected into the nostrils with considerable benefit. In chronic and excessive discharges from the vagina, and neck of the bladder, it is employed as an injection, with at least temporary relief. It has also been applied in some skin diseases, as tinea, eczema, scabies, prurigo pudendi muliebris, &c. The above are a few of the cases in which chloride of soda has been used with most marked benefit. In conclusion, I may add, that there is, if any, remedies the uses of which, as local agents, are so extensive as the chlorides of soda and lime.

INSTRUCTION.—The *liquor sodae chlorinae*, Ph. L. may be added internally in doses of twenty drops or more, diluted with four ounces of some mild aqueous liquid. When used as an injection it should be diluted with eight or ten parts of water: as an infusion of the vagina, it is to be mixed with from fifteen to thirty parts of water as a *lotion*, its strength must vary according to circumstances. In some sloughing ulcers I have used it mixed with its dilution of water, but in most cases it should, at the commence ment of its use, be largely diluted, as with five or six parts of water. A *plasma* of chlorinated soda is prepared with linseed meal and parts of the *liquor sodae chlorinae* and water.

NOTE.—(See *Calcis Hypochloris*.)

⁵ Jour. Gén. de Méd. 1829.
3. SODÆ SULPHAS, L. E. D.—SULPHATE OF SODA

HISTORY.—Sulphate of soda (also called Natron Vitriolicum, Glauber’s Salt, Sal Catharticum Glauberi, or Sal Mirabile Glauberi) was discovered in 1658 by Glauber.

NATURAL HISTORY.—It occurs in both kingdoms of nature.

a. IN THE INORGANISED KINGDOM.—As an efflorescence, the hydrate of soda is met with in various parts of the world. In the anhydrous state, with a minute portion of carbonate of soda, it constitutes the mineral Thénardite. Sulphate of soda is a constituent of many mineral waters of Cheltenham, Leamington, and Spital (see p. 270).

b. IN THE ORGANISED KINGDOM.—It is found in the ashes of some plants which grow by the sea-shore; as the Tamarix gallica. Lastly, it is in some of the animal fluids; as the blood and urine.

PREPARATION.—Sulphate of soda is a product of several processes, especially of the manufacture of hydrochloric acid.

The London College order of the salt which remains after the distillation of Hydrochloric Acid, lbij.; Boiling Water, Oij.; Carbonate of Soda, as necessary. Dissolve the salt in the water, add the marble so long as efflorescence takes place, boil the liquid, and when neutral filter it; wash the matter with boiling water, adding the water to the original liquid; cool till a pellicle begins to form, and then let the liquid cool and crystallize.

The Edinburgh College order of the salt which remains after preparing Muriatic Acid, lbij.; Boiling Water, Oij.; White Marble, in powder, a sufficient amount. Dissolve the Salt in the Water, then gradually add as much Carbonate of Soda as is sufficient to saturate the Acid. Boil down until a pellicle appears, solution being strained, set it aside that the crystals may be formed. When poured off, dry them.

The directions of the Dublin College are as follows:—Let the salt remain after the distillation of Muriatic Acid be dissolved in a sufficient quantity of hot water. Put aside the filtered liquor, that, after due evaporation may be formed by slow cooling.

The salt which remains after the distillation of hydrochloric acid is sulphate of soda usually contaminated with some free sulphuric acid, to neutralize which the London College uses Carbonate of Lime, the Edinburgh College, Marble (carbonate of lime).

In consequence of the enormous consumption of sulphate of soda in the manufacture of carbonate of soda, makers of the latter are obliged to procure sulphate purposely, by the addition of sulphuric acid to chloride of sodium.

PROPERTIES.—It crystallizes in oblique rhombic prisms, belonging to the oblique prismatic system. To the taste this salt is salty and bitterish saline. By exposure to the air it effloresces. When heated it undergoes fusion, gives out its water of crystallization, thereby becomes a white solid, and at a red heat again becomes liquid. One part of it dissolves in three parts of water at 60°, or one part of it at 212°. It is insoluble in alcohol.

Characteristics.—Its constituents, sulphuric acid and soda, may be detected by the action of these substances before mentioned (pp. 458 and 531). From the bisulphate of soda it is...
guished by its not reddening litmus, and by its less solubility. Crystals
of anhydrous sulphate of soda are distinguished by their form being the
rhombic octahedron, and by their not losing weight when heated.

Composition.—The ordinary crystals of sulphate of soda have the
following composition:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Soda</td>
<td>1</td>
<td>32</td>
<td>19.75</td>
<td>19.24</td>
<td>19.5</td>
</tr>
<tr>
<td>Sulphuric Acid</td>
<td>1</td>
<td>40</td>
<td>24.69</td>
<td>24.76</td>
<td>24.3</td>
</tr>
<tr>
<td>Water</td>
<td>10</td>
<td>90</td>
<td>55.65</td>
<td>50.00</td>
<td>55.2</td>
</tr>
<tr>
<td>Ordinary Crystals of Sulphate of Soda</td>
<td>1</td>
<td>102</td>
<td>100/00</td>
<td>100/00</td>
<td>99/0</td>
</tr>
</tbody>
</table>

Purity.—The crystallized sulphate of soda of the shops is usually
sufficiently pure for medical purposes. The presence of chlorides in
it may be detected by nitrate of silver.

Exposed to the air it falls to powder. Totally dissolved by water; very slightly
by alcohol. It does not alter the colour of litmus or turmeric. Nitrate of silver
throws down scarcely anything from a dilute solution; nitrate of barytes more,
which is not dissolved by nitric acid. 100 parts of this salt lose 55.5 parts by a
strong heat.—Ph. L.

Physiological Effects.—It is a mild but efficient cooling laxative
or purgative salt, promoting secretion and exhalation from the
mucous membrane of the stomach and bowels, without causing
inflammation or fever.

Uses.—It is employed as a common purgative, either alone or
added to other purgatives. It is applicable in fevers and inflam-
matory affections, where we want to evacuate the bowels without
increasing or causing febrile disorder.

Administration.—The usual dose of it is from six to eight
drachms. When dried so as to expel the water of crystallization,
three and a half drachms act as an efficient purgative.

4. SO'DE BIBO'RAS, L.—BIBORATE OF SODA OR BORAX.
(Soda Borsa, E. D.)

History.—Pliny c describes a substance under the name of Chry-
scolla, which has been supposed by some to be biborate of soda.
The term Bauracon or Baurach (from which our word Borax is
derived) first occurs in the writings of the Arabians. By some of
these authors (as Mesue and Avicenna) it was applied to nitre d:
this is improbable, however, that Geber e used it to indicate our
borax. By modern chemists the salt has been termed Biborate,
Borate, or Sub-borate of Soda.

Natural History.—Borax is a substance peculiar to the mineral
kingdom. It has been found in some mineral waters; as those of
San Restituta, in Ischia f. It occurs also in the waters of certain
lakes, especially those of Thibet and Persia.

Preparation.—Borax is obtained in two ways:—1st, by refining
ve borax; 2dly, by saturating native boracic acid with soda.

a. By refining Tincal.—About fifteen days’ journey north from

* Hist. Nat. lib. xxxiii.
* Beccaria, Hist. of Invent. and Discov. vol. iv. p. 539.
* Search of Perfection, ch. iii.
Teeshoo Lomboor [Tissoolumboo], in Thibet, is a lake, said to be about twenty miles in circumference, and supplied by brackish springs rising from the bottom of the lake itself. In consequence of its high situation, during a part of the year this lake is frozen over. The water of it contains, in solution, both common salt and borax. The latter crystallizes on the edges and shallows of the lake, and is taken up in large masses, which are broken and dried. It is stated that the natives mix it with an earth thinly covered with butter, to prevent the borax evaporating.

It is imported, usually from Calcutta, under the name of Tinous or Crude Borax (Borax cruda seu natural), in the form of flat, six-sided prisms, coloured with a greasy unctuous substance, said, by Vauquelin, to be a fatty matter, saponified by soda; the colour is yellowish, bluish, or greenish. Molin states that the greenish matter which surrounds some kinds of rough borax, contains native boron. Various methods have been contrived for refining borax: some calcine it, to destroy the fatty matter; others wash it with a saline solution (soda or lime), and then dissolve and crystallize. The product is called Refined Borax (Borax depurata seu purificata).

β. By saturating Native Boracic Acid with Soda.—The mode of preparing boracic acid in Tuscany has been already described (see p. 447). The rough acid usually contains from 17 to 20 per cent of impurities (water, sulphates of ammonia, magnesia, lime, alumina, chloride of iron, sal ammoniac, traces of sulphuret of hydrogen, clay, sand, sulphur, a yellow colouring matter, and an attendant matter soluble in alcohol). It is converted into borax in the following way:—Dissolve carbonate of soda in water contained in tubs, lined with lead, and heated by steam. Add greatly pulverized boracic acid. The evolved gas is passed through sulphuric acid to detain any carbonate of ammonia which may be contained in it. Boil the liquor, and let it stand for 10 or 12 hours. Draw it off into wooden crystallizing vessels lined with lead. The Rough or Crude Borax is deposited. This is refined by dissolving it in water, contained in a tub lined with lead, and heated by steam, and carbonate of soda, and crystallize. The crystals are allowed to drain, and, when dry, are packed in chests. Octohedral borax is obtained by employing more concentrated solutions; it deposits from 174 to 183 deg. F.

Properties.—It usually occurs in large, colourless, transparent prisms, belonging to the oblique prismatic system (Prismatic Borax). It also occurs in octahedrons (Octahedral Borax). In commerce it frequently meet with it in irregular shaped masses. Its taste is salina, cooling, and somewhat alkaline. It reacts on tumeric paper like a weak alkali. By exposure to the air it effloresces slowly and slightly. When heated it melts in its water of crystallization, swells up, and forms a light, white, porous substance, called Calcined Borax (Borax

1. Turner’s Account of an Embassy to the Court of Tashoo Lama, in Thibet, p. 405. London, 1802.
3. From Tisnoo, the Sanscrit name for borax; Royle’s Essay on Medicine, p. 97.
BIBORATE OF SODA.

At a higher temperature it fuses into a transpar-ss (Glass of Borax), which is anhydrous borax. It is soluble in parts of cold, or in two parts of hot water.

acteristics.—Borax may be recognised by the following cha- it reddens tumeric paper; it fuses before the blowpipe into which may be readily tinged by various metallic solutions—red by terchloride of gold, and blue by solutions of cobalt: a drop of sulphuric acid be added to powdered borax, and it irritates, the latter will, when fired, burn with a greenf flame; lastly, if, to a strong hot solution of borax, sulphuric acid be added, boracic acid will be deposited in crystals as the liquid.

The tests now mentioned for the most part only prove the be a borate: the nature of the base is determinable by the tests before described (p. 553).

position.—The following is the composition of borax:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 34</td>
<td>16.84</td>
<td>17.8</td>
<td>17</td>
<td>16.31</td>
</tr>
<tr>
<td></td>
<td>1 10</td>
<td>47.37</td>
<td>46.6</td>
<td>49</td>
<td>47.10</td>
</tr>
<tr>
<td>Prismatic Borax</td>
<td>1 100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

edalus borax contains only five equivalents of water. It offers advantages in the arts over the prismatic variety.

ological Effects.—The effects of borax have been imper-scertained. Its local action is that of a mild irritant: applied it excites smarting, and, taken into the stomach in large doses, vomiting.

constitutional effects are probably those of a mild refrigera retic. Wöhler and Stehberger detected it in the urine, so that s out of the system unchanged.

ie writers it is regarded as an agent exercising a specific e over the uterus; promoting menstruation, alleviating the rich sometimes attends this process, facilitating parturition, hing the pain of accouchement, and favourable the expulion lacenta and lochia. Further evidence, however, is wanting e us either to admit or deny the supposed uterine influence. Some recent English writers seem to entertain no doubt as omoting uterine contractions.

has also been regarded as producing the effects of alkalises on em; principally, I believe, from an erroneous notion that it subsalt. When Homberg asserted that boracic acid was a borax was supposed to possess similar properties.

—As a local agent, borax is employed, as a detergent, in and ulceration of the mouth. In some skin diseases it has ed with benefit: as pityriasis versicolor, (called also liver spots

nt, Hist. des Drog. t. 1. p. 191, ed. 3°.

Pharmakodynamik.

and, Dict. of Pract. Med. art. Abortion; and an anonymous reviewer in the Brit. and Re. for July, 1838, p. 86.

p. cit.; and Sundelin, Heilmittelkhr.
or chloasma). A solution of it in rose-water is employed as a cosmetic. In gonorrhcea and leucorrhcea an aqueous solution has been occasionally used, as an injection, with success. Lastly, in the form of a cement (composed of 3j. of borax to 3j. of lard), it has been applied to inflamed and painful hemorrhoidal tumors.

Internally, it has been used to diminish the secretion of uric acid to act as a diuretic in dropsical affections; and to influence the uterine in the cases before mentioned. Dr. Copland recommends it, in conjunction with ergot of rye, to promote uterine contractions.

Administration.—The dose of it is from half a drachm to a drachm. As a detergent in aphthae it may be used in powder, mixed with spirits, or with honey.

MEL BORACIS. L. E. D. *Honey of Borax; Mellite of Borax.* (Borax, powdered, 3j.; Honey, [clarified, L. D.] 3j.; Mix.) A convenient form for the employment of borax in the aphthae of children. Dissolved in water it may be employed as a gargle in ulceration of the mouth and throat.

5. SO'DÆ NITRAS.—NITRATE OF SODA.

History.—Duhamel⁶, probably, was the discoverer of this salt in 1736. It was first analyzed by Margraeff⁷ in 1761. It has been termed Cubic, Quadrangular or Rhomboidal Nitre (Nitrum cubicum quadrangulare vel rhomboidale).

Natural History.—It is peculiar to the mineral kingdom.

Native nitrate of soda is found in South Peru. It exists in large beds, a few feet below the saline soil, or forming that soil in various places, from Ario to the north and west, to the course of the river Loa on the south. It is four distinct strata, a thin layer of brown loam separating the parts⁸.

Native nitrate of soda, in fractured masses, has a granular structure, arising from the aggregation of irregular rhombic crystals, varying from fine grain to coarse grained. Colour, from snow white to reddish brown or grey. Odour peculiar; and, when warmed, resembling chloride of iodine dissolved in water. Its average composition is nitrate of soda, 64-98; sulphate of soda, 3-00; chloride of sodium, 28-69; iodic salts, 0-63; shells and marl, 2-60 = 99-90 x.

Extraction.—"The richest masses of the native salt are blazed or broken, and divided into small portions; with these copper kettles in part filled, and water, or the mother water of former operations is added, and heat applied, until a boiling and saturated solution is obtained. The solution is transferred to wooden coolers, where nitrate of soda crystallizes. The undissolved salt remaining in the kettles is thrown aside, fresh salt being used each time, although one half of the nitrate of soda is dissolved. The coolers are emptied after the crystals of nitrate have ceased to form: it is dried, packed in bags, and sent to the coast on mules."

⁷ Osame ii. 331.
⁹ Ibid.
PHOSPHATE OF SODA.

COMMERCHE.—In 1839, duty (6d. per cwt.) was paid on 107,922 cwt., in 1840, on 130,211 cwt. 1

PURIFICATION.—Rough nitrate of soda is purified, after its arrival in this country, by solution and re-crystallization.

PROPERTIES.—It usually crystallizes in obtuse rhombohedral crystals, which belong to the rhombohedral system. Its taste is somewhat bitter. In moist air it is slightly deliquescent. It is soluble in about two parts of cold water, and in less than its own weight at 212°. Fuses by heat.

Characteristics.—As a nitrate it is known by the characters of this assay of salts already stated (p. 289). The nature of its base is recognized by the tests for soda already described (p. 583). The yellow fume which it communicates to flame, as well as the shape of its crystals, readily distinguish it from nitrate of potash.

COMPOSITION.—Crystallized nitrate of soda is anhydrous.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Wenzel</th>
<th>Longchamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soda</td>
<td>1</td>
<td>33</td>
<td>37.2</td>
<td>37.5</td>
<td>37.03</td>
</tr>
<tr>
<td>Nitric Acid</td>
<td>1</td>
<td>54</td>
<td>62.8</td>
<td>62.5</td>
<td>62.26</td>
</tr>
<tr>
<td>Crystallized Nitrate of Soda</td>
<td>1</td>
<td>96</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

PHYSIOLOGICAL EFFECTS.—Its effects are similar to those of nitrate of potash. According to Wolfers 2, from two to four drachms of it may be taken daily without any hurtful effect. Velsen states, that it does not so readily disturb digestion as nitrate of potash.

USES.—It is not employed in medicine in this country. As a substitute for nitrate of potash, it is used in the manufacture of nitric and sulphuric acids. It is employed by fire-work makers; and also as a manure, especially for wheat 2.

6. SO'DE PHOS'PHAS, L. E. D.—PHOSPHATE OF SODA.

HISTORY.—This salt was long known before its true nature was understood. In 1737, Hellot found it in the urine. It has been known by various names, such as Alcali Minerale and Sal Mirabile Perlatum. In the shops it is sold as Tasteless Purging Salts. Dr. Turner calls it Monobasic Phosphate of Soda and Basic Water. It is sometimes termed the Monobasic Phosphate of Soda, and not unfrequently Neutral Phosphate of Soda.

NATURAL HISTORY.—Phosphate of soda occurs in both kingdoms of nature.

1 Trade List, Jan. 5, 1841.
PREPARATION.—The Edinburgh and Dublin Colleges give each formula for its preparation. The London College admits it as a article of the Materia Medica; that is, to be bought ready prepared

The Edinburgh College orders of Bones burnt to whiteness, lb. ; Sulphuric Acid, Oij. and f 25. ; Carbonate of Soda, a sufficiency; Pulverize the bones and mix them with the acid; add gradually six pints of water; digest for three days, replacing the water which evaporates; add six pints of boiling water, and strain through strong linen; pass more boiling water through the mass on the filter till it comes away nearly tasteless. Let the impurities subside in the unit liquor, pour off the clear fluid, and concentrate to six pints. Let the impure again settle; and to the clear liquor, which is to be poured off and heated to ebullition, add carbonate of soda, previously dissolved in boiling water, until the acid is completely neutralized. Set the solution aside to cool and crystallize. More crystals will be obtained by successively evaporating, adding a little carbonate of soda till the liquid exerts a feeble alkaline reaction on [red] litmus paper, and then allowing it to cool. Preserve the crystals in well-closed vessels.

The Dublin College orders of Bone Ashes, reduced to powder, ten parts; Sulphuric Acid, of commerce, seven parts; and carbonate of soda, dissolved in water, eight parts. The directions for conducting the process are essentially the same as those of the Edinburgh College.

The products obtained by the mutual reaction of sulphuric acid and bone-ash are sulphate of lime and superphosphate of lime (see p. 458), the latter remains in solution, while the former is, for the most part, precipitated. On the addition of carbonate of soda to the liquid, phosphate of soda is formed in solution, subphosphate of lime is precipitated, and carbonic acid gas escapes. A slight excess of carbonate of soda promotes the formation of crystals of phosphate.

Properties.—This salt crystallizes in oblique rhombic prisms which are transparent, but by exposure to the air efflorescence and become opaque. Their taste is cooling saline. They react on vegetable colours like alkalies. When heated, they undergo a watery fusion, give out water, and form a white mass called pyrophosphate of soda: at a red heat this melts into a transparent glass called metaphosphate of soda. The crystals of phosphate of soda require, for their solution, four times their weight of cold water or ten times their weight of hot water: they are nearly insoluble in alcohol.

Characteristics.—The presence of soda in this salt is known by tests for this base before mentioned (p. 538). The phosphoric acid in it is recognised as follows: a solution of the phosphate gives a white precipitate with acetate of lead, as well as with chloride of barium: the precipitate in both cases is a phosphate, and dissolves in nitric acid without effervescence: with nitrate of silver, the phosphate of soda occasions a yellow precipitate (subsesquiphasphate of silver, called by Graham tribasic phosphate of silver) soluble both in nitric acid and ammonia: pyrophosphate of soda, obtained by heating the phosphate, produces, with nitrate of silver, a white precipitate (neutral phosphate of silver; pyrophosphate of silver; di-pyrophosphate of oxide of silver): hydrosulphuric acid, as well as the hydrosulphate occasion no change in a solution of phosphate of soda. Phosphoric acid fuses upon charcoal, in the outer flame of the blowpipe and becomes distinctly crystalline upon cooling.
PHOSPHATE OF SODA.

COMPOSITION.—The following is the composition of this salt:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Soda</td>
<td>1</td>
<td>32</td>
<td>17.78</td>
<td>17.57</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>1</td>
<td>36</td>
<td>19.94</td>
<td>20.53</td>
</tr>
<tr>
<td>Water</td>
<td>12 1/2</td>
<td>112.5</td>
<td>62.23</td>
<td>62.00</td>
</tr>
</tbody>
</table>

Crystallized Phosphate Soda... 1 ... 180.5 ... 100.00 ... 100.00

By Graham, Turner, and some other chemists, the equivalent weight of phosphoric acid is assumed to be about double (viz. 71.44) that which I have adopted. On this hypothesis, the above salt contains 2 equivalents of soda, and 25 equivalents of water. Of this quantity of water, 1 equivalent is assumed to be basic, and the remaining 24 equivalents to be water of crystallization: so that the following is the constitution of the salt: HO, 2 NaO, P O₅ + 24 HO.

IMPURITY.—As met with in commerce, this salt is usually tolerably pure.

Exposed to the air it slightly effloresces. It is totally dissolved by water, but not by alcohol. What is thrown down from the solution by chloride of barium is white: the precipitate by nitrate of silver is yellow, unless the phosphate has been previously made red hot. Both precipitates are soluble in nitric acid.

Ph. Lond.

If the precipitate caused by the chloride of barium be not totally soluble in nitric acid, a sulphate is present. If that caused by nitrate of silver do not entirely dissolve in nitric acid, a chloride is present.

An efflorescent salt: 45 grains dissolved in two fluidounces of boiling distilled water, and precipitated by a solution of 50 grains of carbonate of lead in a fluidounce of pyrogallous acid, will remain precipitable by solution of acetate of lead.” Ph. Ed.

PHYSIOLOGICAL EFFECTS.—In doses of an ounce, or an ounce and half, it acts as a mild antiphlogistic purgative, like sulphate of soda. In small and continued doses it has been used with the view of altering the composition of the blood, and of promoting the deposition of phosphate of lime in the bones.

USES.—As a purgative it is employed in the diseases of children and delicate persons, in preference to other saline substances, on account of its slight taste and mild action on the stomach. It is well adapted for febrile and inflammatory disorders.

It is one of the substances which have been employed in cholera, to restore to the blood its deficient saline matters. On account of the phosphoric acid which it contains it has been supposed to be particularly applicable in those diseases in which there is a deficiency of phosphate of lime in the bones. It has also been administered in diabetes.

ADMINISTRATION.—As a purgative it is given in doses of from six elve drachms. It is best taken in broth or soup. As an alterative dose is one or two scruples three or four times a day.

The equivalent of phosphorus is, according to Graham, 83.44.

O'Shaughnessy, Report on the Chemical Pathology of the Malignant Cholera, p. 34.
SOLUTIO SODÆ PHOSPHATIS, E. Solution of Phosphate of
(Phosphate of Soda, [free of efflorescence], grs. cxxv.; Di-
Water, f. yij. Dissolve the salt in the water, and keep the so-
lar distilled in well-closed bottles).—Used only as a test (see Lithary
Plumbi Acetas, Plumbi Carbonas, and Magnesia Sulphas).

7. SODÆ CARBONAS.—CARBONATE OF SODA.

HISTORY.—This salt, as well as the sesquicarbonate of soda, is
probably known to the ancients under the term of ψιροψ, or ψιροχιαλίς.
The Salt Alkali, or Sagimen Vitri of Geber$ was a carbonate of
the word Sagimen is a corruption of the Hindee term Sajjiloon.
Modern times this salt has had various appellations, such as a
Mineral or Fossil Alkali, Aërated Mineral Alkali, Subcarbon
Soda, and Natrum Carbonicum.

NATURAL HISTORY.—This salt is peculiar to the inorganised
world.

It is found in crystals, or in the form of an efflorescent powder, in
parts of the world. According to Klaproth* it occurs at Debrezin, in H
and Montenuovo, near Naples. Beudant* has analyzed three native car
of soda; one from Lac Blanc, in Hungary; a second from Egypt; and
from Vesuvius. Carbonate of soda is a constituent of some mineral wa-
ter, and in consequence termed alkaline, or, when they also contain a large e
content of carbonic acid, acidulo-alkaline$.

PREPARATION.—It may be procured from Barilla, from K
from Sulphate of Soda.

1. Preparation of Barilla.—The substance called Barilla, (Sod-
bonas venale. Barilla, D.) is an ash usually obtained by the co-
tion of plants belonging to the order Chenopodiaceae; as the Sal-
Salicornias, and Chenopodiums. These are cultivated on the
and when ripe are cut, dried, and burned in heaps: the results is barilla. It is a hard greasy or bluish mass, not deliquous,
having an alkaline acrid taste, and a peculiar odour. It con-
Carbonate and Sulphate of Soda, Sulphuret and Chloride of S
Carbonate of Lime, Alumina, Silica, Oxide of Iron, and Carbon
matter which has escaped combustion. The carbonate of soda
duced by the decomposition of the oxalate and other organic s
soda contained in the plants before combustion. Several varie
barilla are known in the market: they are distinguished by the
of the places from whence they are imported; namely, the
Canary and Teneriffe Islands, Alicant, Sicily, Carthage, a

$ Vide Potassa Nitritas, p. 606; also Soda Sesquicarbonas.
* Invent. of Verity, ch. iv.; and Search of Perfection, ch. iii.
$ Dr. Royse, Essay on Ideal Medicine, p. 41.
$ Dr. Thomson, Outlines of Mineralogy, vol. i. p. 96.
$ Necker, in his Régne Minéral, t. 2-8, p. 667.
$ See pp. 606 and 71.
CARBONATE OF SODA.

East Indies. Canary Barilla is procured from Sal soda Kali; Alicant Barilla (Soda Hispanica; Soda Alicantina) is obtained from Sal soda sativa, Chenopodium setigerum, and other species. It yields from 25 to 40 per cent. of carbonate of soda. Sicily Barilla is procured principally from Sal soda sativa: it furnishes, according to Fée, 55 per cent. of carbonate of soda. Of the French Barillas two only deserve notice; namely, that of Narbonne, obtained from Salicornia herbacea, and which yields 14 or 15 per cent. of carbonate; and that of Aiguemortes, called Blanquette, and which contains from 3 to 8 per cent. only of alkaline carbonate.

The importation of barilla has very much fallen off of late years, in consequence of the extraction of carbonate of soda from sulphate of soda. In 1827 the quantity imported was 326,239 cwt.; whereas, in 1840, it was only 284 tons.

2. Preparation of Kelp.—Kelp (called by the French Varec or Normanly Soda) is procured by the combustion of cryptogamic plants of the order Algaeæ. According to Dr. Greville, the species most valued for this purpose are Fucus vesiculosus, nodosus and serratus, Laminaria digitata (see fig. 47, p. 238) and bulbosa, Himanthalia lorea, and Chorda Fition. These are burned in coffers of stone or in kilns. About 24 tons of sea-weed are required to produce one ton of kelp. The resulting ash is kelp. As met with in commerce, it consists of hard, dark grey or bluish masses, which have an acrid caustic taste, and are composed of Chloride of Sodium, about five per cent. of Carbonate of Soda (formed by the decomposition of the oxalate and other organic salts of soda), Sulphates of Soda and Potash, Chloride of Potassium, Iodide of Potassium or Sodium, and Insoluble and Colouring Matters. By digesting kelp in a small quantity of water, and filtering and evaporating the solution, crystals of carbonate of soda may be procured. But as this salt can be procured at a lower price and of finer quality from artificial soda, kelp is now of little value as a source of soda. In the Orkney Islands, about 50,000 persons were, a few years since, occupied in the manufacture of kelp.

3. Preparation of Soda-Ash from Sulphate of Soda. — The principal manufactories are situated in the northern parts of the kingdom, and are conducted on a most extensive scale. The process adopted varies in some of its details in different places.

The sulphate of soda employed is, in part, obtained from manufac-
turers of chloride of lime, who procure a considerable quantity in the process for generating chlorine. But the greater part of it is made expressly, by adding sulphuric acid to common salt (chloride of sodium). The hydrochloric acid gas evolved in this process is highly injurious to vegetable and animal life, and various contrivances have been resorted to to prevent its escape into the atmosphere, as by absorbing it by water or lime. The sulphate of soda, reduced to powder, is usually decomposed by mixing it with an equal weight of ground chalk and half its weight of small coal ground and sifted, and heating the mixture in a very hot reverberatory furnace. During the operation it is frequently stirred. The product has a dark grey or blackish appearance, and is called British Barilla or Ball Alkali.

It consists of carbonate of soda and oxisulphuret of calcium. During the operation carbonic oxide gas escapes. The following diagram explains the reactions:

\[
\begin{array}{ccc}
\text{MATERIALS.} & \text{COMPOSITION.} & \text{PRODUCTS.} \\
9\text{eq. Carbon.} & 54 & 10\text{ eq. Carbonic} \\
3\text{ eq. Chalk} & 150 & 1\text{ eq. Carbon} \\
2\text{ eq. Sulphate} & 144 & \text{Oxide} & 140 \\
& & 1\text{ eq. Oxygen} \\
& & 2\text{ eq. Oxygen} \\
& & 44 \\
& & 2\text{ eq. Carbonic Acid} \\
& & 2\text{ eq. Oxygen} \\
& & 1\text{ eq. Calcium} \\
& & 2\text{ eq. Calcium} \\
& & 20 \\
& & 1\text{ eq. Lime} \\
& & 2\text{ eq. Sulphuric Acid} \\
& & 3\text{ eq. Oxygen} \\
& & 56 \\
& & 2\text{ eq. Sulphur} \\
& & 2\text{ eq. Calcium} \\
& & 72 \\
& & 2\text{ eq. Carbonate} \\
& & 2\text{ eq. Soda} \\
& & 64 \\
& & 108 \\
\end{array}
\]

By theory, the ball alkali should contain about 30 per cent. of carbonate of soda; but the quantity is in general only 22 per cent.

Ball alkali is lixiviated with water, and the carbonate of soda thereby separated from the more difficultly soluble oxisulphuret of calcium. The solution, by evaporation, yields a dark crystal line mass, composed of carbonate of soda, caustic soda, and some sulphuret of sodium. This is roasted in a reverberatory furnace, to

* See p. 273 et seq.—A very humorous account of the unpleasant effects of this gas is contained in the report of a trial at Lancaster, March 21, 1830, the Queen v. Arey, in the Times newspaper.
CARBONATE OF SODA.

The impure carbonate of soda, called soda-ash or soda-salt, is obtained by calcining the sulphuric acid with sawdust. The product is called soda-ash or soda-salt, and contains about 60 per cent. of soda.

Purification.—The London and Dublin Colleges give directions for the purification of the impure carbonate of soda of commerce.

The London College orders of impure Carbonate of Soda, 1 lb. 10 oz. Distilled water, 1 gal. Boil the impure carbonate of soda in the water, and strain it while boiling. Lastly, set it by, that crystals may be formed.

The Dublin College directs Carbonate of Soda to be prepared from Barilla, in the way. The operations are to be repeated until the crystals are sufficiently large scale crystallized carbonate of soda is obtained from soda-ash by lixiviating the latter with water, straining the solution, and evaporating. The salt is usually crystallized in iron pans.

Properties.—Carbonate of soda usually forms large crystals, which are oblique rhombic prisms. They are transparent, and have an alkaline taste. By exposure to the air they effloresce. When heated they undergo the water fusion, and give out their water of crystallization: at a red heat, the whole of the water is expelled. Carbonate of soda is insoluble in alcohol. It dissolves in twice its weight of water at 60°, and in less than its own weight at 212° F. The solution reacts as an alkali on vegetable colours.

Characteristics.—As a carbonate it is known by the tests for this class of salts already stated (vide p. 334). From the bicarbonate it is distinguished by the brick-red precipitate which it throws down from a solution of bicarbonate of mercury. Sulphate of magnesia causes a white precipitate with it. As a soda salt it is recognised by the tests for this class of salts already stated (p. 533).

Composition.—The perfect crystals of the ordinary carbonate of commerce have the following composition:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Atoms</th>
<th>Eq. Wt</th>
<th>Per Cent</th>
<th>Klaproth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soda</td>
<td>1</td>
<td>33</td>
<td>22-23</td>
<td>22</td>
</tr>
<tr>
<td>Carbonic Acid</td>
<td>1</td>
<td>22</td>
<td>15-23</td>
<td>16</td>
</tr>
<tr>
<td>Water</td>
<td>10</td>
<td>50</td>
<td>62-65</td>
<td>63</td>
</tr>
<tr>
<td>Crystallized Carbonate of</td>
<td></td>
<td>144</td>
<td>100%</td>
<td>100</td>
</tr>
</tbody>
</table>

IMPURITY.—The ordinary impurities of this salt are sulphates and chlorides. These are detected as follows:—Supersaturate with nitric acid, and then add, to separate portions of the diluted solution, chloride of barium and nitrate of silver: if the first occasion a white precipitate, it indicates the presence of a sulphate—if the second also produce a white precipitate, soluble in ammonia, but insoluble in nitric acid, it shews the presence of a chloride.

When freshly prepared it [Crystallized Carbonate of Soda] is translucent, but in an open vessel it in a short time falls to powder. It is totally soluble in water, but not at all in alcohol. It alters the colour of turmeric like an alkali. P. L. H. A. 4 a solution of 21 grains in a fluidounce of distilled water, precipitated by 1 grains of nitrate of baryta, remains precipitable by more of the test; and the precipitate is entirely soluble in nitric acid. Little subject to adulteration. Ph. Ed.

PHYSIOLOGICAL EFFECTS.—Carbonate of soda is less acrid, and has a milder and less unpleasant taste, than carbonate of potash; but in all other respects the effects of these two salts on both vegetables and animals are the same.

USES.—Carbonate of soda is used in the same cases as carbonate of potash, over which it has the advantage of a less disagreeable taste. Fourcroy imagined that as soda is contained in animals in a larger proportion than potash, it was a better agent for medicinal use. Experience, however, has not confirmed this opinion, but has proved the reverse; for both Sir G. Blane and Mr. Brande state that they obtained beneficial effects, in calculous complaints, from the use of potash, where soda failed to give any relief. Sir G. Blane accounted for this by assuming that soda becomes applied to the purposes of the economy before it reaches the kidneys, whereas potash is carried to these organs in order to be thrown out of the system.

ADMINISTRATION.—Crystallized carbonate of soda is exhibited in doses of from ten grains to half a drachm or a drachm. It is sometimes employed in the manufacture of the effervescing draught.

20 grains of Crystallized 91 grs. of Commercial Crystals of Citric Acid.
Carbonate of Soda are 10½ grs. of Crystals of Tartaric Acid.
saturated by about 1 1/3 juss. of Lemon Juice.

ANTIDOTES.—See Potassa, p. 486.

SOD. CARBONAS EXSECCATA, L. Soda Carbonas siccatum, E. D. Dried Carbonate of Soda. Carbonate of Soda, lbj. Apply heat to the Carbonate of Soda in a proper vessel, until it is dried, and afterwards heat it to redness. Lastly, rub it to powder, L.—The processes of the Edinburgh and Dublin Colleges are essentially the same. Fifty-four grains of this preparation are equal to one hundred and forty-four grains of the crystallized carbonate. It may be exhibited either in powder or pills. Dose from grs. v. to 3j.

8. SO'DE SESQUICARBONAS, L.—SESQUICARBONATE OF SODA.

In the province of Sukena, near Tripoli, is found a substance which the Africans call Trona—a word from which are probably derived the terms virgur, nitrum, and nitron. But the analyses of Klaproth, Phillips, and Beudant, show that the proportion of carbonic acid which it contains is that of a sesquicarbonate. From the analysis of MM. Mariano de Rivero and Boussingault it appears that the substance termed Urao, and which occurs at the bottom of a lake at Lagunillas, near Marida, in South America, has a similar composition.

The white powder sold in the shops of this country for making Soda Powders, and which is denominated Carbonate, Bicarbonate, or Sesquicarbonate of Soda (Soda Sesquicarbonas, Ph. L.) consists either of bicarbonate of soda or of a mixture of carbonate and bicarbonate of soda, in varying proportions. The two latter substances may be detected as follows:—Wash the so-called sesquicarbonate with a small quantity of distilled water, and filter: the solution usually contains carbonate of soda (known by its throwing down a brick-red precipitate on the addition of a solution of bichloride of mercury)—while there remains on the filter bicarbonate of soda (recognized by its causing a white precipitate, or a slight milkiness on opalescence with a solution of bichloride of mercury). Sometimes the substance sold as sesquicarbonate of soda consists wholly of bicarbonate.

The composition of native crystallized sesquicarbonate of soda is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Soda</td>
<td>1</td>
<td>32</td>
<td>38-33</td>
<td>38-02</td>
<td>37-9</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>1</td>
<td>33</td>
<td>39-76</td>
<td>40-12</td>
<td>38-9</td>
</tr>
<tr>
<td>Water</td>
<td>2</td>
<td>18</td>
<td>21-69</td>
<td>21-24</td>
<td>23-5</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-5</td>
</tr>
<tr>
<td>Native Sesquicarbonate Soda</td>
<td>1</td>
<td>83</td>
<td>100-00</td>
<td>99-89</td>
<td>100-0</td>
</tr>
</tbody>
</table>

Like the so-called hydrated sesquicarbonate of ammonia (pp. 310 and 311) it is probably a double salt, composed of one equivalent of the carbonate and one equivalent of the bicarbonate of soda.

9. SO'DE BICARBONAS, E. D.—BICARBONATE OF SODA.

History.—This salt was discovered by Valentine Rose. In some works it is termed Natron Carbo nicum perfecte saturatum seu acidi um. Alone or mixed with carbonate of soda it constitutes the

* Vide Potasse Nitras and Soda Carbonas.
* Betragge, iii. 63.
* Quoted by Necker, Règne Minéral, ii. 666.
* For an account of this lake, see Quarterly Journal of Science, vol. i. p. 198.
* For further details, see Sode Bicarbonas.
Soda Sesquicarbonas of the London Pharmacopoeia,—the Carbonate or Bicarbonate of Soda of the shops.

Natural History.—It is a constituent of the mineral water called acidulo-alkaline, as those of Carlsbad and Seltzer (see pp. 257 and 271).

Preparation.—All the British Colleges give formulae for the preparation of bicarbonate or sesquicarbonate of soda.

The **London College** orders the sesquicarbonate to be prepared with Carbonate of Soda, lbvij; Distilled Water, Cony. j. Dissolve the Carbonate of Soda in Water, and strain; then pass Carbonic Acid into the solution to saturation, till the salt may subside. Wrapped and pressed in cloth dry this with a gentle heat.

The **Edinburgh College** orders the bicarbonate to be prepared as follows: Fill with fragments of marble a glass jar, open at the bottom and tubulated at the top; close the bottom in such a way as to keep in the marble without preventing the free passage of a fluid; connect the tubulature closely by a bent tube and corks with an empty bottle, and this in like manner with another bottle filled with one part of Carbonate of Soda, and two parts of Dried Carbonate of Soda, well triturated together; and let the tube be long enough to reach the bottom of the bottle. Before closing the last cork closely, immerse the part of the top in diluted muriatic acid contained in any convenient vessel; when the whole apparatus is thus filled with carbonic acid gas, secure the last cork tightly, and let the action go on till next morning, or till gas is no longer absorbed by the salt. Remove the damp salt which is formed, and dry it, either in the air without heat, or at a temperature not above 120°.

The **Dublin College** orders of Carbonate of Soda, two parts: Water, free parts. Dissolve. Let the liquor be exposed in a suitable apparatus to the stream of Carbonic Acid gas, which escapes during the solution of white marble in diluted Muriatic Acid, until it shall have ceased to absorb gas, and let it stand until crystals form; then, with a heat not exceeding 120°, let the liquor evaporate and crystals be formed by cooling; these are to be mixed with the former dried and preserved in a close vessel.

"In the manufacture of this bicarbonate for the purpose of commerce, 160 lbs. of carbonate may be dissolved in 18 gallons of water and carbonic acid thrown into the solution in a proper apparatus. The bicarbonate falls, as it forms, to the amount of about 50 lbs., being separated from the solution, may be conveniently dried by pressure in an hydraulic press. A fresh portion of carbonate is dissolved in the mother liquor, and the operation repeated as before."

The carbonic acid used in this process is usually procured artificially, by the action of diluted sulphuric acid on carbonate of lime. In some countries, however, it is obtained from natural sources; as in Vichy, where it is collected from the mineral waters.

Smith's process for the preparation of bicarbonate of soda consists in placing the ordinary carbonate of soda in a box, and surrounding it by an atmosphere of carbonic acid gas under pressure. As the bicarbonate combines with much less water of crystallization than contained in the carbonate, a considerable portion of water is liberated, which, saturated with part of the salt, is allowed to drain off when the gas ceases to be absorbed, the salt is then out and dried.

in examination it is found to have retained the original form of the carbonates; but they have become of a porous and loose texture, presenting the appearance of numerous crystalline grains, aggregated together, and having a snow-white colour.

At Glasgow, sesquicarbonate [bicarbonate?] of soda is prepared by exposing the carbonate, dry, and in powder, to an atmosphere of carbonic acid gas: it absorbs the requisite quantity to be converted to a sesquicarbonate. In the London Pharmacopeia for 1809, it was ordered to be prepared by adding the hydrated sesquicarbonate of ammonia to a solution of carbonate of soda, and applying a heat about 100° F., to drive off the ammonia: the solution is then set aside to crystallize. The proportions of the ingredients employed were a pound of carbonate of soda, three ounces of sesquicarbonate of ammonia, and a pint of distilled water. Winckler corrects 4 parts of crystallized carbonate of soda, 1½ parts of sesquicarbonate of ammonia, and 10 parts of water. The proportions ordered by MM. Henry and Guibourt are 6 parts of the crystallized carbonate of soda, 2 parts of sesquicarbonate of ammonia, and parts of water.

Properties.—Perfect crystals of bicarbonate of soda are, according to Dr. Thomson, oblique rectangular prisms. As usually met with, this salt constitutes a white crystalline mass, or a whitish powder. In the latter state it is usually contaminated with a small portion of the carbonate. The taste of this salt, and its reaction on vegetable colours, are slightly alkaline. By exposure to the air it effloresces superficially. When heated it evolves carbonic acid and water, and becomes the anhydrous carbonate. It dissolves in 13 parts, according to Rose, or 8 parts, according to Berthollet, of cold water. By heat the solution loses first one-quarter, and subsequently one-half of the carbonate.

Characteristics.—To recognize the carbonic acid and soda of this salt, the tests are the same as before described (vide p. 533) for the carbonate of soda. From the latter salt the bicarbonate of soda is distinguished by its more difficult solubility in water, by its causing either a brick-red precipitate with the bichloride of mercury, nor a white precipitate with the sulphate of magnesia of the shops.

Composition.—Crystallized bicarbonate of soda has the following composition:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sod.</td>
<td>1</td>
<td>22</td>
<td>34·64</td>
<td>37</td>
<td>31·75</td>
<td>29·57</td>
</tr>
<tr>
<td>Carbonic Acid</td>
<td>3</td>
<td>44</td>
<td>66·36</td>
<td>49</td>
<td>44·49</td>
<td>49·35</td>
</tr>
<tr>
<td>Water</td>
<td>2</td>
<td>18</td>
<td>19·14</td>
<td>14</td>
<td>23·86</td>
<td>29·20</td>
</tr>
<tr>
<td>Cryst. Bicarb.</td>
<td>1</td>
<td>94</td>
<td>99·98</td>
<td>100</td>
<td>100·00</td>
<td>100·00</td>
</tr>
</tbody>
</table>

a Journ. of the Philadelphia College of Pharm. vol. i., quoted by Dr. Bache, in the United States' Dispensatory. For a sketch of the apparatus employed by Sombertius, in performing Smith’s process, see his Nouv. Traité de Pharm. t. 2nd, pp. 289 & 384, 2nd ed. Paris, 1840.

b Dr. T. Thomson, Athenaeum for 1846, p. 771.

cerb. d. Pharm. Chimie, 1st Th. 8, 223.

e. of Incur. Boden, vol. ii. p. 34.
According to Dr. Thomson this salt contains only one equivalent of water of crystallization.

Purity.—When quite pure this salt occasions no precipitate with bichloride of platinum, perchloric acid, or tartaric acid, by which freedom from potash is demonstrated. When supersaturated with pure nitric acid, it gives no precipitate with either chloride of barytes or nitrate of silver, by which the absence of sulphates and chlorides is shewn. Lastly, it occasions a white precipitate, or opalescence with bichloride of mercury, by which the freedom from a simple mono-carbonate is shewn.

It is totally dissolved by water. Neither chloride of platina nor sulphate of magnesia, unless heated, throws down anything from this solution. But strong fire it is converted into anhydrous carbonate of soda. Ph. Lond.

“A solution in 40 parts of water does not give an orange precipitate or solution of corrosive sublimate.” Ph. Ed.

Physiological effects.—The effects of this salt are analogous to those of bicarbonate of potash, than which it is regarded as having somewhat less disagreeable taste and a slighter local action. It is less caustic and irritant than the carbonate of soda. Its remote constitutional effects are analogous to those of the caustic alkali (Vide Potassa, p. 482.)

Uses.—It is employed as an antacid in those forms of dyspepsia which are attended with an inordinate quantity of acid in the stomach; as a lithotrity in those kinds of lithiasis which are accompanied with an excessive secretion of uric acid and the urates; as a resolvent or alternative in certain forms of inflammation, in glandular affections, in syphilis, and scrofula; and as a diuretic in some of the phlegmatic complaints.

The principal consumption of bicarbonate of soda (Soda Sesqui-carbonata, Ph. L.) is in the preparation of the effervescing draughts, soda-powders, and Seidlitz powders: in these the bicarbonate is mixed with a vegetable acid (either citric or tartaric, usually the latter). Taken in a state of effervescence, a solution of this kind is an agreeable and refreshing drink for allaying thirst, checking sickness, and diminishing febrile heat, as I have before mentioned (Boyle, pp. 387, 409, and 413). The resulting soda-salt (tartrate or citrate) undergoes partial digestion in its passage through the system, and is converted into carbonate, which is found in the urine. Hence, therefore, these effervescing preparations may be employed as diuretics and lithotrity, instead of the simple carbonate or bicarbonate of soda than which they are more agreeable. On the other hand they are highly objectionable, and are to be carefully avoided, in the treatment of phlegmatic deposits in the urine. Alluding to these cases, Dr. Pozzi observes, “were I required to name the remedy calculated to do most mischief, I should name the common saline draught, formed of potash or soda, and some vegetable acid.”

2 See Potash, p. 482, and Carbonate of Soda, p. 354.
3 Inquiry into the Nature and Treatment of Affections of the Urinary Organs, 2d ed. p. 165.
ADMINISTRATION.—The dose of this salt is from ten grains to a
half dram. In the preparation of effervescent draughts, a scruple of
powder sold in the shops as bicarbonate of soda (Soda Sesqui-
arbonata, Ph. L.) usually requires about 18 grains of crystallized
citric acid, or about 17 grains of the ordinary crystals of citric acid,
twelve fluidrachms of lemon juice, to saturate it.

PULVERES EFFERVESCENTES, E. Effervescent Powders. (Tar-
trate of Potash, 5 j. ; Bicarbonate of Soda, 5 j. and grs. liv.; or, Bicarbonate
of Potash, 5 j. and grs. clx. Reduce the acid and either bicarbonate
rately to fine powder, and divide each into sixteen powders;
serve the acid and alkaline powders in separate papers of different
colors).—The Soda Powders of the shops consist of 30 grains of
carbonate of soda, contained in a blue paper, and 25 grains of
citric acid, in a white paper. When taken they should be dissolved
in a pint of water. The flavor of the solution is improved by
adding to the water, before dissolving the acid, one or two drachms
of mastic, and either half a drachm of the tincture of orange-
or two or three drops of the essence of lemon. Ginger-beer
Powders are made in the same way as soda powders, except that they
are made of powdered ginger and a drachm of white sugar are mixed
with the bicarbonate of soda.

SEIDLITZ POWDERS.—These consist of two drachms of Tartarized
bicarbonate, and two scruples of Bicarbonate of Soda contained in a blue
paper, and half a drachm of powdered Tartaric Acid in a white
paper. These are to be taken dissolved in half a pint of water, while
the solution is in a state of effervescence. These form an agreeable
mild aperient. Why they are called Seidlitz powders I cannot
say, as they have no analogy to Seidlitz water.

LIQUOR SODAE EFFERVESCENS, L. Sode Aequa Effervescentes, E.;
a Carbonatis Soda Acidula, D.; Effervescing Solution of Super-
bonate of Soda; Soda Water, properly so called. (Sesquicarbo-
bicarbonate in the water, and pass into it, compressed by force,
carbonic acid than is sufficient for saturation. Keep the solu-
in a well-stoppered vessel, L. E.—The process of the Dublin
dracaena is essentially similar, except that carbonate of soda is
substituted for the bicarbonate).—This solution is employed in the
cases as bicarbonate of soda. The additional quantity of car-
bonic acid contained in it renders it more agreeable, and not less
palatable, as an alkaline agent, in its operation on the system gene-
ral. It is employed to counteract or prevent the inordinate secre-
tion of uric acid and the urates; but both this and soda water powders
highly injurious in phosphatic deposits (see p. 558).

BOTTLED SODA WATER of the shops is in general only carbonic
water (see p. 339). If, after it has ceased to effervesce, tartaric
be added, the effervescence is not renewed unless an alkaline
mate be present.

SODA EFFERVESCENS may be extemporaneously made, by pour-
ing carbonic acid water into a tumbler containing half a drachm of bicarbonate of soda.

A fraudulent imitation of soda water is said to have been practiced by adding a few drops of sulphuric acid to a solution of carbonic acid in water, and instantly corking the bottle. The fraud may be detected by chloride of barium, which throws down a white precipitate insoluble in nitric acid.

4. SODÆ CARBONATIS AQUA, D. Solution of Carbonate of Soda. (Take of Carbonate of Soda any required quantity; dissolve in water, and let the specific gravity of the liquor be to that of distilled water as 1024 to 1000. A liquor of the same specific gravity is prepared by dissolving an ounce of [crystallized] carbonate of soda in a [pint of distilled water]. Dose from \(\frac{3}{3} \text{ij.} \) to \(\frac{7}{3} \text{ij.} \).

5. TROCHISCI SODÆ BICARBONATIS, E. Soda Lozenges. (Bicarbonate of Soda, \(\frac{3}{3} \text{ij.} \); Pure Sugar, \(\frac{5}{3} \text{ij.} \); Gum Arabic, \(3 \text{s.} \). Pulverize them, and, with mucilage, beat them into a proper mass for making lozenges). Employed to relieve too great acidity of stomach.

10. POTAS'SÆ ET SO'DÆ TARTRAS, E. D.—TARTRATE OF POTASH AND SODA.

(Soda Potassio-Tartrata, L.)

HISTORY.—This salt was discovered by Seignette, an apothecary at Rochelle, in 1672, and hence it is frequently termed Seignette Salt, or Sel de Seignette. He called it Alkaline Salt, Sal Polycheiro, and Rochelle Salt (Sal Rugellensis). To distinguish it from the polychrestus (sulphate of potash) of other writers, it is sometimes designated Sal Polychrestum Seignetti. It is often called Tartaric Soda (Soda Tartarizata seu Natron Tartrizatum).

PREPARATION.—All the British Colleges give directions for its preparation.

The London College orders of Bitartrate of Potash, powdered, \(\frac{3}{3} \text{xxvi.} \); Carbonate of Soda, \(\frac{3}{3} \text{ij.} \); Boiling Water, Oiv. Dissolve the carbonate of soda in the boiling water, and add gradually the bitartrate of potash. Strain the liquor; apply a gentle heat until a pellicle floats, and set it aside that crystals may form. The liquor being poured off, dry them. Evaporate the liquor again, it may yield crystals.

The Edinburgh College orders the same quantities.

The Dublin College employs Carbonate of Soda, five parts; Bitartrate of Potash reduced to the finest powder, seven parts; Hot Water, fifty parts.

In this process the excess of acid in the bitartrate of potash is saturated by the soda of the carbonate, while the carbonic acid of the latter is disengaged.

PROPERTIES.—This salt is met with in large, transparent, and n
shaped right rhombic prisms; but curiously enough, the crystals frequently produced in halves (as in fig. 98). Their taste is saline and bitter. Exposed to the air they slightly effloresce, in heated they undergo the watery fusion, evolve their water of crystallization, and are decomposed: the residue consists of charcoal, the carbonates of potash and soda. They are readily soluble in water, and still more so in hot water.

Characteristics.—This salt may be recognized by the shape and size of the crystals. Sulphuric acid added to the aqueous solution yields down small crystals of bitartrate of potash; perchloric acid yields down perchlorate of potash: the chlorides of baryum and ammonium occasion white precipitates, soluble in excess of water, and posed of soda, tartaric acid, and, in the one case, baryta, in the other, lime: bichloride of platinum produces a yellow precipitate of platinum-chloride of potassium. Heated with the bichloride of potassium it yields a black precipitate. Nitrate of silver occasions a white precipitate (tartrate of silver), soluble in excess of water.

When heated, Rochelle salt is decomposed, various volatile substances are evolved, and the odor of caramel is given out (see p. 411). The residuum be digested in hydrochloric acid, we obtain a solution of the chlorides of sodium and potassium: the chloride of potassium may be precipitated by bichloride of platinum, leaving chloride of sodium in solution, which may be detected by the tests already mentioned for this salt (p. 583).

Composition.—The composition of this salt is as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Schulte.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tartrate Potash</td>
<td>1</td>
<td>82</td>
<td>114</td>
</tr>
<tr>
<td>Tartrate Soda</td>
<td>1</td>
<td>82</td>
<td>98</td>
</tr>
<tr>
<td>Water</td>
<td>10</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>

Thomson says, that when the crystals are free from all adhering moisture, they contain only eight equivalents of water of crystallization, and their atomic weight is then 284.

Physiological Effects.—It is a mild, laxative, cooling salt, very analogous in its effects to the tartrate of potash. Sundelin says it is certain as a purgative, sometimes failing, at others acting very violently, but strongly, and with violent abdominal pain. He thinks it be completely replaced in practice by a mixture of magnesia and

sulphate of magnesia. Like the other vegetable alkaline salts, it undergoes partial decomposition in the system, and is converted into carbonate, in which state it is found in the urine. Hence it should be carefully avoided in persons suffering with phosphatic deposits in the urine.

Uses.—It is commonly employed as a mild aperient for females and other delicate persons. It may be used with advantage by those who are subject to excessive secretion of uric acid or the urates.

Administration.—It is given in doses of from 5ij. to 3vij. or more. It should be exhibited largely diluted with water. A very convenient mode of exhibition is in combination with bicarbonate of soda and tartaric acid in an effervescing condition (vide Seidlitz Powder, p. 559).

11. So'de Ac'e'tas, L. D.—Acetate of Soda.

History.—This salt was first described by Baron, in 1747; according to Dulk it was formerly called Terra Foliata Tartari Crystallisata, or Terra Foliata Mineralis.

Preparation.—The preparation of acetate of soda by manufacturers of pyrogallic acid has been before described (see p. 393).

The Dublin College orders it to be prepared by saturating Carbonate of Soda with Distilled Vinegar. The filtered liquor is to be evaporated until it has attained the sp. gr. of 1-276. By cooling, crystals are formed, which are to be cautiously dried and kept in a close vessel.

Properties.—This salt crystallizes in oblique rhombic prism Geiger says that a saturated solution of this salt does not readily crystallize when cooled in a tall glass vessel, unless some pointed angular body be introduced. Its taste is cooling, saline, and bittersweet. Exposed to the air, at ordinary temperatures, the crystals undergo some change; but in dry and warm air they effloresce and become sodorous. When heated they first undergo the watery fusion, then give out their water of crystallization, and afterwards undergo the igneous fusion. At a red heat they are decomposed, and yield, as a result, a mixture of charcoal and carbonate of soda. They are soluble about three parts of cold water; and are slightly soluble in alcohol.

Characteristics.—As an acetate it is recognized by the tests before mentioned (p. 397) for this class of salts. That the base is soda is shewn by the characters already described (p. 533) for the soda salts.

Composition.—The following is the composition of this salt:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Berzelius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soda</td>
<td>1</td>
<td>32</td>
<td>23.96</td>
<td>27.94</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>1</td>
<td>51</td>
<td>37.22</td>
<td>35.65</td>
</tr>
<tr>
<td>Water</td>
<td>6</td>
<td>54</td>
<td>39.41</td>
<td>40.11</td>
</tr>
<tr>
<td>Crystallized Acetate of soda</td>
<td>1</td>
<td>137</td>
<td>99.99</td>
<td>100.00</td>
</tr>
</tbody>
</table>

2 Die Poesie. Pharm. libera u. eröffent.
3 Handb. d. Pharm. 1 Bd. 139, 3 Aufl.
PURITY.—It should be white and perfectly neutral (litmus and turmeric). The presence of sulphuric acid recognized by chloride of barium, which occasions, with white precipitate insoluble in nitric acid. If nitrated a white precipitate insoluble in both water and nitric acid or the solution of ammonia, the presence of a chloride is to be recognized by the before-mentioned base (p. 481), as well as by the deliquescence of potash.

PHYSIOLOGICAL EFFECTS.—Acetate of soda operates like acetate of potash, but is probably somewhat milder in its effects.

USES.—It is rarely employed for medicinal purposes; however, it may be used as a substitute for acetate of potash, and has the advantage of not being deliquescent.

In pharmacy and the arts it is largely employed as a substitute for acetic acid (vide p. 384), and on this account is introduced into the Pharmacopeia as the officinal acid.

ADMINISTRATION.—The dose of it, as a diuretic, is about two drachms.

12. SAPO.—SOAP.

SOAP.

History.—The Hebrew word Bôrîth, translated in the Bible "Soap," is, by most commentators, supposed to be the name of a plant, or to the alkaline ashes of some plant. Pliny, says it is made of tallow and ashes, ascribes it to the Gauls, and adds, that the Germans employed a liquid soap (hard and soft soap). In the excavations at Pergamum, a complete soap-boiler's shop was discovered, 2,000 years b.c. The term Soap is usually applied to the product of alkalis on fixed oils and fats: while the term Plaster is applied to the product of the action of oxide of lead and fats. The former is frequently termed a soluble plaster, and the latter an insoluble soap. The term Soap is applied to alkaline resinsates.

Natural History.—Soap is always an artificial product; the spontaneous formation of adipocere, from dead animals, considered an exception to this statement. This substance is prepared from the analysis of Chevreul, to consist of a small quan.
monia, of potash, and lime, united to much margaric acid, and a very little oleic acid.

Preparation.—The following is a concise account of the principles of soap-making:—"In order to form soap, the oil or fat is boiled with a solution of caustic potash or soda, till the whole forms a thick viscid emulsion, which can be drawn out into long clear threads. If not clear, either water or alkali must be added, according as the turbidity depends on undecomposed oil, or on a deficiency of water. When the saponification is complete, the next step is to separate the soap from the excess of alkali, the glycerine, and the superfluous water. This may be effected by boiling down till the alkaline ley becomes very concentrated, when the soap becomes insoluble, and rises to the surface. The same end is attained by adding very strong ley, or common salt, both of which render the soap insoluble when added in sufficient quantity; soap being absolutely insoluble in alkaline ley of a certain strength, as well as in a saturated solution of common salt. The separation is known to be complete when the liquid ceases to froth in boiling; and the soap is ladled off into moulds, where it is well stirred to favour the separation of the liquid, which should run off from its surface like water from fat. The soap brought to this state in the first operation is called grain soap, from its separating in grainy particles at first. It may be further purified by repeating the process of dissolving in alkaline ley, and separating it by the addition of salt. In this process the impurities subside, and the soap generally takes up more water: so that although whiter it is less strong. White soap, for example, commonly contains 45 to 60 per cent. of water, while grain soap contains 25 to 30 per cent. No doubt it may be again procured with as little water as at first; but it is the fluidity caused by the additional water that allows the impurities to subside, and the soap to become white. What is called marbled soap is grain soap which has not been subjected to purification; and the grey, blue, and green colours in it arise principally from the presence of insoluble soaps of oxide of iron or of copper.

Theory of Saponification.—The fixed oils and fats, as they occur in nature, are for the most part mixtures or compounds of two or more fatty salts. Stearine, Margarine, and Oleine, are the fatty salts of most frequent occurrence. They are each composed of a sweet basic substance, called Glycerine (C₆H₁₂O₃ + Aq.), and a fatty acid. Stearine contains Stearic Acid (C₆₅H₁₃₂O₂); while Margarine contains Margaric Acid (C₅₈H₁₀₆O₈); and Oleine, Oleic Acid (C₄₄H₇₂O₄).

Tallow consists chiefly of Stearine with a little Oleine. Olive Oil is composed of Margarine and Oleine. Almond Oil contains less Margarine than Olive Oil. Palm Oil contains Oleine, Margarine (?), and about two-thirds of its weight of a white solid fat, which is Palmistine, and which contains Palmitic Acid.

When the oils and fats are acted on by a solution of the caustic alkali, the latter unites with the fatty acid, forming a soap, and disengages the glycerine which combines with water.

The following diagram illustrates the action of soda on stearine:

MATERIALS.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 eq. Soda</td>
<td>128</td>
</tr>
<tr>
<td>1 eq. Stearine</td>
<td>1129</td>
</tr>
</tbody>
</table>

PRODUCTS.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Stearic Acid</td>
<td>1028</td>
</tr>
<tr>
<td>2 eq. Water</td>
<td>18</td>
</tr>
<tr>
<td>1 eq. Glycerine</td>
<td>83</td>
</tr>
</tbody>
</table>

\[\frac{128}{1129} \] \[\frac{1028}{18} \] \[\frac{18}{83} \] \[\frac{1257}{1257} \]

In the conversion of resin into soap the phenomena are different. Esoins usually consist of one or more acids, which combine with kalis to form resinous salts or soaps. Thus, ordinary Yellow Resin (Rosin) consists of two acids, called respectively Pinic and Silvicids; and a soda soap made of this substance would, therefore, be a mixture of pineate and silvate of soda.

Properties.—The consistence, colour, odour, and sp. gr. of soap vary in the different varieties of this substance. The taste of all is slightly alkaline. All the alkaline soaps are soluble both in water and alcohol. The substance called transparent soap is prepared by evaporating an alcoholic solution of pure soap. When heated, soap ses, swells up, and is decomposed, leaving a residuum of charcoal and alkaline carbonate. Most of the acids decompose soap: they unite with the alkaline base, and separate the fatty acids. The earthy salts (as sulphate of lime, sulphate of magnesia, alum, &c.) also decompose soap: the fatty acids unite with the earth to form an insoluble earthy soap, while the alkali of the soap combines with the acid of the salt. The hardness of sea, spring, and well water, depends on the earthy salts (principally sulphate of lime), which decompose soap (see p. 261): hence tincture of soap may be used as a test of the hardness or softness of common waters. The metallic salts decompose soap, and give rise to mettalline insoluble soaps.

Characteristics.—Soap may be partly recognised by its physical properties, especially by its feel, which is so well known that it is usually called soapy. The solubility of soap in water and alcohol is an important character, as well as its detergent quality, which depends on its power of rendering fatty and other matters soluble in water. The effect of heat on it also deserves notice: if the carbonaceous residuum be digested in weak hydrochloric acid, and the solution filtered and concentrated by evaporation, the nature of the alkaline base may be ascertained by applying the tests for potash and soda before mentioned (pp. 481 and 583). Lastly, the action of acids and earthy and metallic salts on a solution of soap, as already noticed, serves to distinguish soap.

Varieties.—A considerable number of soaps are met with in commerce. Of these, however, two only are employed in medicine, viz. Aspic and Soft Soap. The soaps of commerce are either hard or soft; the former are prepared with soda, the latter with potash. This circumstance, therefore, forms the ground of their division into two classes.

Liquiritum Ammoniac (p. 304) is an ammoniacal saponaceous liquid. *Liquiritum Calcis*, here to be described, is sometimes termed a calcareous soap (see *Calc*). *Emplastrum Plumbi* has been called a soap.
Class I. Hard or Soda Soaps; Sapo Sodaicus; Sapo natrinus; Sapo durus; Sapo spissus, Pliny?—The qualities of the hard or soda soaps vary according to the nature of the fatty or resinous matters with which these substances are prepared.

1. Castile or Spanish Soap; Sapo, L.; Sapo durus, E. D.; Sapo Hispanicus; Marseilles Soap; Olive Oil Soda Soap.—This is prepared with olive oil and a solution of caustic soda. When pure it has very little odour. It is hard, but in the fresh state may be easily worked or kneaded between the fingers; by keeping in warm air it becomes dry and pulverizable. It should not feel greasy, have a rancid odour, communicate an oily stain to paper, nor be covered with a saline efflorescence; but should dissolve completely and readily in both water and alcohol.

Two varieties of it are known in commerce—the white, and the marbled.

a. White Castile Soap.—This is purer than the following variety, but it is a weaker soap (i.e. it contains more water).

b. Marbled Castile Soap.—This variety is harder than the white kind. The marbled appearance is produced by adding to the soap, as soon as it is completely made and separated from the spent lye, a fresh quantity of lye, and immediately after a solution of sulphate of iron. The black oxide of iron is precipitated, and gives the dark-coloured streaks to the soap. By exposure to the air these streaks become red, in consequence of the conversion of the black oxide into the red sesquioxide of iron.

2. Almond Soap; Almond-oil Soda-soap; Sapo amygdalinus, French Codex.—This is the medicinal soap of the French. It is prepared with ten parts of soap-boilers' lye (a solution of caustic soda) and twenty-one parts of almond oil. In this country it is used as a toilet soap.

3. Common Soap; Sapo vulgaris, United States Pharmacopoeia; Sapo sebacae, Geiger; Animal-oil Soda-soap.—This is prepared with tallow and soda. Two kinds of it are in common use, curd soap and mottled soap.

a. White Curd Soap.—This is made with pure or white tallow or curd soap. Windsor Soap is made with one part of olive oil and nine parts of tallow, unscented.

b. Mottled Soap.—This is the common or domestic soap. Refuse kitchen grease, called kitchen stuff, is used in its preparation.

4. Yellow Soap; Rosin Soap; Resin Soda-soap.—This is prepared with tallow resin, and caustic soda. Palm oil is frequently employed in its manufacture. In addition to the above there are many varieties of soap, termed Fancy Toilet Soaps, which are sold by perfumers. The potent Silica Soap is hard, mixed with silicate of soda.

2. Of Soft or Potash Soaps; Sapo potassicus; Sapo kalinus; Sapo mollis; Sapo liquidus, Pliny?—This kind of soap is made with caustic potash and acid oil or fat.

1. Common Soft Soap; Sapo mollis, D.; Animal-oil Potash Soap.—This is prepared with fish oil (whale, seal, or cod), tallow, and potash. Its colour is brownish or yellowish; transparent, interspersed with white specks or grains of stearic soap formed by the tallow, and which give the soap a granular texture like that of the fig.

2. Olive-Oil Potash Soap; Sapo mollis, L. E.—Though ordered in the London and Edinburgh Pharmacopoeias, I have not been able to meet with it; and Messrs. Rowe, soap manufacturers, of Brentford, inform me they are unequipped with it.

* Soubeiran, Nouveaux Traité de Pharmacie, t. ii. p. 383, 2nd edit.
1 Drugists generally substitute common soft soap for olive-oil potash-soap. At Apothecaries' Hall, London, a white soft soap is employed in the preparation of the Unguentum Sulphuricum Compositum. This soap is prepared by Mr. Taylor, 13, Newington Causeway, who tells me there is very much demand for it; the principal consumption being at Apothecaries' Hall. He also informed me that it was made from three fatty substances (olive oil, tallow, and some other oil), and two alkalies (potash and soda). Its consistence is that of butter, but by keeping it becomes harder. I have been informed that olive-oil potash-soap is prepared at Liverpool.
COMPOSITION.—The following is the composition of several varieties of soap:

<table>
<thead>
<tr>
<th>OLIVE OIL SODA SOAP</th>
<th>ANIMAL OIL POTASH SOAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marseilles white</td>
<td>Glasgow soft soap</td>
</tr>
<tr>
<td>da.</td>
<td>Potash</td>
</tr>
<tr>
<td>organic Acid</td>
<td>90</td>
</tr>
<tr>
<td>nitric Acid</td>
<td>26.5</td>
</tr>
<tr>
<td>water</td>
<td>75</td>
</tr>
<tr>
<td>olive oil soda</td>
<td>100</td>
</tr>
<tr>
<td>(Bréconnier)</td>
<td>(D'Arcelet)</td>
</tr>
<tr>
<td>(D'Arcelet)</td>
<td>(Thenard)</td>
</tr>
<tr>
<td>(Thenard)</td>
<td>(Ure.)</td>
</tr>
<tr>
<td>(Ure.)</td>
<td></td>
</tr>
</tbody>
</table>

PURITY.—The adulterations of soap are excess of water, lime, pumis, or pipe-clay. The first may be known by the consistence of the soap, and the great loss of weight which this substance undergoes on dry air. The other impurities may be detected by alcohol, which leaves them undissolved.

PHYSIOLOGICAL EFFECTS.

a. **On Vegetables.**—Soap, used as a purgative, appears to promote vegetation.

b. **On Animals.**—It does not appear to be poisonous to animals. Veterinarians employ it as a diuretic, and, in large doses, as a purgative.

c. **On Man.**—Soap acts very much like the alkalies (vide pp. 194, 3, and 482). Its local operation, however, is much less energetic than either the caustic or even the carbonated alkalies. Hence it may be administered in considerable doses without causing irritation or inflammation. When swallowed it very readily palls the appetite and disturbs the digestive functions, and in these qualities it is more powerful than the alkalies. Perhaps these effects depend on the fatty acids, which must be disengaged in the stomach, in consequence of the solubility of the soap with the free acids of the gastric juice, probably the fatty acids become more or less completely digested, or soap acts on the general system like the alkalies; it promotes the creation of urine, and communicates alkaline properties to this fluid.

Large doses it acts as a purgative. I knew an idiot who had frequently eaten large lumps of soap without any ill effects; and I have heard of a pound of it being swallowed for a wager!

Uses.—As an *antacid*, soap is employed in poisoning by the mineral acids; it should be administered in the form of a strong solution, which effectually neutralizes the acid without acting as an antacid. So also in those forms of dyspepsia which are attended with an excessive formation of acid, soap may be usefully employed to neutralize it. External parts burnt with the strong mineral acids, with phosphorus, should be washed with a solution of soap. As a *tonic*, soap has been used in those forms of lithiasis in which

*See Gmelin's *Handbuch der Chemie.*
*De Candolle, *Physiol Veget.* p. 1543.*
uric acid or the urates prevail. A mixture of soap and lime-water was once considered a most powerful solvent for urinary calculi. The Hon. Horace Walpole gained great relief from it. By the action of lime-water on it, an insoluble calcareous soap and a solution of caustic soda are formed. As a purgative, soap is rarely exhibited alone: in combination with rhubarb it may be employed with considerable benefit in habitual constipation and disordered conditions of the biliary functions. In the form of enema, a strong solution of it is sometimes used with great relief to dissolve hardened faces, and to relieve obstinate constipation. As a resolvent or alterative, it was once much esteemed in enlargements and various chronic disorders of the viscera and glands; and as the alkalies have been found useful in the same diseases, any good effects which may have been obtained by it are probably referrible to its alkaline base.

Externally, soap is frequently employed on account of its detergent, lubricating, and dissecting qualities. Thus, in tinea capitis, scabies, and various other skin diseases, ablation night and morning with soap-water greatly contributes to the cure. On account of its lubricating qualities it is a most convenient adjunct to liniments. The uses of the liniment, cerate, and plaster of soap, are noticed below.

Lastly, soap is useful in pharmacy to render other medicines more soluble, or to give a proper consistence to various substances for the making of pills. Thus it is a constituent of various pills (e.g. Pilula Rhei composite; Pilula Saponis composite; and Pilula Solis composite). In some cases it acts as the adjuvans, assisting and promoting the operation of other medicines; as a corrigens, correcting their operation; and, as a constitutens, imparting an agreeable or convenient form. The addition of soap to aloes or extract of jalap is cited by Dr. Paris, as an instance in which soap fulfils all three of these objects.

ADMINISTRATION.—The usual dose of soap, taken in a pilular form, is from grs. v. to 3ss. In cases of poisoning by the mineral acid, half a pint of strong solution of soap should be instantly administered.

1. LINIMENTUM SAPONIS, L. E. D.; Soap Liniment; Opodeldoc.
(Soap [Castile], 3ij.; Camphor, 3j.; Spirit of Rosemary, f3xj. L. D.—Castile Soap, 3iv.; Camphor, 3ij.; Volatile Oil of Rosemary, f3v.; Rectified Spirit, Oj. and f3xj. E.—The London College orders the camphor to be dissolved in the spirit, and the soap to be added afterwards: but the Edinburgh and Dublin Colleges direct the soap to be first dissolved, and the camphor [and oil, E.] subsequently. The Edinburgh College orders the mixture to be agitated briskly).—If made with hard soap, as directed by the Pharmacopoeias, this preparation is apt to solidify in cold weather. On this account druggists usually substitute common soft soap. The only objection to this is its unpleasing smell.—Soap liniment is used as a stimulant and dissective, as well as

1 Philosophical Transactions, xlvii. 43 & 472.
2 Pharmacologia.
CERATUM SAPONIS, L. *Soap Cerate* (Soap, 3x.; Wax, 3xijss.; Oile of Lead, powdered, 3xv.; Olive Oil, Oj.; Vinegar, Cong. j. the Vinegar with the Oxide of Lead, over a slow fire, carefully stirring them until they incorporate; then add the soap, and again in like manner, until all the moisture is evaporated; &c, with these mix the Wax first dissolved in the Oil).—The subate of lead formed by boiling the oxide of lead with vinegar, is imposed by the soap, the soda of which combines with the acetic, and the fatty acids with the oxide of lead. The wax and oil give consistence to the preparation. It is used as a mild dressing for scrofulous swellings, and other local inflammations, as well as for fractured limbs; in the latter case its principal use is as a mechanical support.

EMPLASTRUM SAPONIS, L. E. D.; *Soap Plaster*. (Soap, sliced; Litharge Plaster, lbijj. L. D.—Litharge Plaster, 3iv.; Gum ter, 5j.; Castile Soap, in shavings, 3j. Mix the soap with the fired plaster, and boil down to a proper consistence). The utility of soap here ordered is said by Mr. Scanlan\(^a\) to be too high by one half; as when prepared by the formula of the London Dublin pharmacopoeias it is quite pulverizable and falls into slabs. The Gum Plaster ordered by the Edinburgh College will obviate this defect. Boiling is unnecessary. This plaster, ad on leather, is used as a discutient and mechanical support.

EMPLASTRUM SAPONIS COMPOSITUM VEL ADHÆRENIS, D. *Adhesive Plaster*. (Soap Plaster, 3j.; Litharge Plaster with resin, 5ijj. a plaster, which should be melted and spread on linen).—This plaster is less apt to irritate than the litharge plaster with resin, owing to the much smaller proportion of resin. It is a very useful application to those abrasions of the skin which take place in consequence of long confinement to bed.\(^b\)

Order XIII. COMPOUNDS OF BARIUM.

I. BARYTÆ SULPHAS, E. D.—SULPHATE OF BARYTA.

History.—Native sulphate of baryta, called *Ponderous* or *Heavy* (Spathum ponderosum), was formerly confounded with sulphate of baryta. In 1774 Scheele discovered baryta, and in the year following Gahn analyzed heavy spar, and found that it was composed of uric acid and baryta.

Natural History.—It is peculiar to the mineral kingdom.

frequently occurs crystallized in forms belonging to the right prismatic

\(^b\) Ibid. p. 507.
system. The crystals are commonly tabular. The *Straight-lamellar Heavy Spar* forms splendid groups of crystals. It occurs in Cumberland, Durham, Wmorland, &c. The *Curved-lamellar Heavy Spar* is generally known as *Comb Barytes*. It is common in Scotland, Derbyshire, &c. *Compact* or *Beaten Baryta* occurs in Staffordshire and Derbyshire, and is called *Compact or Beaten Baryta*. The *Bolognese Spar*, from Monte Paterno, near Bologna, is *Radiated Sulphate of Baryta*.

Properties.—Sulphate of baryta has a density of from 4.4 to 4.67. It is inodorous and tasteless. When pure it is, in the pulverulent form, quite white. The form of its crystals has been already noticed.

"White or flesh-red; heavy; lamellar; brittle." *Ph. Ed.*

Characteristics.—Before the blowpipe it decrepitates, but is not easily fused. "This difficult fusibility constitutes a good mark of distinction between this mineral and sulphate of lime or of strontian." Ultimately it melts into a hard white enamel. It is insoluble in nitric acid. Reduced to powder, mixed with charcoal, and ignited, it is converted into sulphuret of barium, which, on the addition of hydrochloric acid, evolves sulphuretted hydrogen (see p. 469), and yields a solution of chloride of barium (See the tests for this at p. 573).

Composition.—Sulphate of baryta has the following composition:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baryta</td>
<td>1</td>
<td>77</td>
<td>65-8</td>
<td>65-613</td>
</tr>
<tr>
<td>Sulphuric Acid</td>
<td>1</td>
<td>40</td>
<td>34-2</td>
<td>34-337</td>
</tr>
<tr>
<td>Sulphate of Baryta</td>
<td>1</td>
<td>117</td>
<td>109-9</td>
<td>100-000</td>
</tr>
</tbody>
</table>

Physiological Effects.—According to the experiments of Orfila, it is inert.

Uses.—Sulphate of baryta, on account of its cheapness, is the usual source from whence the other salts of baryta are obtained; on this account it has been introduced into the Edinburgh and Dublin Pharmacopoeias. In its pure state it is sometimes employed as a pigment.

2. BARY'TE CAR'BONAS, L. E.—CARBONATE OF BARYTA.

History.—In 1783, Dr. Withering recognized the native carbonate, which has, in consequence, been called, after its discoverer, *Witherite*.

Natural History.—It is peculiar to the mineral kingdom.

Witherite occurs in the lead-mines of the North of England; as of Anglesey in Lancashire. *Baryta-Calcite*, a compound of carbonate of lime and carbonate of baryta, is met with at Alston Moor, Cumberland*.

1 *Vincenti* *Geologicae Generale*.

2 For some curious anecdotes respecting its discovery at this place, see Parkes's *Chemical Botany*, vol. i. p. 324, 2d edit. London, 1853.
CARBONATE OF BARYTA.

PREPARATION.—The native carbonate of baryta is sufficiently pure the preparation of the other barytic salts, and is the kind meant the London Pharmacopoeia.

Absolutely pure carbonate may be prepared by the addition of a alkaline carbonate to a solution of chloride of barium.

It may also be obtained by igniting (or boiling in water) finely-ground sulphate of baryta with three parts of carbonate of potash, carbonate of soda, and washing away the resulting alkaline sulphate.

PROPERTIES.—Native carbonate of baryta occurs massive, stalactic, and crystallized. Its crystals belong to the right prismatic form. The sp. gr. of this mineral is 4.3. Heated before the blowpipe it melts into a white enamel, with the evolution of much light and the loss of carbonic acid. Artificially prepared carbonate is a dense, tasteless, odourless powder. It is almost insoluble in both hot and cold water; 4,304 parts of cold, or 2,804 parts of hot water, being required to dissolve one part of carbonate. It is more soluble in carbonic acid water.

Characteristics.—It dissolves with effervescence in hydrochloric acid: the evolved gas is carbonic acid (see p. 334): the solution contains chloride of barium (see p. 573 for its characteristics).

COMPOSITION.—The following is the composition of this salt:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baryta</td>
<td>1</td>
<td>77</td>
<td>77.7</td>
<td>77.9</td>
<td>78</td>
</tr>
<tr>
<td>Carboonic Acid</td>
<td>1</td>
<td>22</td>
<td>22.2</td>
<td>22.1</td>
<td>22</td>
</tr>
<tr>
<td>Carbonate Baryta</td>
<td>1</td>
<td>99</td>
<td>99.9</td>
<td>100.0</td>
<td>100</td>
</tr>
</tbody>
</table>

PURITY.—It should be white, odourless, tasteless, and entirely soluble in hydrochloric or nitric acid, by which its freedom from sulphate of barium is demonstrated. Neither caustic ammonia nor hydro sulphuric acid should produce any precipitate or change of colour in the hydrochloric solution, by which the absence of alumina and metallic matter (lead or iron, or copper) may be inferred. If excess of sulphuric acid be added to this solution, the whole of the carbonate is thrown down in combination with the acid, and no precipitate should be occasioned by the subsequent addition of carbonate of soda, by which the absence of lime is shown.

Totally soluble in diluted hydrochloric acid. This solution on the addition of ammonia or hydro sulphuric acid, does not give any precipitate, and remains colourless; when more sulphuric acid is added than is necessary to saturation, nothing is afterwards thrown down by carbonate of soda.

Physiological Effects. a. On Vegetables.—Germination does not take place in carbonate of baryta 1.

b. On Animals.—Cows and fowls have been destroyed by swallowing the native carbonate 2. Orfila 3 says a drachm of the powder

1 Vogel, in De Candolle, Phys. Végét. p. 1311.
3 Toxicol. Générale.
killed a dog in six hours; but C. G. Gmelin gave two drachms to a dog; vomiting took place, and the animal was well the next day. A drachm killed a rabbit in three hours. When applied to a wound it has proved fatal. From the above experiments carbonate of baryta appears to act as an aero-narcotic poison: when swallowed it causes vomiting, inflames the alimentary tube, becomes absorbed and acts specifically on the nervous system, causing convulsions, paralysis, and insensibility.

On Man.—Only one case illustrating its action on the human subject has been published. A young woman swallowed half a tea-cupful of the powdered carbonate in two hours she had dimness of sight, double vision, ringing in the ears, pain in the head, throbbing in the temples, a sensation of distension and weight in the epigastrium, distension of stomach, and palpitation. Subsequently she had pains in the legs and knees, and cramps in the calves. A day or two after the cramps became more severe. The symptoms, slightly modified, continued for a long time.

Uses.—Carbonate of baryta is employed in the preparation of chloride of baryum. It is not administered as a medicine.

Antidote.—(Vide Baryt ChlOridum.)

3. BARIU CHLORIDUM, L.—CHLORIDE OF BARIUM.

(Baryta Muria, E. D.)

History.—This compound was discovered by Scheele in 1774. It was at first termed Terra Ponderosa Salita, and afterwards Muria of Barytes.

Preparation.—All the British Colleges give directions for preparation of this salt.

The formula of the London College is as follows:—Take of Carbonate of Barytes, broken into small pieces, 3x ; Hydrochloric Acid, Oss. ; Distilled Water, Oij. Mix the Acid with the Water, and add the Carbonate of Baryta gradually to them. Then, heat being applied, and the effervescence finished, strain and boil down the liquor, that crystals may be formed.

The Edinburgh College directs it to be prepared either in the same way as directed by the London College, or as follows:—Take of Sulphate of Baryta, 1b. ; Charcoal, in fine powder, 3iv. ; Pure Muriatic Acid, a sufficiency. Heat the sulphate to redness, reduce it to a fine powder, mix the charcoal with it thoroughly, and the mixture in a covered crucible for three hours at a low white heat. Remove the product, put it gradually into five pints of boiling water; boil for a few minutes; let it rest for a little over a vapour-bath; pour off the clear liquor, and filter it if necessary, keeping it hot. Pour three pints of boiling water over the residuum, and proceed as before. Unite the two liquids; if while they are still hot, or, if cooled, after heating them again, add pure muriatic acid gradually so long as effervescence is occasioned. In this process solutions ought to be as little exposed to the air as possible; and, in the last stage, the disengaged gas should be discharged by a proper tube into a chimney.

2 Campbell, quoted by Christison, Treatise on Poisons, 3d ed. p. 552.
or the ash-pit of a furnace. Strain the liquor, concentrate it, and set it aside to crystallize.

The Dublin College also prepares it from the sulphate. The process is as follows:—Take of Sulphate of baryta, ten parts; Charcoal, reduced to the most subtle powder, or of Lampblack, one part. Let the Sulphate of Baryta be roasted in the fire, and whilst red hot thrown into water; then let it be reduced to the finest powder, in the manner directed for Prepared Chalk. Let the powders, intimately mixed together, be passed into a crucible, and exposed to a strong heat until they become red hot, during four hours. Let the mass, when cold, be dissolved in a quantity of boiling distilled water, amounting to ten times the weight of Sulphate of Baryta, and let the liquor be filtered. To this add, avoiding the vapours, as much muriatic acid as may be sufficient to saturate the baryta. Then let the liquors be filtered, from which, by evaporation and cooling, let crystals be formed.

When hydrochloric acid and carbonate of baryta are mixed together, one equivalent or 37 parts of hydrochloric acid react on one equivalent or 99 parts of carbonate of baryta; and the products are one equivalent or 22 parts of carbonic acid, which escape; one equivalent or 9 parts of water, and one equivalent or 105 parts of chloride of barium.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Carbonate</td>
<td>1 eq. Carbonic Acid , 22</td>
<td>1 eq. Carbonic Acid , 22</td>
</tr>
<tr>
<td>Baryta , 99</td>
<td>1 eq. Baryta , 77</td>
<td>1 eq. Oxygen , 8</td>
</tr>
<tr>
<td>1 eq. Barium , 69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leq. Hydrochloric Acid , 37</td>
<td>1 eq. Hydrogen , 1</td>
<td>1 eq. Chlorine , 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 eq. Chloride Barium , 105</td>
</tr>
<tr>
<td></td>
<td>136</td>
<td>136</td>
</tr>
</tbody>
</table>

When a mixture of sulphate of baryta and charcoal is submitted to an intense heat, the carbon combines with the oxygen of the sulphuric acid and of the baryta, and forms carbonic oxide, which escapes. The residue digested in water forms a solution of sulphate of barium. On the addition of hydrochloric acid, hydro sulphuric acid gas is evolved, and the solution by evaporation yields crystals of chloride of barium.

Properties.—Chloride of barium crystallizes in right rhombic plates or tables, sometimes in double eight-sided pyramids, which belong to the right prismatic system. To the taste this salt is disagreeable and bitter. Its sp. gr. is 2.825. In dry warm air the crystals effloresce, but in the ordinary states of the air they undergo no change. When heated they decrystallize, lose their water of crystallization, and at a red heat fuse. At a white heat, according to Plinius, this salt volatilizes. It is soluble in both cold and hot water: 100 parts of water at 60° dissolve 43.5 of the crystallized salt, at 222°, 78 parts. It is slightly soluble in ordinary rectified spirit, but is said to be insoluble in pure alcohol.

Characteristics.—Nitrate of silver added to a solution of chloride of barium causes a white precipitate (chloride of silver) soluble in ammonia, but insoluble in nitric acid (see p. 226). As a barytic salt it is known by the following tests:—No precipitate is produced in a hot solution of chloride of barium by ammonia, hydrosulphuric
acid, or ferrocyanide of potassium. But the soluble sulphate, phosphate, and carbonates, occasion with chloride of barium which precipitates (which are respectively sulphate, phosphate, and carbonate of baryta). The sulphate of baryta is insoluble in nitric acid. Of barium communicates a greenish-yellow tint to flame.

Composition.—Crystallized chloride of barium has the following composition:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>1</td>
<td>89</td>
<td>36.09</td>
<td>83.33</td>
</tr>
<tr>
<td>Chlorine</td>
<td>1</td>
<td>36</td>
<td>29.26</td>
<td>14.68</td>
</tr>
<tr>
<td>Water</td>
<td>2</td>
<td>18</td>
<td>14.68</td>
<td>14.68</td>
</tr>
</tbody>
</table>

Crystallized Chloride Barium... 1 123 99.98 100.000

Purity.—The crystals should be colourless, neutral to test papers, permanent in the ordinary states of the air, (if they become red they are deliquescent, the presence of chloride of calcium, or chloride of strontium, may be suspected,) and their dilute aqueous solutions undergo no alteration of colour by the addition of ferrocyanide of potassium, hydrosulphuric acid, tincture of nutgalls, or caustic acid; by which the absence of metallic matter (as iron, lead, or copper) can be inferred. If excess of sulphuric acid be added, the filtration should be completely volatile when heated, and should give no precipitate on the addition of carbonate of soda, by which the presence of lime or magnesia is proved.

"Ninety grains in solution, acedulated with nitric acid, are not entirely precipitated by forty-nine [forty-four] grains of [anhydrous] sulphate of magnesia [or ninety grains of crystallized sulphate] Ph. Ed.

It is unnecessary to acidulate with nitric acid, as the pure chloride is perfectly soluble in simple water.

Physiological Effects. a. On Vegetables.—This salt is poisonous to plants.

b. On Animals.—The action of chloride of barium on animals, according to Sir B. Brodie, analogous to that of arsenic. It operates as an irritant. After absorption it affects the nervous system, the organs of circulation, and the stomach. Its action on the nervous system is manifested by staggering, convulsions, paralysis, and insensibility; on the circulating system, by palpitations, feeble and intermittent pulse; on the stomach, by vomiting, for application to a wound. According to Sir B. Brodie, the action on the stomach is slighter than that caused by arsenic.

g. On Man.—Administered in small doses, it at first produces very obvious effects. In some cases the appetite appears to be proved. Soon we observe an increased secretion of urine, tenesmus to sweating, and not unfrequently loose stools; so that it appears to operate as a liquefacient (see p. 194). With no other obvious

2. Phil. Trans. 1812, p. 205.
3. See also the experiments of Orfila in the Toxicol. Général, and of C. G. Gmelin in his Über die Wirkungen, &c.
CHLORIDE OF BARIUM.

than these, glandular swellings or enlargements sometimes become later and smaller: hence it is resolvent. If we persevere in the use of usually augmented doses, the appetite becomes disordered, nauseated vomiting, with not unfrequently gripping and purging, come on: ebriate state, with dry tongue, is produced, the nervous system becomes affected, and the patient complains of giddiness and muscular weakness. Sometimes, according to Schwilgué, under the continued use of it, catarrhal discharges from the eye, nose, ear, &c. take place; lamined or suppurating lymphatic glands evince signs of an augmented excitation, wounds assume a more healthy appearance, and, in some cases, cicatrizize.

In large medicinal doses very unpleasant effects have been occasionally observed from its use: such as vomiting, purging, sometimes impinging on the bladder, contracted pulse, giddiness, and great muscular debility, most amounting to paralysis, with trembling.

In excessive or poisonous doses (as an ounce) the affection of the nervous system is more obvious. In one recorded case the symptoms were convulsions, pain in the head, deafness, and, within an hour, death.

In conclusion, it may be observed, that considered medicinally, chloride of barium is most analogous to, though more powerful than, chloride of calcium, and is applicable in the same cases: regarded toxicologically, it may be compared to arsenic, but it acts less energetically on the stomach, and more rapidly on the nervous system, and causes death in a shorter time.

USES.—The principal medicinal use of chloride of barium is in the treatment of scrofula, for which it was introduced into medicine by Dr. Crawford in 1790, and was subsequently used by Hufeland with great benefit. The latter writer has employed it in all the forms of this disease, but especially in excited and inflamed conditions, particularly of delicate and sensible parts, as of the lungs and eyes), a painful ulcers, indurations which are disposed to inflame, and cutaneous affections. It has also been administered as a resolvent, deobstruent, or alterative, in some other diseases; for example, scirrhous and cancer, cutaneous diseases, bronchocele, &c. As a local application, a solution of it has been used as a wash in herpetic eruptions, and as a collyrium in scrofulous ophthalmia.

In pharmacy and chemistry it is extensively employed as a test for sulphuric acid and the sulphates.

ADMINISTRATION.—It is used in the form of aqueous solution.

ANTIDOTES.—The antidotes for the barytic salts are the sulphates, which form therewith an insoluble sulphate of baryta. Hence sulphate of soda, sulphate of magnesia, alum, or well or spring water which contains sulphate of lime) should be copiously administered.

* See an illustrative case in Medical Commentaries, xix. 367.
* Medical Commentaries, Dec. 3d, vol. iv. p. 43; and Medical Communications, vol. ii.
Of course the poison should be removed from the stomach as speedily as possible. To appease any unpleasant symptoms caused by the continued use of large medicinal doses, opiates may be employed.

Liquor Barihi Chloridi, L.; *Solutio Barytae Muriatis*, L.; *Barytae Muriatis Aqua*, D.; *Solution of Chloride of Barium.*—(Chloride of Barium, $3\text{f}.$; Distilled Water, $\text{f}5\text{d}.$; *L. E.*—Muriate of Baryta, *on part*; Distilled Water, *three parts*; D. Dissolve.) Dose of the solution of the London Pharmacopoeia, ten drops, gradually and cautiously increased until nausea or giddiness is experienced. It is employed also as a test for sulphuric acid or the sulphates. Common water, and all liquids containing sulphates, carbonates, or phosphates in solution, are incompatible with it.

4. **Barytae Nitras**, E.—**Nitrate of Baryta.**

History.—This salt was formed soon after the discovery of baryta.

Preparation.—It is to be prepared like the muriate of baryta [chloride of barium, see p. 572], substituting pure nitric acid for the muriatic acid.”—*Ph. Ed.*

Properties.—It crystallizes in octohedrons. It is soluble in water, but insoluble in alcohol. It is decomposed, with depositition, by a bright red heat, and furnishes pure baryta.

Characteristics.—As a nitrate, it is known by the tests for this class of salts already mentioned (see p. 289). The characters of the baryta salts have been before stated (see p. 573).

Composition.—The crystallized salt is anhydrous. Its composition is as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Berzelius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baryta</td>
<td>1</td>
<td>77</td>
<td>58.7</td>
</tr>
<tr>
<td>Nitric Acid</td>
<td>1</td>
<td>54</td>
<td>41.3</td>
</tr>
<tr>
<td>Nitrate of Baryta</td>
<td>1</td>
<td>131</td>
<td>100°0</td>
</tr>
</tbody>
</table>

Physiological Effects.—Similar to those of the chloride of barium.

Uses.—It is employed as a test. Fire-work makers use it to communicate a green tinge to flame.

Solutio Barytae Nitratitis, E. *Solution of Nitrate of Baryta.* (Nitrate of Baryta, 40 grs.; Distilled Water, 800 grs. Dissolve the salt in the water; and keep the solution in well-closed bottles. Employed as a test for sulphuric acid.

Order XIV.—Compounds of Calcium.

1. **Calx, L.E.**—**Lime.**

(Calx recens usque, D.)

History.—Lime, and the mode of obtaining it by burning the carbonate, were known in the most remote periods of antiquity.
LIME.

pocrates employed this earth in medicine. Dr. Black, in 1755, explained the nature of the process for making it. In 1808, they shewed that this substance was a metallic oxide, and hence it been termed the Oxide of Calcium. To distinguish it from the lime, it is called Caustic Lime, or Quicklime (Calx viva), turned Lime (Calx ustata).

ATURAL HISTORY.—It occurs in both kingdoms of nature.

IN THE INORGANISED KINGDOM.—In the mineral kingdom lime is found in form of carbonate, sulphate, phosphate, silicate, arseniate, tungstate, borate, titanate. Its base, calcium, occurs in combination with fluorine. “Lime is disseminated through sea water, though in small quantities; so that calcium is widely distributed in land and water, being principally abundant in the central parts of the fossiliferous rocks, and widely dispersed, in small quantities throughout the more ancient rocks, and in the waters of the ocean.”

IN THE ORGANISED KINGDOM.—In vegetables, lime (or calcium) is an inole ingredient, except, it is said, in the case of Salmo Kalis. It is found in combination with carbonic, sulphuric, phosphoric, nitric, and various organic acids (malic, malic, citric, tartaric, and kinic): calcium occurs in combination with me. In animals, lime is found principally as carbonate and phosphate.

SEPARATION.—For use in the arts lime is usually obtained bying the carbonate with coals, coke, and other fuel, in a kind of furnace called a kiln.

The British Colleges admit, as officinal, the lime of commerce; the London and Edinburgh Colleges also give directions for the preparation of pure lime.

London College orders of Chalk, lb. Break it into small pieces, and it in a very strong fire for an hour.

Edinburgh College orders White Marble, broken into small fragments, toed. “In a covered crucible at a full red heat for three hours, or till the lime is fully burned and suspended in water no longer effervesces on the addition of muriatic acid.”

The heat employed the carbonic acid of the carbonate is expelled. Well known that water or a current of air facilitates the escape of carbonic acid; their effect is probably mechanical, and is due to the diffusion of one gas or vapour in another. Iceland Spar or Carrara Marble yields the purest lime.

PROPERTIES.—Lime (commonly termed Quicklime) when pure is a greyish solid, having a sp. gr. of 2.3. A variety of comical lime has a grey colour, and is called grey lime. Lime has acid, alkaline taste, and reacts powerfully on vegetable colours as alkali. It is difficult of fusion: but by the oxy-hydrogen flame can be both fused and volatilized. Exposed to the air it attracts acid and carbonic acid. If a small portion of water be thrown on a part of it combines with the lime, and thereby causes the fusion of a considerable degree of heat, by which another portion

*Quoted from: [Thurstan, Research in Theor. Geol., p. 21.]
[Beauv., Phys. Veg., p. 382.]
[Engel and Ure's Chemist, 3d ed. p. 693; and Ure's Dict.]
of the water is vaporized. The lime swells up, cracks, and
sequently falls to powder: in this state it is called Slaked
(Calcis extineta), or the Hydrate of Lime (Calcis Hydras,
heat the water may be again expelled. Lime is slightly solu-
water. Its solubility in this liquid is very remarkable; col-
dissolving more than hot. According to Mr. Phillips,

A pint of Water at 32° dissolves 13.25 grains of lime.
Ditto 60° 11.6 ditto.
Ditto 212° 6.7 ditto.

So that water at 32° dissolves nearly twice as much lime as
at 212°.

Characteristics.—An aqueous solution of lime is recognize-
reddenring yellow turmeric paper, and rendering the infusion
babbage green; by the milkiness produced in it on the addi-
carbonic acid or a soluble carbonate, and by the white pre-
(Carbonate of lime) on the addition of a solution of oxalic acid
oxalate. Sulphuric acid affords no precipitate with lime.
Solutions of the calcareous salts are known by the follow-
ters:—The hydrosulphurets, and, if the solution be dilute,
phates, occasion neither a precipitate nor a change of color;
soluble carbonates, phosphates, and oxalates, produce white
ates. The calcareous salts (especially chloride of calcium)
orange tinge to the flame of alcohol.

Composition.—The following is the composition of lime
hydrate:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Berzelius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>1</td>
<td>20</td>
<td>71.43</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>8</td>
<td>28.57</td>
</tr>
<tr>
<td>Lime</td>
<td>1</td>
<td>28</td>
<td>29.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime</td>
<td>1</td>
</tr>
<tr>
<td>Water</td>
<td>1</td>
</tr>
</tbody>
</table>

Purity.—The lime used in the arts is never absolutely pure, as it
usually contains variable quantities of carbonate of lime, silie,
mica, and oxide of iron, and sometimes magnesia.

Water being added it [lime] cracks and falls to powder. Its other
are as hydrate of lime. Ph. L.

It is slaked by water: muriatic acid then dissolves it entirely, with
effervescence; and the solution does not precipitate with ammonia.

Physiological Effects. a. On Vegetables.—Quicklime is
sonous to plants. Notwithstanding this, however, it is used
manure, its efficacy depending on its decomposing and rend-
soluble the vegetable matter of the soil, during which it
attracts carbonic acid and becomes innocuous. 1

b. On Animals.—On dogs, Orfila 2 found that quicklime is
a caustic poison, but not very energetically; and that it occu-
d death by producing inflammation of the texture with which it
in contact.

1 Duvey, Agric. Chemistry.
2 Toricol, Générale.
On Man. — Quicklime, like the fixed alcalis, is a powerful charotic. Its use in promoting the decomposition of the bodies of persons who have died of contagious diseases, or on the field of battle, and its employment by the tanner to separate the cuticle and hair from skins, sufficiently establish its causticity. Its escharotic and irritant action is well seen in the ophthalmia produced by the ingestion of small particles of lime in the eye.

When applied to suppuring or mucous surfaces, lime water checks secretion, and produces dryness of the part: hence it is used a desiccant. In this it differs from the fixed alcalis.

When administered internally, it neutralizes the free acid of the stric juice, diminishes the secretions of the gastro-intestinal membrane, and thereby occasions thirst and constipation. It frequently gives rise to uneasiness of stomach, disordered digestion, and not infrequently to vomiting. After its absorption it increases the secretion of urine, and diminishes the excessive formation or deposition of uric acid and the urates. With this exception, it does not, as the alcalis, promote the action of the different secreting organs, but, on the other hand, diminishes it, and has in consequence been termed an astringent. But it does not possess the corrugating action of the astringent vegetables, or of many of the metallic salts: it is rather a drying remedy, or desiccant. In this respect lime differs from the alcalis, but is analogous to the oxide of zinc (see p. 216). Vogt\(^a\) considers it to be intermediate between the two. Weickard and others have ascribed to lime an antispasmodic property: and if this be true, its relation to zinc is still further proved.

A power of exciting and changing the mode of action of the absorbent vessels and glands has been ascribed to lime water, and probably has foundation. At any rate, under the use of it, glandular enlargements have become softer and smaller. In other words, it operates as a resolvent. Sundelin\(^b\) says that the excessive use of lime does it, as in the case of the alcalis, bring about a scrobutic diathesis, at a general drying and constriction, analogous to that caused by zinc.

Lime, in large doses, acts as a poison: the symptoms in one case are thirst, burning in the mouth, burning pain in the belly, obstinate constipation, and death in nine days\(^c\).

Uses. — Quicklime has been employed as a caustic, but alone is now rarely resorted to. It is sometimes applied in the form of Potassa in Calce (see p. 488), and is a constituent of the ordinary depilatories (see p. 218). As an antidote, lime water, in conjunction with milk, is recommended by Navière\(^d\) in poisoning by arsenious acid. In the absence of more appropriate antidotes, lime water may be administered in poisoning by the common mineral and oxalic acids. As a lithoniptic it possessed at one time considerable celebrity, partly from being one of the active ingredients of Miss Joanna Stephens’

\(^a\) Pharmakodynamik.
\(^b\) Heilmittelliche.
\(^c\) Christmas, Treatise on Poisons.
\(^d\) Contre-poison de l'Arceule, &c. 1777, quoted by Richter, Ausf. Arzneimittelliche.
Receipt for the Stone and Gravel, as well as from experiments and reports of professional men. As this lady had acquired no slight fame by her mode of treatment, a great desire was manifested to know the nature of her remedies, and she therefore offered to discover them on the payment of a suitable reward. A committee of professional men was appointed to examine the efficacy of her treatment, and her medicines were given to patients known to have calculi. The report made by the committee, as to the effects, was so favourable, that Parliament was induced to grant a reward of £5000, a notice of which appeared in the London Gazette of March 18, 1739. The essential parts of her remedies were lime (prepared by calcining egg-shells and snails), soap, and some aromatic bitters; viz. camomile flowers, sweet fennel, parsley, and burdock leaves, &c. That the patients submitted to treatment obtained relief by the remedies employed cannot, I think, be doubted, but no cure was effected; that is, no calculi was dissolved, for in the bladder of each of the four persons whose cure was certified by the trustees, the stone was found after their death. Notwithstanding the favourable reports to the contrary, it appears to me that no rational ground of hope can now be entertained that lime water is capable of dissolving urinary calculi in the kidneys or bladder: but there is abundant evidence to prove that patients afflicted with the uric acid diathesis have sometimes experienced extraordinary benefit from its use. Chevallier accounts for its efficacy in the treatment of gravel and stone by the circumstance of the combination of the lime with uric acid forming a very soluble salt, viz. urate of lime; and he even thinks that lime water may be useful in phosphatic calculi, either by depriving them of a portion of the uric acid which they contain, and thus rendering them less dense, by decomposing the ammoniacal salt which enters into the composition of some, or by acting on the animal matter which holds the molecules of these calculi together. As an antacid in dyspepsia, accompanied by acidity of stomach, it is sometimes useful. "Mixed with an equal measure of milk, which completely covers its offensive taste, it is one of the best remedies in our possession for nausea and vomiting dependent on irritability of stomach. We have found a diet exclusively of lime water and milk, to be more effectual than any other plan of treatment in dyspepsia, accompanied with vomiting of food. In this case one part of the solution to two or three of milk, it usually sufficient." In the dyspepsia of gouty and rheumatic subjects, which is usually accompanied with a copious secretion of uric acid by the kidneys, I have seen lime water serviceable. As a desiccant or astringent, it is useful as a wash for ulcers attended with excessive secretion. In some scrofulous ulcers in which I have
employed it, its power of checking secretion has been most marked.
Diarrhoea, when the mucous discharge is great, and the inflammatory
symptoms have subsided, lime water is useful as an astringent.
As an injection in leucorrhoea and gleet it sometimes succeeds where
her remedies have failed. The internal use of lime water has also
been serviceable in checking secretion from various other parts, as
from the bronchial membranes, the bladder, &c.
Besides the above, lime water has been employed for various other
purposes. Thus, as an antispasmodic, in hypochondriasis and hysteria,
for the habit of excessive sensibility of the nervous system, it has been
and useful by Weickard. It has also been given as an alterative
in glandular enlargements and venereal affections, and to promote the
position of bone earth in diseases accompanied with a deficiency of
substance. In skin diseases (tinea capitis, scabies, prurigo, &c.)
has been applied as a wash.

Administration.—From half an ounce to three or four ounces may
be taken three times a day. As already mentioned, it may be con-
nveniently administered in combination with milk.

1. Liquor Calcis, L.; Aqua Calcis, E. D.; Lime Water (Lime,
Water; Distilled Water, Oxij). Upon the lime, first slaked with a little
water, pour the remaining water, and shake them together; then im-
mediately cover the vessel, and set it by for three hours: afterwards,
keep the solution, with the remaining lime, in stoppered glass vessels;
and, when it is to be used, take from the clear solution.—The Edin-
burgh College uses Lime one part, and Water twenty parts.—The
Dublin College employs of fresh-burnt Lime one part, and Water
forty-one parts; one of which is to be hot, and added just to slake
the lime, the other is to be cold, and is added afterwards). Lime
water is colourless and transparent; but, by exposure to the air, be-
comes covered with a film of carbonate of lime, which is deposited
at the sides and bottom of the vessel, and is succeeded by another.
Hence lime water should be preserved in well-stoppered vessels with
some undissolved lime, and, when used, the clear liquor poured off.
Its taste is unpleasant and alkaline, and it has an alkaline re-action
in vegetable colours. The dose of lime water is from 13ss. to 33ij., or
invi. three times a day. It may be conveniently administered in milk.

2. Linimentum Calcis, E. D.; Liniment of Lime; Carron Oil.—
Linseed Oil [Olive Oil, D.], Lime Water, of each equal measures;
Mix and agitate them together). Linseed and olive oils are each
imposed of oleic and margaric acids and glycerine. When mixed
with lime water an oleo-margarate of lime (calcareous soap) is formed.
It has long been celebrated as an application to burns and scalds,
and is employed for this purpose at the Carron Ironworks—hence one
its names. Though the Dublin College orders olive oil, it is almost

* Richter's Ausg. Arzneim. iii. 585.
invariably prepared with linseed oil. Turpentine is sometimes advantageously added to it.

2. CALCIUM CHLORIDUM, L.—CHLORIDE OF CALCIUM.

(Calcis Murias, E. D.)

History.—This salt, obtained in the decomposition of sal ammoniac by lime, was known, according to Dulk, in the fifteenth century to the two Hollands, who called it Fixed Sal Ammoniac (Sal Ammoniacum fixum). Its composition was not understood until the eighteenth century, when it was ascertained by Bergman, Kirsch and Wenzel. It is commonly termed Muriate of Lime.

Natural History.—It occurs in both kingdoms of nature.

a. In the Inorganic Kingdom.—It is found, in small quantity, in many mineral and well waters.

b. In the Organic Kingdom.—It has been detected, in a few instances, vegetables. Thus Pallas recognised it in the root of Aconitum Lycoctonum.

Preparation.—The following are the methods of preparing it:

The London College orders it to be obtained as follows:—Take of Chalk, 5 parts; Hydrochloric Acid, Distilled Water, of each 3 parts. Mix the acid with the water and to these gradually add the chalk to saturation. Then, the effervescence being finished, strain; evaporate the liquor until the salt is dried. Put this into a crucible, and, having melted it in the fire, pour it out upon a flat clean stone. Lastly, when it is cold, break it into small pieces, and keep it in a well-closed vessel.

The Edinburgh College orders of White Marble, in fragments, 5 parts; Muriatic Acid (commercial) and Water, of each, 3 parts. Mix the acid and water; add the marble by degrees; and, when the effervescence is over, add a little marble fine powder till the liquid no longer reddens limus. Filter, and concentrate one-half. Put the remaining fluid in a cold place to crystallize. Preserve the crystals in a well-closed bottle. More crystals will be obtained by concentrating the mother liquor.

Chloride of calcium is a secondary product in the manufacture of the hydrated sesquicarbonate of ammonia (see p. 309), as well as solution of ammonia (see p. 297); and from this source it is usually procured.

The Dublin College orders of the liquor which remains after the distillation of the water of caustic ammonia any requisite quantity. Filter the liquor, and expose it in an open vessel to heat until the muriate of lime becomes perfectly dry. Let it be preserved in a vessel completely closed.

In this process one equivalent or 37 parts of hydrochloric acid act on one equivalent or 50 parts of carbonate of lime, and produces one equivalent or 22 parts of carbonic acid, which escape in a gaseous form, one equivalent or 9 parts of water, and one equivalent or 37 parts of chloride of calcium.

* Die Praxis. Pharm. übersetzt, etc. x. 233, 2. Aufl. Leipzig, 1832.
By heat the crystals of this salt lose their water, and the anhydrous chloride of calcium is obtained.

Properties.—Anhydrous chloride of calcium is a white translucent solid, of a crystalline texture. Its taste is bitter and acrid saline. It is fusible, but not volatile. It deliquesces in the air, and becomes what has been called Oil of Lime (Oleum Calcijs). When put into water it evolves heat, and readily dissolves in a quarter of its weight of this fluid at 60° F., or in a much less quantity of hot water. By evaporation the solution yields striated crystals (Hydrated Chloride of Calcium), having the form of regular six-sided prisms, and which, therefore, belong to the rhombohedral system. These crystals undergo the wetary fusion when heated, are deliquescent, readily dissolve in water with the production of great cold, and, when mixed with ice or snow, form a powerful frigorific mixture. Both anhydrous and hydrous chloride of calcium are readily soluble in alcohol.

Characteristics.—This salt is known to be a chloride by the tests for this class of salts before mentioned (p. 226). The nature of its base is ascertained by the tests for lime (p. 578).

Composition.—The composition of this salt is as follows:

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Ure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>1</td>
<td>20</td>
<td>33.71</td>
<td>36.7</td>
</tr>
<tr>
<td>Chlorine</td>
<td>1</td>
<td>35</td>
<td>64.29</td>
<td>63.3</td>
</tr>
<tr>
<td>Chloride Calcium</td>
<td>1</td>
<td>56</td>
<td>99.99</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Purity.—Chloride of calcium, when pure, is colourless, evolves no ammonia when mixed with lime, and undergoes no change of colour or gives any precipitate with caustic ammonia, chloride of barium, or hydrosulphuric acid.

The fused chloride is free from colour; slightly translucent; hard and friable; totally soluble in water; the solution gives no precipitate on the addition of ammonia or chloride of barium, nor, when diluted with much water, with ferrocyanide of potassium. *Ph. Lond.*

The crystallized salt is "extremely deliquescent. A solution of 76 grains in one fluidounce of distilled water, precipitated by 49 grains of oxalate of ammonia, remains precipitable by more of the test." *Ph. Ed.*

Physiological Effects.

a. On Animals.—Three drachms and a half given to a dog caused quick breathing and snorting, with convulsive but vain efforts to vomit, a profuse secretion of saliva, and death in six hours. The mucous membrane of the stomach and small intestines was very blood-shot, and in many places almost black, and converted into a gelatinous mass.

b. On Man.—In small doses it promotes the secretions of mucus,
urine, and perspiration. It operates, therefore, as a liquefactive (s. p. 194). By continued use it appears to exercise a specific influence over the lymphatic vessels and glands, the activity of which it increases; for under its use glandular and other swellings and inducements have become smaller and softer, and ultimately disappear altogether. In larger doses it excites nausea, vomiting, and sometimes purging; causes tenderness of the praecordium, quickens the pulse, and occasions faintness, weakness, anxiety, trembling, and giddiness. In excessive doses the disorder of the nervous system manifested by failure and trembling of the limbs, giddiness, and contracted pulse, cold sweats, convulsions, paralysis, insensibility, and death. Considered in reference to other medicines, it has the closest resemblance in its operation to chloride of barium. Hufeland says its operation is more irritant than the last mentioned substance and that its use requires greater caution,—a statement which is directly opposed to the experience of Dr. Wood, and of most other practitioners.

Uses.—It has been principally employed in scrofulous affections, especially those attended with glandular enlargements. Beddoes gave it to nearly a hundred patients, and he tells us there are few of the common forms of scrofula in which he has not had successful experience of it. Dr. Wood tried it on an extensive scale, and with decided benefit. It has been found most efficacious in the treatment of tuberculos mesenterica, checking purging, diminishing the hectic fever, allaying the inordinate appetite, and, in many cases, ultimately restoring the patient to perfect health. It has also been recommended in chronic arthritic complaints, in bronchocele, in some chronic affections of the brain (as paralysis), and in other cases where the object was to excite the action of the absorbents.

Occasionally, though rarely, it has been employed externally. Thus a bath containing two or three ounces of it, either alone or with chloride of sodium, has been used in scrofula.

In pharmacy fused chloride of calcium is used in the rectification of spirit (p. 349), on account of its strong affinity for water; and in chemistry it is employed in the drying of gases. In the crystallized state, mixed with half or two-thirds of its weight of ice or snow, it is used for producing an intense degree of cold. Its solution is used as a saline water bath for chemical purposes.

Administration.—Chloride of calcium is always used medicinally in the form of aqueous solution.

Liquor Calci Chloridi, L. Calcis Muriatis Solutio, E.; Calcis Muriatis Aqua, D. (Chloride of Calcium [fused], 3iv.; Distilled Water, f3xij). L.—Muriate of Lime [crystals], 5vij; Water, f3xij. E.—

* Vogt, Pharmakodynamik.
* Quoted by Wibmer, Die Wirkung, &c.
* Vogt, op. supradix.
Hypochlorite of Lime. [dry], two parts; Distilled Water, seven parts.

Dissolve and (if necessary) strain. Dose from m\text{x}l. or ml. to ml., or gradually increased until nausea is produced. The uses of have been above noticed.

3. CAL'CIS HYPOCHLORIS.—HYPOCHLORITE OF LIME.
(Calx Chlorinata, L. B.)

History.—In 1798, Mr. Tennant, of Glasgow, took out a patent for the manufacture of this substance as a bleaching powder, which in consequence was long known as Tennant's Bleaching Powder. According to the views entertained of its composition it has been successively termed Oxymuriate of Lime, Chloride of Lime or Chloruret of the Oxide of Calcium, Chlorite of Lime (Berzelius), and Chlorinated Lime.

Preparation.—Chloride of lime is prepared on a very large scale or the use of bleachers. The London College, however, has thought it to give the following directions for its preparation:

Take of Hydrate of Lime, l;j.; Chlorine as much as may be sufficient; pass chlorine to the Lime, spread in a proper vessel, until it is saturated. Chlorine very readily evolved from Hydrochloric Acid added to Binoxide of Manganese, with a gentle heat (see p. 225).

On the large scale the gas is generated in large, nearly spherical, leaden vessels heated by steam. The ingredients employed are oxide of manganese, chloride of sodium, and diluted sulphuric acid. The gas is washed by passing it through water, and is then conveyed by a leaden tube into the combination room, where the laked lime is placed in shelves or trays, piled over one another to the height of five or six feet, cross bars below each, keeping them about an inch asunder, that the gas may have free room to circulate. The combination room is built of siliceous sandstone, and is furnished with windows, to allow the operator to judge how the impregnation is progressing. Four days are usually required, at the ordinary rate of working, for making good marketable chloride of lime. At Mr. Tennant's manufacture at Glasgow, the lime is placed in shallow boxes on the floor of the combination chambers, and is agitated once during the process by iron rakes; the handles of which pass through boxes filled with lime, which serves as a valve. The supply of chlorine is then shut off, and a man enters the chambers and rakes the limever. The chambers are then closed, and more chlorine introduced, until the lime is saturated.

Ure, Quart. Journ. of Science, xlii. 1.
Apparatus for the Manufacture of Chloride of Lime.

Fig. 99.—A. Iron jacket for heating the retort by steam.
B. Lead retort for generating chlorine.
C. Aperture for the introduction of manganese and common salt.
D. Arm of the agitator.
E. Gas discharge pipe.
F. Syphon funnel for the introduction of the sulphuric acid.
G. Discharge pipe for drawing off the residuum of the operation.
H. Steam pipe.
I. Combination chamber, divided into four compartments, each having two doors.
K, K. Doors, each having two windows.
L, L. Handles of the rakes passing through boxes.

Fig. 100.—Section of the Retort.
B. The agitator. The explanation of the other letters is the same as for fig. 99.

Theory of the Process.—Chemists are by no means agreed as to the constitution of the substance called chloride of lime, and, therefore, as to the nature of the changes which occur during its preparation.

α. Some regard it as a compound of chlorine, water, and lime. On this view, when chlorine gas comes into contact with slaked lime, the two substances are supposed to enter into combination. An objection to this view is, that the odour of chloride of lime is that of hypochlorous acid, and not that of mere chlorine.

β. Another view, supported by the discoveries of Balard, is, that chloride of lime is a mixture or compound of hypochlorite of lime and chloride of calcium. Its formation may, then, be explained as follows:—When chlorine comes into contact with slaked lime, a portion of the latter is decomposed: its base (calcium) combines with chlorine, to form chloride of calcium, while its oxygen unites with another portion of chlorine and forms hypochlorous acid, which combines with some undecomposed lime, to form hypochlorite of lime.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Chlorine</td>
<td>1 eq. Chlorine</td>
<td>1 eq. Chloride Calcium</td>
</tr>
<tr>
<td>1 eq. Chlorine 36</td>
<td>1 eq. Chlorine 36</td>
<td>1 eq. Chlorine Calcium 20</td>
</tr>
<tr>
<td>4 eq. Hydrate Lime</td>
<td>1 eq. Calcium 20</td>
<td>1 eq. Hypochl. Acid 44</td>
</tr>
<tr>
<td>3 eq. Lime 84</td>
<td>1 eq. Oxygen</td>
<td>1 eq. Tris-hypochlorite lime</td>
</tr>
<tr>
<td>4 eq. Water 36</td>
<td>1 eq. Water</td>
<td>4 eq. Water 36</td>
</tr>
</tbody>
</table>

The odour of hypochlorous acid which chloride of lime possesses, strongly supports this view. On the other hand it may be objected, that if chloride of lime contained so large a quantity of chloride of calcium, it would be deliquescent. But to this it may be replied, that the chloride of calcium may be in chemical combination with the hypochlorite of lime.

More recently, Millon has discovered some new facts which asserts are inexplicable on the view just explained; and he suggests that chloride of lime is a substance analogous to peroxide of chlorine, but in which one equivalent of the oxygen of the peroxide is placed by an equivalent of chlorine. His view, which Professor Rham regards as "simpler" than the preceding, is supported by the fact that many of the precipitates formed in metallic solutions by solution of chloride of lime, are composed of one equivalent of the metallic oxide and one equivalent of chlorine.

Properties.—Chloride of lime, as met with in commerce, is a white or brownish white powder, having a feeble odour of hypochlorous acid, and a strong bitter and acid taste. Exposed to the air it attracts carbonic acid, evolves chlorine, and is thereby converted into mixture of carbonate of lime and chloride of calcium, the latter of which deliquesces. Digested in water the chloride or hypochlorite of lime dissolves, as well as any chloride of calcium present, and a small portion of caustic lime: any carbonate and the excess of caustic lime remain undissolved. The solution, which has a slight yellow colour, first reacts on vegetable colours as an alkali, and afterwards bleaches them, especially if an acid be added. Its bleaching and disinfecting properties depend either on the oxidisation or on the dehydrogenisation of the colouring or infectious matter: if an acid be employed in the process, chlorine is evolved, which produces oxygen at the expense of the elements of water: if, on the contrary, no acid be used, Lalande supposes that both the hypochlorous acid and lime give out their oxygen, and thereby become chloride of calcium. When chloride of lime is heated it evolves first chlorine and subsequently oxygen.

Characteristics.—Its smell and bleaching properties are most characteristic of it. The acids (as sulphuric or hydrochloric) separate chlorine from it. An aqueous solution of it throws down white precipitates with nitrate of silver, the alkaline carbonates, and with oxalic acid or the oxalates. The supernatant liquor from which chloride of silver has been thrown down by nitrate of silver possesses a decolorizing property.

Composition.—The quantity of chlorine absorbed by slaked lime varies with the pressure, the degree of exposure, and the quantity of water present. Hence the substance sold as chloride of lime is not a uniform product. Moreover, it would appear from Dr. Ure's expe-
riment, not to have any definite atomic constitution. The following table contains the most important results of his experiments:

<table>
<thead>
<tr>
<th>Synthesis</th>
<th>1st Analysis</th>
<th>2nd Analysis</th>
<th>Mean</th>
<th>Commercial Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>30:19</td>
<td>30:00</td>
<td>30:20</td>
<td></td>
</tr>
<tr>
<td>Lime</td>
<td>40:00</td>
<td>40:07</td>
<td>40:07</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>14:00</td>
<td>13:26</td>
<td>14:28</td>
<td></td>
</tr>
<tr>
<td>Chlor of Lime 100:00</td>
<td>100:00</td>
<td>100:00</td>
<td>100:00</td>
<td>100:00</td>
</tr>
</tbody>
</table>

Mr. Brande and Mr. Phillips give the following as the atomic proportions of chlorine, lime, and water, in chloride of lime of the best quality:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>1</td>
<td>35</td>
<td>32:73</td>
<td>Bihydrated Chloride of Lime 1</td>
<td>1</td>
</tr>
<tr>
<td>Lime</td>
<td>2</td>
<td>56</td>
<td>50:91</td>
<td>Lime</td>
<td>1</td>
</tr>
<tr>
<td>Water</td>
<td>2</td>
<td>18</td>
<td>16:36</td>
<td>Chloride of Lime</td>
<td>1</td>
</tr>
</tbody>
</table>

"When water is added to this, the chloride of lime dissolves, leaving nearly all the lime insoluble." (Phillips.)

If, with Berzelius and Balard, we regard bleaching powder as constituted of hypochlorite of lime, chloride of calcium, and water, its composition, corresponding with the proportions assumed by Mr. Brande and Mr. Phillips, will be as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Ct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichloride of Lime</td>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td>Chloride Calcium</td>
<td>1</td>
<td>56</td>
</tr>
<tr>
<td>Water</td>
<td>4</td>
<td>56</td>
</tr>
<tr>
<td>Chloride of Lime</td>
<td>1</td>
<td>220</td>
</tr>
</tbody>
</table>

When bleaching powder is digested in water, a bleaching liquor is obtained, while a portion of lime remains undissolved. The trichloride is supposed to be decomposed by the action of water; and to deposit two equivalents of lime, while one equivalent of chloride of calcium, and one equivalent of neutral hypochlorite of lime are dissolved.

Chlorometry.—In order to estimate the bleaching power of the chloride of lime of commerce, various chlorometrical methods have been devised. One method is to determine the quantity of chlorine gas which is given out by a certain weight of chloride on the addition of liquid hydrochloric acid. The liquid may be brought into con

* Manual of Chemistry, 5th ed. p. 675. "Upon the whole," says Mr. Brande, "it is not improbable that bleaching powder consists of a chloride of lime, containing one proportional of chlorate and one of lime, mixed with a varying proportion of hydrate of lime."
* Ure, Quarterly Journal of Science, vol. xiii.
tact with the chloride placed over mercury, contained in a graduated syphon-tube, closed at one end, (Fig. 101, A). When the gas is evolved, the mercury flows out, by the orifice B, into a basin ready to receive it. The resulting film of chloride of calcium protects the surface of the metal from the action of the chlorine. If carbonic acid be suspected, the mercury by agitation absorbs the chlorine, leaving the carbonic acid. Ten grains of bleaching powder yield from three to four cubic inches of chlorine, equivalent to twenty or thirty per cent. by weight.

Another chlorometrical method is to ascertain the bleaching power of the chloride on a standard solution of indigo; but it is not susceptible of accuracy.

A chlorometrical method, which Professor Graham™ considers to be entitled to preference, is founded on the fact, that chloride of lime converts sulphate of the protoxide of iron into sulphate of the peroxide. Red ferroprussiate of potash (ferrosesquioxide of potassium) is employed to ascertain the change in the degree of the oxidation of the iron, since it gives a blue precipitate with the protosalts, but not with the persalts, of this metal. A quantity of solution of chloride of lime capable of peroxidising 78 grains of sulphate of iron, contains 10 grains of chlorine.

The Edinburgh College gives the following characteristics of good chloride of lime:

"Pale grayish-white; dry: 50 grains are nearly all soluble in two fluidounces of water, forming a solution of the density 1027, and of which 100 measures, treated with an excess of oxalic acid, give off much chlorine, and if then boiled and allowed to rest twenty-four hours, yield a precipitate which occupies nineteen measures of the liquid."

The precipitate produced in the solution by oxalic acid is xalate of lime, and, therefore, this process is one for the detection of lime (or calcium).

The London College merely observes that chlorinated lime—

"Dissolves in dilute hydrochloric acid, emitting chlorine."

Neither College, therefore, gives directions for estimating the real value of chloride of lime.

Physiological Effects.—The local action of chloride of lime is that of an irritant and caustic. A solution of it applied to suppurating and mucous surfaces is a powerful desiccant, probably in part at least from the uncombined lime in solution. When the secretions are excessive and extremely fetid, it not only diminishes their quantity, but much improves their quality; so that, considered in reference to suppurating and mucous surfaces, it is not only a desiccant, but, in morbid conditions of these parts, a promoter of..."
of healthy action. Applied in the form of ointment (composing a drachm of chloride to an ounce of fatty matter) to scrofulous swellings, Cima found that it provoked suppurations, caused redness, promoted the suppurating process, and dispersed the surrounding hardness.

Taken internally, in small doses (as from 3 to 6 grains, dissolved in one or two ounces of water), it sometimes causes pain and heat to the stomach, and occasionally, according to Cima, purging. Undertaken with care, use of it, hard and enlarged absorbent glands have been softer and smaller, from which circumstance it has been supposed to exercise a specific influence over, and to promote the healthy of, the lymphatic system. During its employment, Cima says not find it necessary to give purgatives. Dr. Reid gave it epidemic fever, which raged in Ireland in 1826, and he tells it rendered the tongue cleaner, abated the delirium, and preserved the cutaneous functions. In dysentery it soon put a stop bloody evacuations, the umbilical pain, and the tenesmus.

I am not acquainted with any facts respecting the effects of chloride of lime in large or poisonous doses. Analogy would lead expect that it would produce the combined effects of a caustic agent specifically affecting the nervous system.

Uses.—The chlorides (hypochlorites) of lime and soda are resively employed as disinfectants and antiseptics. I have a stated (p. 228) that chlorine gas stands unrivalled for its power destroying putrid odours and checking putrefaction, and where inhabited chambers or buildings are to be purified, fumigation this gas should be adopted. But its powerful action on the organs respiration precludes its use in inhabited places; and, in such the alkaline chlorides (chloride of lime, on account of its cheapness) are to be substituted. When these substances are in contact with organic matter, it is supposed the hypochlorite gives out oxygen and is converted into a metallic chloride; the oxygen being the active disinfecting and antiseptic agent; or it may act by abstraction of hydrogen. When, however, the solution of the chloride (hypochlorite) is exposed to the air, carbonic acid is attracted by the lime hypochlorous acid set free, which immediately reacts on any organic matter present. Hence these chlorides (hypochlorites), when exposed to the air, evolve chlorine so slowly, and in such moderate quantities, as to not produce any noxious effects, though their action on organic matters is very powerful. Their most obvious effect is that of destroying the unpleasant odour of putrid matter. Their action on hydrochloric, sulphuric acid, ammonia, and hydrosulphate of ammonia (substances evolved by decomposing animal matters) can be readily and demonstrated. Other odorous principles given out by putrid matter are, by the experience of most persons, admitted to be destroy

* Trans. of the Associate. of Fellows and Licentiates of the College of Physicians in Ireland 1828.
HYPHOCHLORITE OF LIME.

The alkaline chlorides, though Piory has asserted, they are only
overpowered by the stronger smell of the chlorine.

The alkaline chlorides (hypochlorites) possess another valuable
property—that of stopping or checking the putrefactive process; and
hence they are called antiseptics.

These two properties, viz. that of destroying offensive odours and
that of preventing putrefaction, render the alkaline chlorides most
valuable agents to the medical practitioner. We apply them to gan-
renous parts, to ulcers of all kinds attended with foul secretions, to
compound fractures accompanied with offensive discharges, to the
uterus in various diseases of this viscus attended with fetid evacu-
ations: in a word, we apply them in all cases accompanied with
offensive and fetid odours. As I have before remarked, with respect
to chloride of soda (p. 541), their efficacy is not confined to an action
on dead parts, or on the discharges from wounds and ulcers; they
are of the greatest benefit to living parts, in which they induce more
healthy action, and the consequent secretion of less offensive matters.
Furthermore, in the sick chamber, many other occasions present
themselves on which the power of the chlorides to destroy offensive
odours will be found of the highest value: as, to counteract the un-
pleasant smell of dressings or bandages, of the urine in various dis-

cases of the bladder, of the alvine evacuations, &c. In typhus fever

a handkerchief, or piece of calico, dipped in a weak solution of an
alkaline chloride, and suspended in the sick chamber, will be often
of considerable service both to the patient and the attendants.

The power of the chlorides (hypochlorites) to destroy infection or
contagion, and to prevent the propagation of epidemic diseases, is
tless obviously and satisfactorily ascertained than their capability of
destroying odour. Various statements have been made by Labar-
caque, and others, in order to prove the disinfecting power of the
chlorides with respect to typhus and other infectious fevers.

But, without denying the utility of these agents in destroying
bad smells in the sick chamber, and in promoting the recovery
of the patient, by their influence over the general system, I may
observe that I have met with no facts which are satisfactory to my
mind as to the chemical powers of the chlorides to destroy the in-
fec-
tious matter of fever. Nor am I convinced by the experiments made
by Pariset and his colleagues, that these medicines are preservative
against the plague. Six individuals clothed themselves with impunity
in the garments of men who had died of plague, but which gar-
ments had been plunged for six hours in a solution of chloride of soda.

But, as Bouillaum has truly observed, the experiments, to be decisive,
should have been made with clothing which had already communic-
ated the plague to the wearers of it. In Moscow, chlorine was
extensively tried and found unavailing, nay, apparently injurious, in cholera. "At the time," says Dr. Albers, "that the cholera hospital was filled with clouds of chlorine, then it was that the greatest numbers of the attendants were attacked." Some years ago chlorine was tried at the Small Pox Hospital, with a view of arresting the progress of erysipelas: all offensive smell, as usual, was overcome, but the power of communicating the disease remained behind. Bousquet mixed equal parts of a solution of chloride of soda and the vaccine lymph and found that the latter still possessed the power of producing the usual cow-pock vesicle. These are a few of the facts which are adverse to the opinion that chloride of lime or the alkaline chlorides possess the power of preventing the propagation of infectious, contagious, or epidemic diseases. In opposition to them there are but few positive facts to be adduced. Coster found that a solution of chloride of soda destroyed the infectious properties of the syphilitic poison, and of the poison of rabid animals. The statements of Labarraque and others as to the preservative powers of the chlorides in typhus, measles, &c. are too loose and general to enable us to attach much value to them.

Considered in reference to medical police, the power of the alkaline chlorides (hypochlorites) to destroy putrid odours and prevent putrefaction is of vast importance. Thus chloride of lime may be employed to prevent the putrefaction of corpses previously to interment, to destroy the odour of exhumed bodies during medico-legal investigations, to destroy bad smells, and prevent putrefaction in dissecting-rooms and workshops in which animal substances are employed (as cat-gut manufactories), to destroy the unpleasant odour from privies, sewers, drains, wells, docks, &c., to disinfect ships, hospitals, prisons, stables, &c. The various modes of applying it will readily suggest themselves. For disinfecting corpses, a sheet should be soaked in a powerful solution of chloride, and then wrapped around the body. For destroying the smell of dissecting-rooms, a solution of the chloride may be applied by means of a garden watering-pot. When it is considered desirable to cause the rapid evolution of chlorine gas, hydrochloric acid may be added to chloride of lime.

Chloride of lime (or chloride of soda) is the best antidote in poisoning by hydro sulphuric acid, hydro sulphuret of ammonia, sulphuret of potassium, and hydrocyanic acid. It decomposes and renders them inert. A solution should be administered by the stomach, and a sponge or handkerchief soaked in the solution, held near the nose, so that the vapour may be inspired. It was by breathing air impregnated with the vapour arising from chloride of lime, that the late Mr. Roberts (the inventor of the miner's improved safety lamp) was enabled to enter and traverse with safety the sewer of the Bastile, which had not been cleansed for 37 years, and which was impregnated.

* See also Dierbach, Die neue Entd. in d. Med. l. 411, 2nd Ausg. 1837.
* Alcock's Essay, pp. 56, 58, &c.
hydrosulphuric acid. If a person be required to enter a place
ected of containing hydrosulphuric acid, a handkerchief moist-
with a solution of chloride of lime should be applied to the mouth
ositis, so that the inspired air may be purified before it passes
the lungs.

solution of chloride of lime has been used as a wash in some skin
ases. Derwins used a strong solution with great success in
ies. This mode of curing itch is much cleaner and more agree-
our the ordinary method by sulphur frictions. It has likewise
found successful by Fantonetti in tinea capitis: where the dis-
ges is copious, washes of the chloride may be used with advan-
. In burns and scalds, Lisfranc employed lotions of chloride of
either immediately after the accident, or subsequent to the appli-
on of emollient poultices.
olutions of chloride of lime have been employed with great benefit
phthalamia. Dr. Varlez, surgeon to the military hospital at
nces, states that in 400 cases it never disappointed him once.
ethrie has also reported favourably of it in three cases; as have
wise MM. Colson, Delatte, and Raynaud. The solution used by
Varlez was composed of from a scruple to three or four drachms
chloride, and an ounce of water. It was dropped into the eye or
cted by a syringe, or applied by means of a camel’s hair pencil.
ourse other means (bleeding, purging, cold, and, in chronic cases,
ers) should be conjoined. I have found a weak solution of the
ride very successful in the purulent ophthalmia of infants, an-
proposed to apply a solution of chloride of lime to prevent
pitting from small-pox. The fully maturated pustules are to be
ed and washed with a weak solution of this salt: desiccation
place very promptly, and no marks or pits are said to be left
nd.
chloride of lime may be employed internally in the same cases
chloride of soda is administered (p. 540). It has been used with
success by Dr. Reid in the epidemic fever of Ireland. In some
he very worst cases it acted most beneficially, causing warm per-
ation, rendering the tongue cleaner and moister, checking diarrhoea,
ducing quiet sleep. I also can bear testimony to the good
cts of it in bad cases of fever. In disease of the pulmonary
ms resulting from febrile excitement, Dr. Reid also found it
antageous. In dysentery likewise it was most valuable. He used
r the mouth, and also in the form of clyster. It corrected the in-
able stench of the evacuations, and improved their appearance.
used it both internally and externally in scrofula.

ADMINISTRATION.—Internally, chloride of lime may be given in
grains of from one grain to five or six grains, dissolved in one or two

1 Alock’s Essay.
3 Ibid. IX. 365.
6 Trans. of the King and Queen’s College of Physicians in Ireland, v. 266.
ounces of water, sweetened with syrup. As the dry chloride of the
shops deposits hydrate of lime when put into water, the solution (of
the hypochlorite of lime and chloride of calcium) should be filtered,
to get rid of this. To destroy the unpleasant smell of the breath, and
to restore the white colour of the teeth when stained by tobacco, &c

tooth-powders (see p. 219) and _lozenges_ containing chloride of lime
have been used. An _ointment_ (composed of 5j. of chloride to 5j.
lard or butter) has been employed, by way of friction, to reduce scro-
lous enlargements of the lymphatic glands, when the use of mer-
curial ointment has failed.

Antidotes.—Administer albuminous liquids (as eggs beat up with
water) or milk, or flour and water, or oil, or mucilaginous drinks,
and excite vomiting; combat the gastro-enteritis by the usual means.
Carefully avoid the use of acids, which would cause the evolution of
chlorine gas in the stomach.

LIQUOR CALCIS CHLORINATI: _Solution of Chlorinated Lime; Solu-
tion of Chloride of Lime._ A solution of chloride of lime is used
for _lotions_ and _gargles_. Its strength must vary according to the
quality of the chloride and the nature and seat of the disease for
which it is employed. The average proportions are from 5j. to 30w.
of chloride, and Oj. of water. In the cure of itch, Derheims em-
ployed a wash composed of 3iij. of chloride and Oj. of water. The changes
produced in the chloride by the action of water have been already
explained (see p. 588). The solution should be filtered to get rid of
the hydrate of lime. A solution containing from ten to fifteen grains
of the chloride is useful as an _enema_ when the alvine evacuations are
very offensive. A formula for a disinfecting _mouth-wash_ has been
already given (see p. 219).

4. **CALC'IS CAR'BO'NAS.—CARBONATE OF LIME.**

History.—Some varieties of carbonate of lime were distinguished
and employed in the most remote periods of antiquity. Marble was
probably used for building 1050 years before Christ." Pliny tells
us that Dipemus and Scyllis were renowned as statuaries of marble
in the 50th Olympiad (_i. e. 557 years before Christ)._ The _Creta_
mentioned by Horace and Pliny was probably identical with ma-
chalk.

Natural History.—Carbonate of lime occurs in both kingdoms
of nature.

a. In the Inorganised Kingdom.—It forms a considerable portion of the
knew crust of the earth, and occurs in rocks of various ages. It is found in the infer-

* Journ. de Chim. Méd. t. iii. p. 496.
* 1 Chron. xxix. 2.
* Hist. Nat. xxxvi.
* Sat. iii. lib. 2.
* On the chalk of the ancients, consult Beckmann's History of Invent. i. 312.
stratified rocks, but more abundantly in the different groups of the fossiliferous rocks, particularly towards the central and higher parts of the series.

In the crystallized form it constitutes Calcareous Spar and Arragonite. The first of these is most extensively distributed, and presents itself under many hundred varieties of shapes.

Granular carbonate of lime (the Granular Limestone of mineralogists) more commonly occurs in beds, but sometimes constitutes entire mountains. The whitest and most esteemed primitive limestone is that called Statuary Marble, or, from its resemblance to white sugar, Saccharoid Carbonate of Lime. That from Carrara, on the eastern coast of the Gulf of Genoa, is the kind usually employed by the statuary, and being very pure, should be employed for pharmaceutical purposes: it is the Marmor of the British pharmacopoeias.

Chalk constitutes the newest of the secondary rocks, and occurs abundantly in the southern parts of England. It lies in beds, and contains abundance of marine as well as terrestrial organic remains. The upper part of a considerable portion of the chalk of England contains numerous flints, which are supposed to have once belonged to poriferous animals.

There are various other native forms of carbonate of lime constituting the substances called by the mineralogists Schiefer Spar, Rock Milk, Earth Foam, Stalactitic Carbonate of Lime, Anthracite, Oolite, Pisolite, Marl, Tufa, &c.

Carbonate of lime is an ordinary ingredient in mineral and common waters, being held in solution by carbonic acid, and, therefore, deposited when this is expelled by boiling or otherwise.

3. In the Organised Kingdom.—Carbonate of lime is found in some plants, and is obtained from the ashes of most. It is an abundant constituent of animals, especially of the lower classes. Thus in the Radiate animals we find it in the hard parts of Corals, Madrepores, &c.; in the Mollusces (as the Oyster), it is in the shells. In the articulated animals it forms, with phosphate of lime, the casings which envelop these animals (as the Crab and Lobster); in the higher classes it is found in bone, but the quantity of it is very small.

Preparation.—Several forms of carbonate of lime are employed in medicine; viz. Marble, Chalk, Precipitated Carbonate of Lime, and Carbonate of Lime from Animals. Most of these require to be submitted to some preparation before they are fitted for use.

1. Marble; Marmor. Carbonas Calcis (durus), L. Massive Crystalline Carbonate of Lime: White Marble, E. Marmor album, D.—This is employed for the preparation of carbonic acid (p. 333) and for other purposes. White or statuary marble from Carrara should be selected on account of its freedom from iron. It requires no preparation.

2. Chalk; Creta. Calcis Carbonas (frabilis), L.—Creta. Friable Carbonate of Lime: Chalk, E.—Creta alba, D.—This is found in great abundance in the southern parts of England. It is ground in a mill, and the finer particles separated by washing them over in water, setting the water settle, and making up the sediment into flat cakes, which are dried in this air. In this state it is called Whiting. All the British Colleges give directions for the preparation of chalk by attrition. By this means it is separated from siliceous and ferruginous particles. The product is called Prepared Chalk (Creta Preparata, L. E. D.) It is usually made up into little conical vases.

* De la Beche, Researches in Theoretical Geology, 21.
* See Bournon's Traité Couplé de la Chaux Carbonatée. Londres, 1806.
* Dr. Grant, Lect on Comp. Anat. in the Lancet, Nov. 2, 1833.
The London College orders of Chalk, lb.; Water as much as may be sufficient, add a little Water to the Chalk, and rub it that it may become fine powder. This in a large vessel with the rest of the Water; then stir it, and after a suitable interval pour off the supernatant water, still turbid, into another vessel, and it by that the powder may subside; lastly, the Water being poured off, dry the powder and keep it for use. In the same way shells, first freed from impurities and washed with boiling water, are prepared.

The directions of the Edinburgh and Dublin Colleges are essentially the same, except that no mention is made of the preparation of chalk from shells.

3. Precipitated Carbonate of Lime. (Calcis Carbonas praecipitatæ D.)—Carbonate of lime prepared by precipitation is employed by some druggists in the preparation of Aromatic Confection. It is also preferred to the ordinary prepared chalk for making Camphora Cretacea Tooth-powder. The Dublin College directs it to be employed in the preparation of the Hydrargyrum cum Creta, D. The following is the mode of preparing it:

Take of Solution of Muriate of Lime, five parts; add of Carbonate of Soda, solved in four times its weight of distilled water, three parts. Let the precipitate be mixed with water, and suffered to subside, and let this operation be times repeated with a sufficiently large quantity of water: lastly, when collected, let the powder be dried on a chalk stone or on paper. Ph. Dub.

It should be prepared with cold solutions, otherwise the deposit is finely granular.

4. Carbonate of Lime from Animals.—Carbonate of lime is obtained from various animal substances; as from Oyster shells, Crab's claws, Crab's stones, and Red Coral. These substances yield carbonate of lime intimately blended with animal matter.

a. Prepared Oyster Shells; Testa preparata, L.—See Ostrea edulis.

b. Prepared Crab's Claws; Lapilli Cancerorum preparati; Chela Cancer preparata.—See Cancer Pagurus.

c. Prepared Crab's Stones; Lapides Cancerorum preparati; Prepared Crab Eyes; Oculi Cancerorum preparati.—See Astartes fluviatilis.

d. Prepared Red Coral; Corallium rubrum preparatum. See Coral rubrum.

Properties. — Pure carbonate of lime is a tasteless, odourless, white solid. When heated to redness in a current of air its carbonic acid is expelled, leaving quicklime. It is almost insoluble in water; a part of carbonate requiring 1600 parts of water to dissolve it. It is much more soluble in carbonic acid water: the solution reddens litmus, but changes the yellow colour of tumeric paper to brown and by boiling, or exposure to the air, gives out its carbonic acid, which the carbonate of lime is deposited.

Carbonate of lime is a dimorphous substance; that is, it crystallizes in two distinct and incompatible series of forms. Thus the forms of Calcareous Spar belong to the rhombohedral system, while Arragonite belongs to the right rectangular prismatic system. According to Gustav Rose¹, both calcareous spar and arragonite may be formed in the humid way, but the first at a lower, the latter at

¹ Lond. and Edinb. Phil. Mag. June 1838.
higher temperature; in the dry way, calcareous spar alone is formed. Both minerals doubly refract the rays of light, and expand unequally in their different parts when heated; but calcareous spar has only one axis of no double refraction (see p. 163, figs. 29 and 30), whereas arragonite has two.

Granular limestone (of which white marble is the purest kind) is massive, and consists of small grains of minute crystals, presenting a lamellar structure and brilliant lustre, but intersecting each other in every direction, and thereby giving a glimmering lustre to the mass.

Chalk is massive, opaque when pure white, and has an earthy fracture. It is usually soft to the touch, and adheres to the tongue.

Characteristics.—Carbonate of lime is recognized as a carbonate by the tests already mentioned for this class of salts (p. 334). As a calcareous salt it is known by the characters before described (p. 578) for lime.

Composition.—Carbonate of lime has the following composition:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime</td>
<td>1</td>
<td>28</td>
<td>56</td>
<td>56 1</td>
<td>50 65</td>
<td>56 1</td>
</tr>
<tr>
<td>Carbonic Acid</td>
<td>1</td>
<td>22</td>
<td>44</td>
<td>43 9</td>
<td>43 95</td>
<td>43 9</td>
</tr>
<tr>
<td>Carbonate of Lime</td>
<td>1</td>
<td>90</td>
<td>100</td>
<td>100 0</td>
<td>100 00</td>
<td>100 0</td>
</tr>
</tbody>
</table>

Purity.—Pure marble or chalk should be perfectly soluble, with effervescence, in hydrochloric acid, by which the absence of silica is shown. Ammonia should not cause any precipitate with this solution, by which its freedom from alumina, oxide of iron, &c. may be inferred; nor should a solution of sulphate of lime throw down any thing by which the absence of baryta and strontian is proved.

Totally soluble in hydrochloric acid, with effervescence. From this solution, after it has been boiled, when ammonia is dropped in, it throws down nothing.

Lond. “A solution of 25 grains in ten fluid drachms of pyroligneous acid, when neutralized by carbonate of soda, and precipitated by 32 grains of oxalate of ammonia, continues precipitable after filtration by more of the test.” Ph. Ed.

Physiological Effects.—The local effects of chalk are those of an absorbent, antacid, and mild desiccant (see p. 215). When swallowed it neutralizes the free acid of the gastric juice, and in this way alone must, by continued use, injure the digestive functions. It causes constipation, an effect commonly observed from the use of few doses in diarrhoea. By the action of the free acids (acetic and hydrochloric) of the alimentary canal, it is converted into two soluble calcareous salts (acetate of lime and chloride of calcium), which become absorbed. Hence the continued use of carbonate of lime attended with the constitutional effects of the calcareous salts,
and consequently the statements which have been made as to
the influence of chalk over the lymphatic vessels and glands, an
effect in diminishing excessive secretion, may be correct. Some
thinks it may even promote the deposit of bone-earth in dis-
attended with a deficiency of this substance. Carbonate of
chalk, prepared from animal matter, has been erroneously supposed
more digestible than chalk, and, therefore, less likely to occu-
dyspeptic symptoms. Dr. A. T. Thomson says, that "after
has been used for some time, the bowels should be cleared out
is apt to form into hard balls, and to lodge in the folds of
intestines."

Uses.—As an absorbent and desiccant, prepared chalk is
as a dusting powder in moist excoriations, ulcers, the inter-
children, burns and scalds, erysipelas, inflammation, &c. In
form of ointment it has been recommended by Mr. Spender
ulcers.

As an antacid it is exhibited in those forms of dyspepsia ac-
panied with excessive secretion of acid; and as an antidote
poisoning by the mineral and oxalic acids.

It has also been used in some diseases which have been sup-
to depend on, or be accompanied by, excess of acid in the syste
as in gouty affections, which are usually attended with the ex-
production of uric acid, and in rachitis, which some have as-
to a preponderance of phosphoric acid, or to a deficiency of
in the system.

To diminish alvine evacuations, it is employed in diarrhoea,
ecacy can hardly be referred solely to its antacid properties;
other antacids are not equally successful; but to its desiccation
erties already referred to. Moreover, in many cases of dia-
in which chalk is serviceable, no excess of acidity can be shou
exist in the bowels. Aromatics are useful adjuncts to chalk;
most cases of diarrhoea. In old obstinate cases, astringent
atechu or kino) may be conjoined with great advantage; and
severe cases, accompanied with griping pains, opium.

Administration.—Prepared chalk is given in the form of powder
mixture, in doses of from ten grains to one or two drachms,
enters into a considerable number of officinal preparations.

1. Mistura Cretae, L. E. D.; Chalk Mixture; Cretaceous
 mixture. (Prepared Chalk, 3 ss.; Sugar, 5 ij.; Mixture of Acacia,
 Feder Water, 33 xvij. Mix. L.—Prepared Chalk, 5 x.;
 Sugar, 5 v.; Mucilage, 5 ij.; Spirit of Cinnamon, 5 ij.; Water.
Triturate the chalk, sugar, and mucilage together; and then,
gradually the water and spirit of cinnamon, E.—Prepared Chalk,
Refined Sugar, 5 ij.; Mucilage of Gum Arabic, 5 j.; Water.
SUBPHOSPHATE OF LIME.

[wine measure]. Mix. D.)—A convenient and agreeable form for
the exhibition of chalk. It is in very common use for diarrhoea.
Aromatics (as aromatic confection), astringents (as kino or catechu),
and narcotics (opium), are frequently combined with it. Dose,
f₃ss. to f₃ij.

2. PULVIS CRETE COMPOSITUS, L. E. D. Compound Powder of
Chalk. (Prepared Chalk, lbss.; Cinnamon, siv.; Tormentil Root;
Acacia Gum, of each, iij.; Long Pepper, fss. L. D.—Prepared
Chalk, siv.; Cinnamon, in fine powder, siss.; Nutmeg, in fine pow-
der, sj. Triturate them well together.)—Aromatic and astringent.
Used in diarrhoea. Dose, grs. x. to 3j.

3. TROCHISCI CRETE, E. Chalk Lozenges. (Prepared Chalk,
siv.; Gum Arabic, sj.; Nutmeg, sj. Pure Sugar, 3vj. Reduce them
to powder, and beat them with a little water into a proper mass for
making lozenges).—Mildly antacid and astringent. Used in acidity
of stomach and diarrhoea.

4. CAMPHORATED CRETACEOUS TOOTH-POWDER. (Precipitated
Carbonate of Lime, three parts; Camphor, finely pulverized, one part.
Mix.)—Extensively used as a dentifrice (see p. 219).

5. CAL'CIS SUBPHOS'PHAS.—SUBPHOSPHATE OF LIME.

HISTORY.—In 1769 Scheele discovered that bones contained an
earthly salt composed of phosphoric acid and lime. As these two
substances combine together in several proportions to form phosphates,
chemists distinguish the combination found in bones by the name of the
Bone Phosphate, or the Subphosphate of Lime.

NATURAL HISTORY.—Subphosphate of lime constitutes the prin-
cipal part of the earthy matter of the bones of the Vertebrata and of the
crustaceous envelopes of the Articulata. According to Dr. Wollaston it
the same subphosphate is found in the ossification of the arteries,
veins, valves of the heart, bronchiae, and tendinous portion of the
diaphragm. Moreover, the tartar of the teeth is composed of it.
The calcaeous phosphate found in urine, and which is sometimes de-
posited from this fluid in a pulverulent form, is the neutral phosphate of lime
(CaO+ PO₄). The phosphate of lime calculus, prostatic calculi, and pineal
concretion, also contain, according to Dr. Wollaston, the neutral phosphate.
The same salt is held in solution by carbonic acid in some mineral waters. The
calcaeous phosphate found crystallized in some plants is probably the neutral
phosphate.
The mineral called Apatite is the subsesquiphosphate of lime (CaO+2PO₄).

PREPARATION.—When bones are ignited in close vessels, they yield
a fixed residue Bone Black (see p. 318 and 331). If, however, they be
heated in open vessels, the whole of the carbonaceous matter is burnt
and the white product is called Bone Ash (Ossa nsta alba; Ossa

= Phil. Trans f or 1797.
* Berzelius, Traité de Chimie, t. iv.
de usta; Ossa ad albedinem usta; Ossa calcinata; Spodium alb.
or the Bone Earth (Terra Ossium).

A similar product is obtained by calcining the antlers (Cornu
the Deer (Cervus). In this case the product, when reduced to a
powder, is called Burnt Hartshorn. (Cornu uatun, L.; Pulvis C
Cervini usti, D.). Finely powdered Bone Ash is, however, usu-
substituted in the shops for Burnt Hartshorn.

The Dublin College gives the following directions for the pre-
pARATION of Precipitated Phosphate of Lime (Calcis Phosphas praes
atum, D.)

Take of Bones, burnt and reduced to powder, one part; Diluted Muriatic
Water, of each, two parts. Digest them together during twelve hours, and
the liquor: add to this, of water of Caustic ammonia as much as may be
icient to throw down the Phosphate of Lime. Let this be washed with
sufficiently large quantity of water, and then dried.

Bone ash is composed principally of subphosphate with a little
carbonate of lime. By digestion with hydrochloric acid, the
phosphate is dissolved, and the carbonate is decomposed with
the evolution of carbonic acid and the formation of water and chloric
calcium. On the addition of ammonia, the subphosphate is pre-
tated. It is washed to deprive it of all traces of chloride of calcium
and muriate of ammonia.

Properties.—Subphosphate of lime is white, tasteless, odour-
insoluble in water, but soluble in nitric, hydrochloric, and acetic acid
from which solutions it is thrown down, unchanged in composition
by ammonia, potash, and their carbonates. When exposed to an
intense heat, it fuses, and undergoes no other change.

Characteristics.—It is known to be a phosphate by its solubility
in hydrochloric acid, and its being again thrown down as a white
precipitate when the acid solution is supersaturated with caustic am-
nia. If it be digested in a mixture of sulphuric acid and alcohol,
phate of lime is precipitated, and an alcoholic solution of phos-
acid obtained. The acid may then be recognised by the tests for
already mentioned (p. 454). If the precipitated sulphate of lime
solvolved in water, the solution may be known to contain lime by
strectests before described for the calcareous salts (p. 578). The s
phosphate of lime of bones is distinguished from the new
phosphate by its fusing with greater difficulty, and dissolving as
readily in hydrochloric acid. A very delicate test of the new
phosphate is its crystallizing from hydrochloric acid by evaporation.

Composition.—The composition of subphosphate of lime is
follows:—

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime</td>
<td>8</td>
<td>224</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>0</td>
<td>216</td>
</tr>
<tr>
<td>Bone Subphosphate of Lime</td>
<td>1</td>
<td>440</td>
</tr>
</tbody>
</table>

Physiological Effects.—Its effects are not very obvious. "A
phosphate of lime is very difficultly soluble," observes Wibmer; "w
Magnesia. 601

... absorbed in small quantity only, and then acts more or less like lime, as a slight astringent on the tissues and secretions, and increases, incontestibly, the presence of calcareous salts in the bones, the blood, and the urine. Large doses disorder the stomach and digestion by their difficult solubility."

Uses.—It has been administered in rickets, with the view of promoting the deposition of bone-earth in the bones. The sesquioxide of iron may be advantageously conjoined with it. Its principal use is in the preparation of phosphorus (p. 450) and phosphate of soda (p. 547). In the arts it is employed for polishing, for the preparation of cupels, &c.

Administration.—Dose from grs. x. to 5ss. For internal use the preparation of the Dublin College is to be preferred.

Order 15. Compounds of Magnesium.

History.—It was first chemically distinguished from lime in 1755, by Dr. Black, who also showed the difference between magnesia and its carbonate. From the mode of procuring it, it is frequently termed Calcined or Burnt Magnesia (Magnesia calcinata seu usta). It is sometimes called Talc Earth (Talkerde), or Bitter Earth (Bittersalzerde).

Natural History.—It occurs in both kingdoms of nature.

a. In the Inorganised Kingdom.—Magnesia is found native, in the solid state or in solution, in sea or some mineral waters, in combination with water and various acids (carbonic, sulphuric, boracic, silicic, and nitric). Chloride of magnesium exists in sea water, as also in some springs.

b. In the Organised Kingdom.—Combined with acids it is found in some vegetables (as Salsola Kali and Fucus vesiculosus), and animals (as in the urine and some urinary calculi of man).

Preparation.—It is prepared by submitting the common carbonate of magnesia to heat, whereby the carbonic acid is driven off.

The Edinburgh College gives the following directions for preparing it:—"Take any convenient quantity of Carbonate of Magnesia, expose it in a crucible to a full red heat for two hours, or till the powder, when suspended in water, presents no effervescence on the addition of muriatic acid. Preserve the product in well-closed bottles."

The directions of the London and Dublin Colleges are essentially similar.

The operation is usually conducted in large, porous, covered crucibles, placed in a furnace expressly devoted to this operation, and heated by coke (fig. 102).

Properties.—It is a light, fine, white, colourless, odourless, and tasteless powder, having a sp. gr. 2.3. When moistened with water it acts as an alkali on test papers. It is very slightly soluble in water, and like lime is more soluble in cold than in hot water. Dr. Byffe states that it requires 5142 parts of cold, and 36000 parts of hot water to dissolve it. Unlike lime it evolves scarcely any heat
when mixed with water, combined voltaic and oxy-hy-
flames it has been fused by
Brande. It absorbs carbon
slowly from the atmosphere.

Characteristics.—It is sol-
dilute mineral acids without
efervescence. The dilute solution
not occasion any precipitate with
ferrocyanides, hydrosulphuret-
lates, or bicarbonates. The
alkaline carbonates, when
with any bicarbonate, throw
white precipitate (carbonate of

Ammonia with phosphorus
soda causes a white precipitate.
monocal-phosphate of magnesia
is insoluble in alkaline solu-
and is thereby distinguished from
minia. Its solution in sulphuric
is remarkable for its great bitte-

Composition.—Magnesia.
following composition:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

| Magnesia | 1 | 20 | 100 | 100.0 | 100.0 |

Purity.—Its freedom from any carbonate is shown by its dis-
in dilute mineral acids without effervescence. Its hydro-
solution should occasion no precipitate with the oxalates,
bonates, and barytic salts, by which the absence of lime a-
phates may be inferred.

Dissolves in hydrochloric acid without effervescence. Neither
the base of potash nor chloride of barium throws down any thing from
the solution turns turmeric slightly brown. Ph. Loud.

"Fifty grains are entirely soluble, without effervescence, in a fluid
[pure] muriatic acid: an excess of ammonia occasions in the solution
scanty precipitate of alumina: the filtered fluid is not precipitated by
of oxalate of ammonia."

The quantity of hydrochloric acid directed to be used in
Edinburgh College is unnecessarily large.

Physiological Effects.—When taken into the stomach
magnesia neutralizes the free acids contained in the stomach an-
times, and forms therewith soluble magnesian salts. In full
acts as a laxative; but as it occasions very little serous dis
MAGNESIA. 603

Magnesia ranks it among purgatives "which urge the bowels to
se their contents by an imperceptible action upon the muscular
Part of its laxative effect probably depends on the action of
able magnesian salts which it forms by union with the acids
alimentary canal. Magnesia exercises an influence over the
alogous to that of the alkalis: that is, it diminishes the
y of uric acid in the urine, and when continued for too long a
occasions the deposit of the earthy phosphates in the form of
sand. On account of its greater insolubility, it requires a
time to produce these effects than the alkalis. When taken
large quantities and for a long period it has sometimes accu-
ded in the bowels to an enormous extent, and being concreted
mucus of the bowels, has created unpleasant effects. A lady
very night during two years and a half, from one to two tea-
uls of Henry's calcined magnesia (in all between 9 and 10 lbs.,
or a nephritic attack, accompanied with the passage of gravel;
ently she became sensible of a tenderness in the left side just
the groin, connected with a deep-seated tumor, obscurely to be
pressure, and subject to attacks of constipation, with painful
sic action of the bowels, tenesmus, and a highly irritable state
ach. During one of these attacks she evacuated two pints of
and on another occasion voided soft light brown lumps,
were found to consist entirely of carbonate of magnesia con-
by the mucus of the bowels, in the proportion of 40 per
In another case a mass of a similar description, weighing from
lbs., was found imbedded in the head of the colon, six months
the patient had ceased to employ any magnesia.

s.—As an antacid it is as efficacious as the alkalis, while it
advantage over them in being less irritant, and thereby is not
to occasion disorder of the digestive organs. It may be em-
to neutralize acids introduced into the stomach from without,
cases of poisoning by the mineral acids) or to prevent the ex-
formation of, or to neutralize when formed, acid in the animal
y. Thus it is administered to relieve heartburn arising from, or
acted with, the secretion of an abnormal quantity of acid by the
ch; its efficacy is best seen in persons of a gouty or rheumatic
sis, in which the urine contains excess of uric acid. It often
fases the headache to which such individuals are not unfrequently
It is most efficacious in diminishing the quantity of uric
in the urine, in calculous complaints, and according to Mr.
. Brande it is sometimes effectual where the alkalis have
It will be found of great value in those urinary affections in
talkaline remedies are indicated, but in which potash and soda
created dyspeptic symptoms. It is a most valuable anti-emetic
es of sympathetic vomiting, especially that which occurs during

* Pharmacologia, vol. i. art. Cathartics.
* W. T. Brande, Phil. Trans. 1810, p. 136; and 1813, p. 213.
* R. Brande, Quart. Journ. of Sci., i. 391.
* Phil. Trans. 1813, p. 213.
pregnancy. It should be given in doses of from a scruple to a drachm in simple water or chicken broth.

As a laxative, magnesia is much employed in the treatment of diseases of children. It is tasteless, mild in its operation, antacid,—qualities which render it most valuable as an infant’s purgative. Independently of these, Hufeland ascribes to it a specific property of diminishing gastro-intestinal irritation by a directly sedative influence. In flatulence it is combined with some carminative water (dill or anise); in diarrhoea, with rhubarb. It is employed as a purgative by adults in dyspeptic cases—in affections of the rectum as piles and stricture—and in diarrhoea. It is associated with carminative waters—with some neutral salts, as sulphate of magnesia to increase its cathartic operation—or, in diarrhoea, with rhubarb.

Administration.—As a purgative, the dose, for adults, is from a scruple to a drachm; for infants, from two to ten grains. As an acid, the dose is from ten to thirty grains twice a-day. It may be conveniently given in milk. It is sometimes administered in combination with lemon juice: the citrate of magnesia thus formed acts as a pleasant and mild aperient.

2. MAGNE'SIÆ CARBONAS, L. E. D.—CARBONATE OF MAGNESIA.

History.—Carbonate of magnesia, also called Magnesia Alba and Subcarbonate of Magnesia, was exposed for sale at Rome at the commencement of the 18th century, by Count di Palma, in consequence of which it was termed Comitissæ Palmae pulvis. In 1707, Valentini informed the public how it might be prepared.

Natural History.—Native, anhydrous, neutral carbonate of magnesia is found in various parts of Europe, Asia, and America. Carbonate of magnesia is found in some mineral waters.

The native neutral carbonate of magnesia constitutes a range of low hills in Hindostan. Some years ago a cargo of it was brought over by Mr. Babington. Dr. Henry* analyzed a sample of it, and found its constituents to be magnesia, 51; carbonic acid, 51; insoluble matter, 1.5; water, 0.5; and loss, 1 = 100.

Native carbonate of magnesia, from India, has been imported in considerable quantities into this country; but has been found, as I am informed, unsaleable here. The samples offered for sale in the year 1837 consisted of reniform, opaque, dull masses, adherent to the tongue, having a conchoidal fracture, and considerable hardness. Internally, they were whitish; externally, they were greyish, yellowish white.

The same substance (I presume) was brought over in 1838 in the calcined state, and was offered for sale as Indian Calcined Magnesia. It was nearly white.

Preparation.—All the British Colleges give directions for the preparation of carbonate of magnesia.

The London College orders of Sulphate of Magnesia, 1, and Carbonate of Subcarbonate of Magnesia, 3. Distilled Water, 1. Dissolve separately the carbonate of

* Dr. Watson, in the Medical Observ. and Inquiries, vol. iii. p. 335. Lond. 1769, 2d ed.
* Annals of Philosophy, N. S. vol. i. p. 329.
a and sulphate of magnesia in two gallons of the water, and strain; then mix
I boil the liquors, stirring constantly with a spatula for a quarter of an hour;
ly, the liquor being poured off, wash the precipitated powder with boiling dis-
ed water, and dry it.
The Edinburgh College employs the same proportions of ingredients, and gives
ilar directions for the preparation of this compound.
The Dublin College uses of Sulphate of Magnesia, twenty-five parts; Carbonate
Potash, twenty-four parts; Boiling Water, four hundred parts.

Two kinds of carbonate of magnesia are known and kept in the
ops;—the light and the heavy.

a. Light Carbonate of Magnesia; Common Magnesia.—This is
manufactured in the northern parts of this island, and is commonly
own as Scotch Magnesia. It is said to be prepared from the resi-
ary liquor (bittern) of sea water, after the extraction of comon
[see p. 532].

b. Heavy Carbonate of Magnesia; Magnesia Ponderosa.—The fol-
ing is the method which I have seen followed in a large and
seemed manufactory:—Add one volume of a cold saturated solution
carbonate of soda to a boiling mixture of one volume of a satu-
lution of sulphate magnesia, and three volumes of water. Boil until
wavecence has ceased, constantly stirring with a spatula. Then
ute with boiling water, set aside, pour off the supernatant liquor,
d wash the precipitate with hot water on a linen cloth: afterwards
y it by heat in an iron pot.

Fig. 103.

Manufactory of Heavy Carbonate of Magnesia.

A heavy and gritty Carbonate of Magnesia is prepared by sepa-
ately dissolving twelve parts of sulphate magnesia and thirteen parts
rystallized carbonate of soda in as small a quantity of water as
ssible, mixing the hot solutions, and washing the precipitate.

When cold solutions of sulphate of magnesia and carbonate of soda
ixed, and no heat is employed, the product is apt to be gritty.
according to Professor Graham⁷, carbonate of soda is not so suitable
arbonate of potash for precipitating magnesia, "as a portion of

⁷ Elements of Chemistry, p. 505.
it is apt to go down in combination with the magnesian carbonate; but it may be used provided the quantity applied be less than is required to decompose the whole magnesian salt in solution."

By the mutual re-action of solutions of sulphate of magnesia and carbonate of soda, we obtain, by double decomposition, sulphate of soda and carbonate of magnesia.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Sulphate Magnesia</td>
<td>1 eq. Sulphuric Acid</td>
<td>1 eq. Sulphate Soda</td>
</tr>
<tr>
<td>1 eq. Magnesia</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1 eq. Carbonate Soda</td>
<td>54</td>
<td>1 eq. Carb. Magnesia</td>
</tr>
<tr>
<td>1 eq. Soda</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>1 eq. Carbonic Acid</td>
<td>22</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>114</td>
</tr>
</tbody>
</table>

During the ebullition, however, part of the carbonic acid escapes, and the product, therefore, is not a neutral carbonate, as will be shown presently.

Berzelius states, that the neutral carbonate is decomposed by cold water into bicarbonate, which is dissolved in the liquid, and a subalt which is precipitated. Boiling water, he adds, causes the disengagement of carbonic acid without dissolving anything. "The crystalized carbonate of magnesia loses a third of its carbonic acid, and two-thirds of its water, when it is decomposed by boiling water" (Berzelius). The compound obtained by ebullition is fixed and unalterable.

 Properties.—Carbonate of magnesia, as usually met with, is in the form of a white, inodorous, and almost tasteless powder. The common or light variety occurs in commerce as a very fine light powder, of which 48 grains lightly fill an ounce measure. It is also met with in large rectangular masses with bevelled edges, or in smaller cubical cakes. The light powder mixes imperfectly with water. Its taste, in a copious draught, is somewhat disagreeable, owing probably to its having been imperfectly washed. The heavy carbonate is, as its name indicates, of greater specific gravity than the light. 160 grains of it lightly fill an ounce measure. It is tasteless, or nearly so. Both kinds mixed with water have a feeble alkaline reaction on test paper. Carbonate of magnesia is nearly insoluble in water: it readily dissolves in carbonic acid water.

Characteristics.—It is distinguished from caustic or calcined magnesia by the effervescence which takes place on the addition of a dilute mineral acid. Its other characteristics are the same as for the latter substance (vide p. 602).

Composition.—The following is the composition of Carbonate of Magnesia of the shops:—

<table>
<thead>
<tr>
<th>Kirwan</th>
<th>Bergman</th>
<th>Klaproth</th>
<th>Duchois</th>
<th>Berzelius</th>
<th>Phillips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesia</td>
<td>43</td>
<td>45</td>
<td>40</td>
<td>33</td>
<td>42</td>
</tr>
<tr>
<td>Carbonic Acid</td>
<td>34</td>
<td>25</td>
<td>33</td>
<td>32</td>
<td>35</td>
</tr>
<tr>
<td>Water</td>
<td>21</td>
<td>30</td>
<td>27</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>Magnesia alba</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

1 Traité de Chimie, t. iv.
Several reasons have led chemists to reject the idea of this compound being an ordinary subsalt.

Mr. Phillips considers it to be probably a compound of

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bihydrated Magnesia</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrated Carbonate of Magnesia</td>
<td>204</td>
<td>4</td>
</tr>
<tr>
<td>Carbonate Magnesia, Ph. L.</td>
<td>1</td>
<td>242</td>
</tr>
</tbody>
</table>

Mr. Brande, on the other hand, says that it probably consists of 1 atom quadrhydrate and 1 atom of carbonate, or perhaps of 1 atom terhydrate and 1 atom of hydrated carbonate.

Purity.—Carbonate of magnesia should be perfectly white and tasteless. The water in which it has been boiled should have no alkaline reaction on turmeric paper, nor throw down anything on the addition of chloride of barium or nitrate of silver, by which the absence of alkaline carbonates, sulphates, and chlorides, is proved. Dissolved in dilute acetic acid the soluble oxalates and carbonates should occasion no precipitate, by which the non-existence of any calcareous salt is shewn.

The water in which it is boiled does not alter the colour of turmeric; chloride of barium or nitrate of silver, added to the water, does not precipitate any thing. One hundred parts dissolved in dilute sulphuric acid lose 36.6 parts in weight. When the effervescence has ceased, bicarbonate of potash does not precipitate any thing from this solution. Ph. Lond.

"When dissolved in an excess of muriatic acid, an excess of ammonia occasions only a scanty precipitate of alumina; and the filtered fluid is not precipitated by oxalate of ammonia." Ph. Ed.

Physiological Effects.—The effects of carbonate of magnesia are nearly the same as those of pure magnesia. We can readily conceive that the local operation of the first is somewhat milder than that of the latter (as in the case of the alkalies and their carbonates), but the difference is hardly perceptible in practice. As the carbonate effervesces with acids it is more apt to create flatulence when swallowed.

Uses.—The uses of the carbonate are the same as those of calcined magnesia: except where the object is to neutralize acid in the alimentary canal (as in cardialgia and in poisoning by the mineral acids), when the latter preparation is to be preferred on account of its not effervescing with acids, and thereby not causing flatulence. It is employed in the preparation of medicated waters (see p. 258).

Administration.—The dose of carbonate of magnesia, as a purgative, is from ten grains to a drachm; as an antacid, from five grains to a scruple. It is sometimes given with citric acid in an effervescing form. I find that 9/1 of crystallized citric acid saturates about 14 grs. of either light or heavy magnesia. The product of their reaction is citrate of magnesia.

* Vide Berzelius, Traité de Chim., vi. 101.
* Translation of the Pharmacopæia, 4th ed.
1. TROCHISCUS MAGNESII, E. Magnesia Lozenges. (Carbonate of Magnesia, 3yj.; Pure Sugar, 3iij.; Nutmeg, 5j. Pulverize them, and, with mucilage of Tragacanth, beat them into a proper mass for making lozenges.)—Employed to counteract acidity of stomach.

2. AQUA MAGNESII RICARBONATI; Carbonated Magnesia Water; Aerated Magnesia Water; Condensed Solution of Magnesia; Fluid Magnesia.—This is a solution of carbonate of magnesia in carbonic acid water. Mr. Dimmeford prepares it as follows:—Howard's heavy carbonate of magnesia and distilled water (in the proportion of 17i grs. of the former to 5ij. of the latter) are introduced into a cylindrical tinned copper vessel, and carbonic acid (generated by the action of sulphuric acid on whiting) is forced into it, by means of steam power, for five hours and a half, during the whole of which time the cylinder is kept revolving. The liquid, which is then perfectly clear and transparent, is drawn off, and preserved in cylindrical zinc canisters, each closed by a cork covered by a lid. When this solution is exposed for some time to the air, carbonic acid escapes, and minute prismatic crystals are deposited, which Dr. Davy\(^a\) analysed, and found to consist of:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Dr. Davy (\text{offer})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesia</td>
<td>14</td>
<td>30</td>
<td>29-61</td>
</tr>
<tr>
<td>Carbonic Acid</td>
<td>14</td>
<td>33</td>
<td>32-23</td>
</tr>
<tr>
<td>Water expelled at 212°</td>
<td>1</td>
<td>9</td>
<td>10-27</td>
</tr>
<tr>
<td>Ditto ditto by ignition</td>
<td>3</td>
<td>27</td>
<td>27-90</td>
</tr>
<tr>
<td>Hydrated Carbonate of Magnesia</td>
<td>1</td>
<td>99</td>
<td>100-90</td>
</tr>
</tbody>
</table>

An extemporaneous solution of carbonate of magnesia may be prepared by pouring the ordinary soda water (carbonic acid water) over the common carbonate of magnesia contained in a tumbler. Or, a mixture of crystallized sulphate of magnesia and crystallized carbonate of soda, in powder, and in atomic proportions (viz. 123 parts of the former to 144 parts of the latter salt) may be substituted for the carbonate of magnesia.

Carbonated magnesia water is a very agreeable and effective form for the administration of magnesia.

3. MAGNESII SULPHAS, L. E. D.—SULPHATE OF MAGNESIA.

History.—This salt was originally procured from the Epsom waters by Dr. Grew\(^b\). It has had a variety of names, such as Epsom or the Bitter Purging Salt, Sul Anglicum, Sul Seidltizense, Sul Catharticum, and Vitriolated Magnesia.

Natural History.—It is a constituent of sea and many mineral waters: it occurs as an efflorescence on other minerals, forming the Hair Salt of mineralogists; and with sulphate of soda and a little chloride of magnesium, constitutes Reussite.

\(b\) A Treatise of the Nature and Use of the Bitter Purging Salt. Lond. 1827.
Preparation.—The two great sources of the sulphate of magnesia English commerce are Dolomite and Bittern.

a. From Dolomite.—Dolomite or Magnesian Limestone is a mixture combination of the carbonates of magnesia and lime. It crystals in rhombohedrons. It occurs in enormous quantities in various counties of England (as those of Somerset, York, and Nottingham), and is employed for building: York Minster and Westminster Hall were built of it.

Various methods of manufacturing sulphate of magnesia from dolomite have been proposed and practised. One method is to heat this nerital with dilute sulphuric acid: carbonic acid escapes, and a residue, composed of sulphate of magnesia and sulphate of lime, is obtained. These two salts are separated from each other by crystallization.

In 1816, Dr. William Henry, of Manchester, took out a patent on the following process:—Calcine magnesian limestone, so as to pel the carbonic acid; then convert the caustic lime and magnesia into hydrates by moistening them with water. Afterwards add a sufficient quantity of hydrochloric (or nitric or acetic) acid (or chlorine), dissolve the lime, but not the magnesia, which, after being washed, converted into sulphate by sulphuric acid (or, where the cost of this is objectionable, by sulphate of iron, which is easily decomposed magnesia). Or the mixed hydrates of lime and magnesia are to be added to bittern: chloride of calcium is formed in solution, while portions of magnesia (one from the bittern, the other from the magnesian lime) are left unacted on. Or hydrochlorate of ammonia may be used instead of bittern: by the reaction of this on the hydrated magnesia lime, chloride of calcium and caustic ammonia rain in solution, while magnesia is left undissolved: the ammonia separated from the decanted liquor by distillation.

Carbonate of ammonia has also been employed to separate lime from magnesia: carbonate of lime is precipitated, and the magnesia rains in solution, from which it may be easily separated by ebullition.

b. From Bittern.—Bittern or the Bitter Liquor is the residual liquor sea-water, from which common salt (chloride of sodium) has been separated (see p. 532). At Lymington, in Hampshire, sulphate of magnesia (called physical salt) is manufactured from bittern during the winter season. The liquor is boiled for some hours in the pans during the summer for the preparation of common salt. During ebullition some common salt is deposited. The lighter impurities are removed by skimming, and the concentrated solution is removed to wooden coolers, where in 24 hours one-eighth part of crystals of phate (called Single Epsom Salts, or simply Singles) are deposited. These are drained, dissolved, and recrystallized: they are then denoted Double Epsom Salts, or simply Doubles. Four or five tons

2 Journ. of Science, ii. 217; vi. 313; ix. 177.
of sulphate are obtained from brine which has yielded 100 tons of common salt and 1 ton of cat salt. No sulphuric acid is employed in the process at Lymington; but, if this acid be added to the rock-liquor, a further quantity of sulphate may be obtained by the decomposition of the chloride of magnesium.

At Monte della Guardia, near Genoa, sulphate of magnesia is manufactured from schistose minerals, containing sulphur, magnesia, copper, and iron. The minerals are being roasted, and moistened to convert them into sulphates, they are lixiviated and then deprived of water. In Bohemia, sulphate of magnesia is procured, by evaporation of the waters of Suhlitz and Saidschütz. Hermann extracts it from the waters of soda. At Balaklava, the siliceous hydrate of magnesia is procured from the waters of soda. Molten solution is obtained by reducing the mineral to powder, saturating with sulphuric acid, and calcining the dried mass to peroxide the iron. It is then re-dissolved in water, (from which solution the remaining iron is separated by sulphuret of lime), and crystallized. By a second crystallization it is obtained nearly pure.

Properties.—The sulphate usually met with in the shops is in small acicular crystals. By solution and re-crystallization we obtain tolerably large four-sided rhombic prisms, with reversed dihedral summits, or four-sided pyramids: the crystals belong to the prismatic system. Both large and small crystals are colorless, transparent, and odourless, but have an extremely bitter taste. On heating they undergo the watery fusion, then give out their water of crystallization, become anhydrous, and at a high temperature in the igneous fusion, and run into a white enamel, but without solid decomposition. Exposed to the air they very slowly and slightly effloresce. They dissolve in their own weight of water at 60° C. in three-fourths of their weight of boiling water. They are insoluble in alcohol.

Characteristics.—Sulphate of magnesia is known to contain sulphuric acid by the tests for the sulphates already mentioned (p. 469).
SULPHATE OF MAGNESIA.

Nature of its base is shown by the tests for magnesia before described (p. 602).

COMPOSITION.—The following is the composition of crystallized sulphate of magnesia:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesia</td>
<td>1</td>
<td>20</td>
<td>16.20</td>
<td>16.04</td>
<td>16.86</td>
</tr>
<tr>
<td>Sulphuric Acid</td>
<td>1</td>
<td>40</td>
<td>32.22</td>
<td>32.23</td>
<td>30.64</td>
</tr>
<tr>
<td>Water</td>
<td>7</td>
<td>63</td>
<td>51.22</td>
<td>51.45</td>
<td>52.20</td>
</tr>
</tbody>
</table>

Crystal Sulphate of Magnesia: 1 123 100/00 100/00 100/00

PURITY.—The sulphate of magnesia met with in the shops is usually sufficiently pure for all medicinal and pharmaceutical purposes. It should be colourless, and its dilute solution should undergo no change when mixed with ferrocyanides or hydrosulphurets. When obtained from bittern it is sometimes contaminated with chloride of magnesium, which, by its affinity for water, keeps the sulphate in a damp state. By digestion in alcohol the chloride is dissolved; and, by evaporation, the spirituous solution may be obtained in the solid state. It is said, that occasionally small crystals of sulphate of soda are intermixed with those of sulphate of magnesia—a fraud I have never met with in English commerce, nor is it likely to occur at the present low price of the magnesian salt. Should such an adulteration be suspected, there are several methods of detecting it: the sophisticated salt would effloresce more rapidly than the pure salt, and would communicate a yellow tinge to the flame of alcohol. Boiled with caustic lime and water, all the magnesian sulphate would be decomposed, and the liquor being filtered (to separate the precipitated magnesia and sulphate of lime) would yield, on evaporation, sulphate of soda. If shaken in the cold with carbonate of baryta, a solution of carbonate of soda would be obtained, easily recognised by its alkaline properties.

Very readily dissolved by water. Sulphuric acid dropped into the solution does not expel any hydrochloric acid. 100 grs. dissolved in water, and mixed with a boiling solution of carbonate of soda, yield 34 grains of carbonate of magnesia when dried. Ph. Lond.

The evolution of hydrochloric acid gas would be a proof of the presence of a chloride. If less than 34 grs. of carbonate of magnesia be obtained, the presence of sulphate of soda may be suspected.

"Ten grains dissolved in a fluid ounce of water, and treated with a solution of carbonate of ammonia, are not entirely precipitated by 280 minims of solution of phosphate of soda." Ph. Ed.

PHYSIOLOGICAL EFFECTS.—Sulphate of magnesia is a mild and perfectly safe antiphlogistic purgative, which promotes the secretion as well as the peristaltic motion of the alimentary canal. It is very similar in its operation to sulphate of soda, than which it is less likely to nauseate, or otherwise disorder the digestive functions, while it acts somewhat more speedily on the bowels. It does not occasion nausea and griping, like some of the vegetable purgatives, nor has it any tendency to create feverish disorder or inflammatory symptoms; but, on the other hand, has a refrigerant influence: hence it is coo
commonly termed a cooling purgative. In small doses, largely diluted with aqueous fluids, it slightly promotes the action of other emetics: thus, if the skin be kept cool, and moderate exercise be joined, it acts as a diuretic; whereas, if the skin be warm, it operates as a diaphoretic. Dr. Christison mentions a case of supposed poisoning, in a boy of ten years old, by two ounces of Epsom salts. The symptoms were staggering, imperceptible pulse, slow and difficult breathing, extreme debility, and death within ten minutes, without vomiting. It may, however, be fairly doubted whether the Epsom salts were chargeable with these effects.

Uses.—On account of the mildness and safety of its operation, and ready solubility, and its cheapness, sulphate of magnesia is by far the most commonly employed purgative, both by the public and profession. The only objection to its use is its bitter and unpleasant taste. To state all the cases in which it is administered, would be to enumerate nearly the whole catalogue of known diseases; and must, therefore, be sufficient to mention, that it is excellently adapted as a purgative for febrile and inflammatory diseases, acute constipation, ileus, lead colic, even incarcerated hernia, narcotic poisoning, &c. It may be used as an antidote in poisoning by salts of lead and baryta.

Administration.—As a purgative it is usually administered in doses of from half an ounce to an ounce and a half; but if dissolved in a large quantity of water, a smaller dose will suffice. Thus, a drachm in half a pint or more of water, taken in the morning, will act speedily, sufficiently, and mildly, in ordinary cases; in delicate females, a drachm, or even less, in the above quantity of water, will usually produce the desired effect. Some carminative or aromatic (as peppermint water or tincture of ginger) is frequently conjoined, to obviate flatulency. In febrile and inflammatory diseases the solution may be acidulated with dilute sulphuric acid, with advantage; or the sulphate may be dissolved in the compound infusion of roses. It is frequently used as an adjunct to the compound infusion of senna, whose purgative effect it promotes, but whose griping tendency it is said to check. In dyspeptic cases, accompanied with constipation, it is conjoined with bitter infusions of quassia, gentian, calumba, &c.) As a purgative enema, an ounce of it may be added to the ordinary oyster. The bittering saline waters (see p. 270) contain sulphate of magnesia.

PULVIS SALINUS COMPOSITUS, E.; Compound Saline Powder. (Of Pure Muriate of Soda, and Sulphate of Magnesia [of each], Sulphate of Potash, sij.) Dry the salts separately with a gentle heat, and pulverize each, then triturate them well together, and

2 Sulphate of magnesia is extensively used in the diseases of cattle. In a letter which I received from Mr. Youatt, Veterinary Surgeon to the Zoological Gardens, he says—"For cattle the sulphate of magnesia or soda. The former is preferable, on account of its easier action. I purge the larger elephant, whenever I please, by giving him a drachm of coloquintia at night, and a half of Epsom salts in the morning."
ALUM.

ORDER XVI.—COMPOUNDS OF ALUMINUM.

ALUMEN, L. E. D.—ALUM.
(Alumini et Potassii, L. E. D.)

HISTORY.—Although the term alum (Alumen of the Romans—
αλμη, of the Greeks) occurs in the writings of Herodotus
, Hip-
ocrates, Pliny, Dioscorides, and other ancient writers, yet it is
satisfactorily proved that our alum was the substance referred to.
He contrary, the learned Beckmann has asserted that the alum
of Greece and Romans was sulphate of iron, and that the inven-
tion of our alum was certainly later than the 12th century. But
Jens' who is supposed to have lived in the 8th century, was ac-
quainted with three kinds of our alum, and describes the method
of making burnt alum; and it is not, I think, improbable, that ev-
even was acquainted with our alum, but did not distinguish it from
nate of iron, for he tells us that one kind of alum was white, and
used for dyeing wool of bright colours.

NATURAL HISTORY.—It is found native in the neighbourhood of
moes, and constitutes the mineral called Native Alum.

PREPARATION.—The method of preparing alum varies somewhat in
different places. The mineral from which (in this country) it is pro-
duced, is called Aluminous Slate, Aluminous Shale, or Aluminous Schist
(Aluminaris). This substance varies somewhat in its con-
stitution in different localities, but always contains sulphuret of iron,
in the, carbon, and sometimes a salt of potash. In the neighbour-
hood of Glasgow there are two alum manufactories, one at Hurlet,
other at Campsie. The most extensive alum manufactory in
Britain is at Hurlet, near Paisley. Here the aluminous schist
between the stratum of coal and limestone. By the action of
air it undergoes decomposition, and falls down on the floor of the
work of Perfection, ch. iii; and Invention of Verity, ch. iv,
further information, consult Parkes’ Chemical Essays, 1. 625; and Thomson’s History of
Try, i. 125.

Rams, Nat. Hist. of the Mineral Kingdom, 3d edit. ii. 315.
boilers, is added, by which crystals of alum are procured, which as
purified by a second crystallization. Of late years, sulphate of am-
onia, obtained from gas liquor, has been employed as a substitu-
t for the sulphate of potash or chloride of potassium. In general the
alum made at Hurlet contains both potash and ammonia.¹

At Whitby, in Yorkshire, the method of making alum is somewhat
different. The schist is piled in heaps, and burnt by means of a slow
smothered fire. The calcined ore is lixiviated, and a salt of potas-
added to the solution after it has deposited sulphates of lime and iron
and earthy matters.²

Properties.—Alum crystallizes usually in regular octahedrons
frequently with truncated edges and angles, and sometimes in cubes.
The ordinary alum of the shops consists of large
crystalline masses, which do not present any regular
geometrical form; but, by immersion in water during
a few days, octahedral and rectangular forms are
developed on its surfaces.³ Alum has an astringent
and sweetish acid taste: its reaction on vegetable
colours is that of an acid. Its sp. gr. is 1.7. By
exposure to the air it slowly and slightly effloresces.
Its transalent or diathermanous power is very slight.
When heated, alum undergoes the watery fusion
swells up, gives out its water of crystallization, and
becomes a white spongy mass, called Dried Alum. When submitted
to a very strong heat, a portion of the acid is expelled, and escapes
partly as sulphuric acid, partly in the form of oxygen and sulphurous
acid, and the residue consists of alumina and sulphate of potash: the
acid liquor obtained by heating alum was formerly termed Spirit of
Alum. When alum is calcined with charcoal or some carbonaceous
substance, as sugar, we obtain a spontaneously inflamable substance
called Homberg's Pyrophorus, composed of sulphur, potassium,
aluminum or alumina, and charcoal.

Alum dissolves in 18 times its weight of cold and less than its own
weight of boiling water.

The alum procured at Tolfa and other parts of Italy, and called
Roman Alum (Alumen Romanum), is covered with a pale, rose-coloured
efflorescence, composed of oxide of iron and an aluminous sulphate
of potash. Under the name of Roche or Rock Alum (Alumen Hesperu-
seu Alumen de Rochi, so called from Roccha, in Syria, whence a rose-
coloured alum was formerly brought), we find in English commerce
the crystalline fragments of alum, not larger than almonds, coloured
externally with bole or rose-pink.

Characteristics.—That alum is a sulphate is shown by the tests of
the soluble sulphates already mentioned (p. 469). It reddens limewater
and forms sulphate of lead when mixed with pure carbonate of lead;
in these properties it agrees with the supersulphates. The nature of
its basic constituents is shown by the following tests:—The forma-

¹ Dr. T. Thomson, in Athenæum, for 1840, p. 711.
³ Daniell, Quart. Journ. 1. 24.
cyanides, the oxalates, and hydrosulphuric acid, occasion no precipitate in a solution of alum. Hydrosulphuret of ammonia, the caustic alkalis and their carbonates, and phosphate of soda, throw down white precipitates: that produced by the alkalis is soluble in an excess of alkali, but is insoluble in solutions of the carbonated alkalis: these characters shew the presence of alumina. Potash is recognised by perchloric acid and bichloride of platinum (vide p. 481). Lastly, the crystalline form of the salt assists in recognising it.

Composition.—The composition of alum is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina</td>
<td>8</td>
<td>54</td>
<td>11098</td>
<td>11</td>
<td>99</td>
<td>1778</td>
</tr>
<tr>
<td>Potash</td>
<td>1</td>
<td>48</td>
<td>9778</td>
<td>9</td>
<td>9736</td>
<td>9999</td>
</tr>
<tr>
<td>Sulphuric Acid</td>
<td>4</td>
<td>100</td>
<td>33784</td>
<td>32</td>
<td>8653</td>
<td>3374</td>
</tr>
<tr>
<td>Water</td>
<td>25</td>
<td>225</td>
<td>46581</td>
<td>46</td>
<td>3900</td>
<td>49201</td>
</tr>
<tr>
<td>Crystl. Potash-Alum</td>
<td>1</td>
<td>487</td>
<td>99999</td>
<td>...</td>
<td>99999</td>
<td>100000</td>
</tr>
<tr>
<td>Sulphate of Alumina</td>
<td>8</td>
<td>174</td>
<td>33729</td>
<td>...</td>
<td>33789</td>
<td>100000</td>
</tr>
<tr>
<td>Sulphate of Potash</td>
<td>1</td>
<td>89</td>
<td>18059</td>
<td>...</td>
<td>18059</td>
<td>100000</td>
</tr>
<tr>
<td>Water</td>
<td>25</td>
<td>225</td>
<td>46581</td>
<td>46</td>
<td>3900</td>
<td>49201</td>
</tr>
</tbody>
</table>

In the above table I have assumed, with Thomson and Phillips, that alumina is a protoxide of aluminum (1 eq. Aluminum = 10, and 1 eq. Oxygen = 8), and that its equivalent is 18. But, according to Berzelius, it is a sesquisoxide (composed of 2 eq. Aluminum = 26.44, and 3 eq. Oxygen = 24). Moreover, he found only 24 eq. of water in crystals of alum. Hence alum is composed, according to him, of \(\text{KO} + \text{SO}_3 + \text{AP} \text{O}_3 \cdot 3\text{SO}_3 + 24 \text{HO} \).

Purity.—Alum should be colourless, completely soluble in water (by which the absence of uncombined earthy matter is shewn); with a solution of caustic potash or ammonia should form a colourless precipitate of hydrate of alumina soluble in excess of potash; and should not suffer any change of colour by the addition of tincture of nutgalls or hydrosulphuric acid. The ferro-sulphate of potash, sometimes mixed with alum, cannot be distinguished from the latter by its form, colour, or taste; but is readily detected by potash, which throws down oxide of iron, and by tincture of nutgalls, which communicates a bluish black colour to it.

It is entirely soluble in water. From the solution, ammonia or potash, when added, throws down alumina free from colour, which again dissolves when the potash is added in excess. **Ph. L.**

Physiological Effects. a. On Vegetables.—Alum is probably injurious to plants.

b. On Animals.—Dogs support large doses of alum with impunity. Orfila gave seven drachms of crystallized alum in powder to dogs: the animals retained it for from ten to thirty minutes, then vomited, and in an hour or two were apparently well. Two ounces of burnt alum in four ounces of cold water occasioned vomiting only. When the oesophagus was tied to prevent vomiting, death took place in five hours with symptoms of great exhaustion and diminished sensibility.

A post-mortem examination the mucous membrane of the stomach is found inflamed in the whole of its extent. One ounce of finely-wdered burnt alum applied to the subcutaneous cellular tissue of
the thigh, caused excessive suppuration, and death in fifteen hours. Devergie⁴ found burnt alum somewhat more active; he says 2 drachms killed a dog when the oesophagus was tied, and 2 ⁵ drachms when it was not tied. Moreover, he found burnt alum suspended in cold water, more active than when dissolved in warm water.

V. In horses, veterinarians employ it in doses of from 1 to 6 drachms for large and indigestible stools. Bourgelat has seen a phthisical condition induced in horses by the use of alum in too great quantities⁶.

γ. On Man.—The immediate topical effect of a solution of alum is that of an astringent, namely, corrugation of fibres and contraction of small vessels, by virtue of which it checks or temporarily stops halation and secretion, and produces paleness of parts by diminishing the diameters of the small blood-vessels. It is by these local effects that alum, when taken internally, causes dryness of the mouth and throat, somewhat increases thirst, checks the secretions of the alimentary canal, and thereby diminishes the frequency and increased consistency of the stools, as observed by Wibmer⁷ in his experience made on himself, with alum in doses of 3 grains dissolved in 3 drachms of water, and taken several times during the day.

But when alum is applied to a part in larger quantities, and for longer periods, the stricture is soon followed by irritation, and the irritability of the part by precocious redness. And thus taken internally in larger doses, alum excites nausea, vomiting, griping, purging, and even inflammatory condition of the intestinal canal,—effects which may be perhaps induced by small quantities in persons endowed with unstable or morbid sensibility of the stomach and bowels, as in the case of a lady in whom dangerous gastro-enteritis was apparently induced by a single dose of a solution containing between ten and twenty grains of burnt alum⁸. Ordinarily, however, tolerably large doses of alum can be given without any unpleasant effects. Thus, Professor Duport⁹ has given a drachm, properly diluted, in chronic diarrhoeas, with twenty-four hours; Professor Marc, two drachms, in passive ble\(\text{e}\)orrhages, within the same period of time; and MM. Kapel and Gendrin have administered three drachms at one dose, in colica\(\text{e}\)tonum\(\text{e}\).

After its absorption, alum appears to act as an astringent, or as a gentle-tonic, on the system generally, and to produce more or less general stricture of the tissues and fibres, and a diminution of secretion. Such at least appears to be its effects in some passive bleeding, hemorrhages and mucous discharges. Barbier\(\text{f}\) says, alum "irritates the lungs, and often produces cough," but I am not aware of any practitioner having confirmed this statement. Kraus\(\text{g}\) observes, that the urine becomes remarkably acid from the use of alum.

⁴ Méd. Légale, ii. 563.
⁵ Mecron, Pharm. Vétér. 225.
⁶ Die Wirkung, &c. 1. 114.
⁸ Devergie, Méd. Lég. ii. 636.
⁹ Traité Élément. de Mat. Méd. 2d ed. i. 440.
¹⁰ Heilmittelkunde, 925.
ses.—Alum is employed both as an external or topical, and as an internal remedy.

As a topical remedy.—Solutions of alum are sometimes employed to produce contraction or corrugation of the tissues, and thereby to prevent displacements of parts, especially when accompanied with excessive secretion. Thus, it is used as a gargle in relaxation of the throat with evident advantage. In the early stage of prolapsus of the uterus, a solution of alum, applied as a wash, is sometimes of service, especially when the disease occurs in infants. Washes or injections containing alum are of occasional benefit in prolapsus of the uterus.

Hemorrhages, whether proceeding from an exhalation or exudation from the extremities or pores of the minute vessels, or from the mucous membrane of a blood-vessel, a solution, or, in some cases, the powder of alum may be used with advantage as a styptic, to constrict the minute vessels, and close their bleeding orifices. Thus in epistaxis, it is considered advisable to arrest the hemorrhage, assistance being gained by the injection of a solution of alum into the nostrils, or the introduction of lint moistened with the solution. Where failure to give relief, finely-powdered alum may be employed in the form of snuff. In hemorrhage from the mouth or throat, gargles and washes containing alum are useful. In hæmatemesis, as well as in intestinal hemorrhage, alum may be administered; though, of course, once can be placed on it, as the hemorrhage usually depends on conditions which astringents merely cannot be expected to obtain.

In uterine hemorrhage, a sponge soaked in a solution of alum may be introduced into the vagina with good effect. To check the hemorrhoidal flux when immoderate, washes or enemata containing a solution of alum may be employed. To stop the bleeding after leech bites in women, a saturated solution, or the powder of alum, may be applied to the punctures.

Certain inflammations, alum has been used as a repellent; that has been applied to the inflamed part in order to produce contraction of the distended vessels, and thereby to diminish the quantity of pus in the seat of the disease in a manner almost mechanical.

In the first stage of ophthalmia, it is sometimes considered necessary to cut short the disease by the application of a strong astringent solution (as a saturated solution of alum or of acetate of lead), and not to be denied,” observes Dr. Jacob, “that such applications have the effect of arresting the progress of the disease at once; if they have not that effect, they are liable to produce an increase of inflammation.” But, as the details necessary for making the student acquainted with all the circumstances respecting the use of stimulating or astringent applications, in the first stage of ophthalmia, are many and numerous to admit of their proper discussion in an essay, I must refer, for further particulars, to the essay of Dr. J. B. before quoted, as well as to the treatises of writers on ophthalmic surgery. I may, however, add, that whatever difference of opi-
nion exists as to the propriety of these applications in the first of ophthalmia, all are agreed as to their value after the violent vascular action has been subdued. In the treatment of the phlyctenula of infants, no remedy is perhaps equal to an alum poultice.

In angina membranacea, called by Bretonneau diphtheritis, its importance has been attached to the employment of local applications. Of these, hydrochloric acid, calomel, and alum, have, in succession, been highly praised by this writer. In order to promote the expulsion of the false membrane, he recommends the insufflation of finely-powdered alum. This is effected by placing a draught of a tube, and blowing it into the throat. Velpeau has subsequently confirmed the statements of Bretonneau, and extended the use of other inflammatory affections of the throat, as those arising in croup, small-pox, &c. In these cases powdered alum may be applied to the affected parts by means of the index finger. A wash containing this salt will be found useful in most kinds of sore ulcerations of the mouth and gums, aphthas, &c. In inflammation of the uvula, accompanied with membranous exudation, alum washes are serviceable both in children and adults.

Alum has been employed as an astringent, to diminish or suppress secretion from the mucous surfaces. Thus, a weak solution of this salt is used to repress the discharge in the latter stages of conjunctival inflammation; to check profuse ptalism, whether from the use of mercury or other causes; and to remove gleet or lercia.

In old-standing diarrhoeas it has been administered, in combination with the vegetable astringents (kino, for example), with occasional advantage. It is also applied to check profuse secretion from ulcers.

β. As an internal remedy.—Alum has been employed, in conjunction with nutmeg, as a remedy for intermittents. Given just before the expected paroxysm, it has in some cases prevented it.

In the treatment of leud colle, alum has been found more useful than any other agent or class of remedies. It was first used as a disease by a Dutch physician, named Grashuis, and was afterwards administered in fifteen cases by Dr. Percival n with great success. Its efficacy has been fully established by Kapeler, physician to the Hôpital St.-Antoine, in Paris, and Gendrin, and by Dr. Copier, as well as by several other distinguished authorities. It allaying pain, abates flatulence, mitigates pain, and opens the bowels more certainly than any other medicine, and frequently when other potent remedies have failed. It should be given in full doses (a scruple to two drachms), dissolved in some demulcent liquid (as water) every three or four hours. Opium and (according to

1 Rech. sur l'Inflam. spéc. du Titian Maugeur, 1826.
2 See also Troussseau and Pidoux, Traité de Thérap. ii. 291.
3 Troussseau and Pidoux, op. cit.
4 Cullen, Materia Medica.
5 De Colica Plicatum, Ann. 1752, et Append. 1753.
6 Essays, Med. and Exper. ii. 194.
7 Quoted by Troussseau and Pidoux, op. cit.
8 Dict. de Med. I. 374.
(copland) camphor may be advantageously conjoined. Kapeler also employs oleaginous enemata. The modus operandi of alum in lead colic is not very clear. The benefit has been ascribed by some to the emetical action of the sulphuric acid on the lead supposed to be contained in the intestines; and in support of this view must be mentioned the fact, that other sulphates (as those of magnesia, soda, zinc, and copper), as well as free sulphuric acid, have been successfully employed in lead colic. But, on the other hand, the presence of lead in the prime vis or evacuations, and, consequently, the formation of sulphate of lead in saturnine colic, have not been demonstrated; though the experiments of Dr. C. G. Mitscherlich have shown, that when the acetate of lead is swallowed, the greater part of it forms an insoluble combination with the gastro-intestinal mucus, and in this state may remain some time in the alimentary canal. Moreover, alum has been found successful by Kopp in other varieties of colic not caused by lead, and unaccompanied by constipation. Dr. Copland is disposed to ascribe the benefit of alum, and other sulphates, in lead colic, to their "exciting the action of the partially paralysed muscular coat of the bowels, and thereby enabling them to expel retained matters of a morbid or noxious description."—an explanation which is inconsistent with the observation of Kopp just quoted.

Alum is administered internally in several other diseases, of which brief notice only can be given. In passive or asthenic hemorrhages from distant organs; as hemoptysis, menorrhagia and other uterine hemorrhages, hematuria, &c. In colliquative sweating, diabetes, gleet, onorrhoea, and leucorrhoea. In the three latter diseases it may be combined with cubeb. Kreyzig has advised its use in dilatation of the heart and aortic aneurism. More recently Dzondi has also recommended it in these diseases; and Sundelin has mentioned a case of supposed dilatation of the heart, in which relief was gained by the use of alum. In chronic diarrhoea, alum is occasionally serviceable.

Administration.—The dose of alum is from ten grains to one or two scruples. It may be taken in the form of powder, or made into pills with some tonic extract, or in solution. To prevent nausea, an aromatic (as nutmeg) should be conjoined. A pleasant mode of exhibition is in the form of Alum Whey (Serum Aluminosum, seu Serum Lactis Aluminatum), prepared by boiling two drachms of powdered alum with a pint of milk, then straining: the dose is a wine-glassful. The Saccharum Aluminatum of the Prussian Pharmacopoeia is composed of equal parts of white sugar and alum: it may be given to children as well as adults. In prescribing alum, it is to be recollected that the vegetable astringents decompose it; by which the astringent property of the mixture is probably diminished.
For topical uses, alum is used in the form of powder, solution, and poultice. Powder of crystallized alum is applied to the mouth and throat as before mentioned. Solutions of alum are made, for topical purposes, of various strengths, according to the object in view.

Antidote.—In a case of poisoning by alum, let the contents of the stomach be immediately evacuated. Promote vomiting by the use of tepid diluents. The inflammatory symptoms are to be combated by the usual antiphlogistic means. Magnesia has been employed, but is said by Devergie to be altogether useless.

1. **Alumen Exsiccatum, L. E. Alumen siccatum, D.; Dried Alum; Alumen ustum; Burnt Alum.** (Let Alum liquefy in an earthen vessel over the fire; then let the fire be increased, until the ebullition has ceased, L.—The directions of the Edinburgh and Dublin Colleges are essentially the same; except that they order the dried alum to be reduced to powder.)—In the preparation of this substance care must be taken not to apply too great a heat, lest a portion of the acid be driven off as well as the water. On this account a shallow earthen vessel is preferable to a crucible. Dried alum has a more astringent taste and does not dissolve so readily in water as the crystallized salt. It is employed as a mild escharotic to destroy exuberant spongy granulations; as those commonly known under the name of proud flesh.

2. **Liquor Aluminis Compositus, L.; Compound Solution of Alum; Aqua Aluminosa Bateana, or Bates’s Alum Water.** (Alum, Sulphate of Zinc, each ½j.; Boiling Water, 0ij. Dissolve the Alum and Sulphate of Zinc together in the Water; afterwards strain.)—This solution is used as a detergent and astringent wash in old ulcers; when diluted, as a collyrium in mild conjunctival inflammation, as an injection in gleet and leucorrhœa, and as an application to chilblains and slight excoriations.

3. **Pulvis Aluminis Compositus, E.; Compound Powder of Alum.** (Alum, ⅔v.; Kino, ⅔j. Mix them, and reduce them to fine powder.)—Astringent. Employed in hemorrhages from the stomach, bowels, and uterus; in old diarrhœas; and as an application to flabby indolent ulcers.

4. **Cataplasma Aluminis, D.; Cataplasm of Alum; Alum Poultice; Alumen Aluminosum.** (Whites of two Eggs; Alum, ½j. Shake them together to make a coagulum.)—“In cases of chronic and purulent ophthalmia, it is applied to the eye between two folds of old linen. It has been praised as a good application to chilblains which are not broken.” “Another kind of alum poultice in use

* Montgomery’s Observations on the Dublin Pharmacopoeia.*
ARSENIOUS ACID.

is made by coagulating milk with alum, and using the curd as a poultice."

OTHER COMPOUNDS OF ALUMINUM.

RED ARMENIAN BOLE; Bulus Armena rubra.—This is found in Armenia (whence its name), as well as in various parts of Europe. Bergmann found it to consist of silicac 47, alumina 19, magnesia 6-2, lime 5-4, iron 5-4, water 7-5.

The substance sold by druggists as Red Armenian Bole is prepared by grinding together, in a mill, Pipe Clay and Red Oxide of Iron, and afterwards levigating. It is principally used in the preparation of tooth powders. (See p. 219.)

The Lennian Earth (Terra Lennia) is very similar to Armenian Bole. It is not, however, always red. It is dug up at Lemnos, formed into flat cylindrical pieces, which are stamped and sold under the name of Terra Sigillata.

ORDER XVII. COMPOUNDS OF ARSENICUM.

ACIDUM ARSENIO'SUM, L.—ARSENIOUS ACID.

(Arsenici album, E.—Arsenici Oxydum album, D.)

HISTORY.—Arsenious acid, commonly termed White Arsenic (Arsenicum album) or Oxide of Arsenic, is first distinctly mentioned by Geber ², who seems to have been also acquainted with Metallic Arsenic. Hippocrates ³ employed Ἀρεσνικὸν (Orpiment) and Ζαρκάπας (Realgar) as topical remedies. Dioscorides ⁴ is the first author who uses the word Ἀρεσνικὸν (Orpiment).

NATURAL HISTORY.—Arsenious acid is found at Andreasberg in the Hartz, at Joachimsthal in Bohemia, and at some few other places. It is a rare mineral.

Metallic arsenic (Arsenicum) is found native either alone or associated with other metals, or their sulphurates. It forms two native sulphurates, viz. Orpiment and Realgar. There are two native compounds of it with oxygen, namely, Arsenious and Arsenic Acidus: the latter is found in combination with bases forming native Arseniates.

Orfila ⁵ asserts that arsenic exists in the bones of man and of several other animals. But the experiments of Dr. G. O. Rees ⁶, of MM. Danger and Flandin, and of the commissioners appointed by the French Academy of Sciences ⁷ to report on Marsh’s apparatus, have failed to corroborate his statements.

PREPARATION.—Arsenious acid is prepared in Silesia, Bohemia, Saxony, and Cornwall.

At Altenberg, in Silesia, it is obtained from arsenical iron (Mistickel), composed of sulphur 20·65, iron 35·62, and arsenic 43·73. After being reduced to powder, the ore is roasted in a muffle furnace (fig. 107), by which the arsenic is converted into arsenious acid, which is conveyed, in the state of vapour called Flowers of Arsenic or

² Insc. de Verity, ch. vii.
³ Sum. of Perfection, book i. part iv. chap. ii.
⁴ De Uteribus.
⁵ Id. v. chap. xxi.
⁶ Journal de Chimie Médicale, t. v. 11² Série, p. 632. Dec. 1832.—Also, the Lond. and Edinb. Phil. Mag. for April 1840.
⁷ Ogil's Hospital Reports, No. xii.
⁹ Dumas, Traité de Chimie, t. iv. p. 120.
Smelting-house Smoke (Hüttenrauch), into the condensing chamber (fig. 108), where it is deposited in a pulverulent form, and in this state is called Rough Arsenious Acid or Poison-flour (Giftmehl).

Section of the Roasting Furnace.

c, c, c. Brick arches for supporting the muffle.
c. Earthen muffle for receiving the ore.
d. Passage for the fumes into the condensing chamber.
f. Hopper for introducing the ore.
g. Flue.
h. Vent for protecting the workmen from the arsenical fumes.

The rough acid is refined by sublimation. This is effected in cast-iron pots (fig. 109), to which cylindrical iron heads (d) are attached, which at the tops are contracted into cones (e), each terminating in a pipe made of sheet iron, and communicating with the condensing chamber (fig. 108). Heat is applied for twelve hours, by which the acid is sublimed and condensed on the sides of the iron head in the form of a glassy mass, called Glacial White Arsenic (Weissen Arsenikglas), which is sometimes purified by a second, or even third sublimation. If it contain any sulphuret of arsenic, a little potash is mixed with it, to prevent the sublimation of the sulphur.

At Reichenstein, arsenious acid is procured from an arsenniuret of iron, composed of iron 32.35, arsenic 65.88, and sulphur 1.77.

Arsenious acid is procured in some parts of Saxony as a secondary product in the roasting of cobalt ores (the arsenniurets of cobalt). It is deposited in long horizontal flues (Poison-flues, or Gififängen), and is purified by sublimation*.

* For further particulars consult the paper of J. H. Vivian, Trans. Royal Geol. Society of Cernwall, i. 60.
Arsenious acid is manufactured in Cornwall, from the White Munde or Mispickel found with the tin ore. In the impure state it is desituated in the long horizontal flues of the burning houses; from which it is taken for the use of refiners, its value being about ten shillings per ton. In this condition it has a grey colour, and is either laverulent or in soft crystalline masses. There are two arsenic works in the neighbourhood of Truro; one in the parish of Perranworthall, the other belonging to Mr. Conn, near Bissow Bridge, in the parish of Kea; the former about half a mile, the latter more than a mile, from the Devonan and Cannon steam-works. More recently a third manufactory has been set at work in the parish of Illogan, near Bodmin.

The rough arsenious acid is brought to these works from the burning-houses in all parts of Cornwall. It is first separated from sulphur in a common reverberatory furnace, having a flue several hundred yards in length. The heat is low at first, and is gradually increased. By this means the sulphur is dissipated before the arsenic is distilled. The process is carried on for several weeks, or even months, the fire is then extinguished, and the arsenic removed from the flue. The waste rubbish is used for destroying weeds, &c. in garden walks.

The arsenious acid thus obtained is then sublimed in conical cast-iron kettles, about 2½ feet high, and from 15 to 18 inches in diameter at the base. These kettles are hollow truncated cones, closed at the top by an iron plate perforated for an iron stopper; but open at the bottom. Ten or twelve of these kettles are placed in a circular form on an iron gate, to which they are clamped by a flanch. This plate forms the bottom to all the kettles, and is heated by a fire beneath. The rough arsenic is then introduced through the top aperture, and, heat being applied, is sublimed. Several charges are in this way introduced, until a sufficiently thick crust has been deposited within: the clamps are then taken off, and the kettle conveyed into the open air, where the crust is removed. The fumes from these works are most injurious to neighbouring vegetables and animals. In the human subject erupions, principally about the lips and nose, are produced by them.

In 1826, eighty-three tons of manufactured arsenic were shipped at Tenby. At present, says Mr. Henwood, I believe not less than from 600 to 800 tons are prepared annually.

Properties.—When recently prepared, arsenious acid is in the form of large, glassy, transparent cakes, sometimes colourless, at others having a yellowish tinge. Frequently the cakes consist of concentric laminae, formed by successive sublimations. These masses soon become opaque and white externally, like enamel, the opacity gradually extending towards the centre; and, in some cases, the acid

8 Mr. J. Taylor, Ann. Phil. N. S. iii. 452.
9 Quart. Min. Rev. vol. ii. p. 88; and Mr. Davies Gilbert, Paroch. Hist. of Cornwall, iii. 360.
10 Mr. Henwood, in the Seventh Annual Report of the Royal Cornwall Polytechnic Society. Falmouth, 1836. Part of the above information was obligingly communicated to me, solis oce, by Mr. Henwood.
11 For this and some other information, as well as for samples of the rough arsenious acid from Wheel Vor tin mine, I am indebted to Mr. Ferris, surgeon of Truro.
12 Transactions of the Royal Geological Society of Cornwall, iii. 360.
becomes friable and pulvulent. Krüger ascribes the change to the absorption of water from the atmosphere, for he says it only takes place in moist air, and is attended with an increase of weight, but only to the extent of \(\frac{1}{10} \) of the whole mass. Mr. Phillips has taken the same view of the subject. I have some arsenious acid which has remained transparent for more than two years, in a glass tube hermetically sealed. This fact is confirmatory of the opinion just stated.

Professor Guibourt, Mr. Phillips, and Mr. Taylor, have each found the density of the opaque variety to be less than that of the transparent. Transparent arsenious acid has a sp. gr. of 3·791, according to Guibourt (3·715, Phillips; 3·208 to 3·333, Mitchell and Durand; 3·798, Taylor). It dissolves, according to the same authority, in 103 parts of water at 59°, or in 9·33 parts of boiling water, and the solution feebly reddens litmus. Opaque arsenious acid, on the other hand, according to Guibourt, has a sp. gr. of 3·695 (3·529, Taylor; 3·620, Phillips), is soluble in 80 parts of water at 59°, or in 7·75 parts of boiling water, and the solution restores the blue colour of reddened litmus: but I find both kinds reddened litmus, and Dr. Christison has observed the same. Mr. Taylor did not find any difference in the solubility of the two varieties. He found that water boiled for an hour on this substance, dissolved \(\frac{1}{10} \) of its weight; that this water, on perfect cooling, did not retain more than \(\frac{1}{10} \) of its weight; and that water at ordinary temperatures will dissolve from about \(\frac{1}{10} \) to \(\frac{1}{10} \) of its weight. It appears, then, that water perfectly cooled from a boiling saturated solution will retain from ten to twenty or more times the quantity of acid in solution than it will take up at common temperatures without heat,—a fact which is as curious and inexplicable as arsenious acid is soluble in alcohol and oils. It is of importance to know that the presence of organic matters very much impairs the solvent power of water for this acid—a circumstance which readily explains why arsenious acid has not, in some cases, been found in the liquid contents of the stomach of persons poisoned by it. Arsenious acid has little or no taste, as Plessy, Addison, and Christison, have remarked: and neither in the solid nor vaporous form has it odour. The acid may be readily obtained in a crystalline condition by sublimation, or by cooling a boiling saturated solution: the crystals are transparent, usually regular octahedra, sometimes tetrahedra or acicular. At a temperature of 380° F. it volatilizes: when heated under pressure it liquefies, and is converted into a transparent glass.

Characteristics.—These may be conveniently and usefully dis-
ARSENIOUS ACID.

625

ter three heads:—a. The characteristics of solid arsénious
the characteristics of a pure solution of arsénious acid ;—
characteristics of arsénious acid in organic mixtures.

Arsenic Acid.—The characteristics of solid arsénious
besides its physical properties before mentioned), princic-
—its volatility, the garlic odour evolved by throwing it
charcoal or cinder, and the qualities of the metallic crust
reducing the acid.

Laternity.—Heated on the point of a penknife in the flame
amp, arsénious acid produces a white smoke, and speedily
If the acid be heated in a test tube, a crystalline sub-
stance: the crystals are sparkling, and, when examined
flying glass, are found to be regular octohedra.

ments to the operation of this test are alkaline or earthy bases
a portion of the arsénious acid, and prevent its rising in vapour:
may be used to counteract their influence.

of this test, is, that other white solids (as hydrochlorate of ammo-
acid, &c.) are volatile, and produce a white smoke when heated.

Plateau.—If arsénious acid, or an arsenite, be put on a
hot cinder or charcoal (placed for convenience in a saucer),
scarcely visible vapour (metallic arsénicum), having a garlic
which, at the distance of an inch or two from the cinder, is
into a dense, white, odourless smoke (arsénious acid). The
of the acid is essential to the production of the garlic
ence no odour is perceived when arsénious acid is placed on a
calic or glass plate.

ment to the action of this test is the presence of organic matters,
is, by burning, develops a strong odour, which masks the smell
arsénium.

s, attending it is, that some other bodies (as phosphorus, with cer-
compounds and some organic matters) evolve when heated a garlic
quinin, Barreel, and Orfila, have shown that a compound of album
which exhales this odour when heated, did not contain a particle
“Is it true,” say these experimenters, “that arsénium does
crease odour when volatilized; but even when this is well characterized,
sent to establish the existence of the oxide of arsenic, since it
me other substances; and it is not impossible that there may be de-
the stomach, during digestion, substances which exhale an analogous
heated.”

Relation of a metallic crust. Reduction test.—If arsénious
acid be intimately mixed with freshly-
ignited but cold charcoal, and heated in a
glass tube, the acid is deoxidized, and
yields arsenic acid, which is sublimed into
a cooler portion of the tube, where it con-
denses, and forms a metallic crust. A
common cylindrical test tube answers very
well, but the reduction tube of Berzelius
(fig. 110) is to be preferred. The charac-
ters of the arsenical crust are—the brilli-
ancy of its outer surface, which is fre-
ently equal to polished steel or looking-
glass; the crystalline appearance and greyish-white colour of its surface; its volatility; its conversion, by sublimation, up and down the tube, into octahedral crystals of arsenious acid, which may be dissolved in distilled water, and tested by the liquid re-agents presently mentioned; and its yielding arsenic acid by dissolving it in hydrochloric acid, and carefully evaporating the solution to dryness. The arsenic acid is known by the red precipitate (arsenate of silver) produced on the addition of nitrate of silver: but if the evaporation has not been carried on sufficiently far, some hydrochloric acid and chlorine will be left, which will form a white precipitate (chloride of silver) with nitrate of silver. The arseniate of silver may be reduced, if necessary, by mixing it with charcoal and boracic acid, and heating it in a glass tube.

In some cases the metallic crust is imperfectly formed, or is masked by decomposed organic matter. Whenever any doubt respecting its nature is entertained, proceed as follows:—Cut off with a file the portion of the tube containing the suspected crust, roughly powder it, introduce it into another tube, and apply heat. The metallic character of the crust is sometimes more evident by applying to it, for a few seconds, the flame of the spirit lamp, which drives off a black powder (black oxide of arsenic) and leaves the metal. If the heat be continued too long the metal itself sublimes.

The fallacies to which this test is liable are principally two—a charcoal crust may, by an inexperienced experimenter, be mistaken for the arsenic crust, and I have seen students confound a stratum of globules of mercury (by reducing calomel) with the arsenical crust. Careful examination, even by a magnifying glass, will, however, easily enable the experimenter to distinguish them: the inner surface of the charcoal crust is brown, powdery, and whereas that of the arsenical crust has a crystalline texture, iron-grey, and shiny appearance; the sublimate obtained by reducing calomel or potassium chlorate compounds has all the brilliancy of arsenicum, but by a glass is found to be composed of minute globules which may be made to coalesce by the point of a match. Lastly, the arsenical crust may be distinguished from all other crusts by melting it, as before directed, and converting it into arsenious or arsenic acid, which is readily recognised by the tests already mentioned:—a proceeding which never to be omitted.

As a deoxidizing agent I have directed freshly ignited charcoal to be added to convert arsenious acid into arsenic acid. If carbonate of soda or of potash mixed with the charcoal, a part only of the arsenium is disengaged, an ash of sodium or of potassium being formed; hence, when the quantity of charcoal reduced is small, charcoal only should be employed. "Where the quantity of the material, however, is considerable, it is preferable to employ the black charcoal still better, as not being deliquescent, a mixture of charcoal and carbonate of soda, deprived of water of crystallization by heat." If the substance produced be an arsenite (as of silver, copper, or lime), or an arseniate (as of copper, charcoal and boric acid should be used. For the reduction of arsenical sulphures (as the precipitate obtained by passing hydrosulphurous acid through a solution of arsenous acid) a mixture of two parts of ignitants of soda and one part of charcoal should be employed. The alkali is heattable, in order to combine with the sulphur. Black flux (see p. 517 and 525) is more desirable on account of its deliquescent property. Various other deoxidizing agents have been recommended; as formate of soda by Goebel; oxalate of lime by Menil; and oxalate of soda by Dr. McGregor. I find that quadriceps
ARSENIOUS ACID.

β. Characters of a pure Aqueous Solution of Arsenious Acid.—A clear attery solution of white arsenic may be recognised by certain liquid agents which give rise to peculiar precipitates, as well as by ascent hydrogen, which causes the formation of a gas (arseniuretted hydrogen) possessed of remarkable and peculiar properties. The liquid re-agents, which deserve notice, are four only—namely, lime water, ammonio-sulphate of copper, ammonio-nitrate of silver, and hydrosulphuric acid. Their relative delicacy, as stated by Devergie, and the delicacy of the nascent hydrogen test, as ascertained by Mohr, and by the Commissioners of the French Academy of sciences, are as follows:—

<table>
<thead>
<tr>
<th>Dilution of arsenic solution.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime water ceases to act at</td>
</tr>
<tr>
<td>Ammonio-sulphate of copper, ditto</td>
</tr>
<tr>
<td>Hydrosulphuric acid, ditto</td>
</tr>
<tr>
<td>Ammonio-nitrate of silver, ditto</td>
</tr>
<tr>
<td>Marsh's nascent hydrogen test, ditto</td>
</tr>
<tr>
<td>Ditto ditto ditto ditto at</td>
</tr>
</tbody>
</table>

1. Lime Water.—Lime water occasions a white precipitate (areite of lime), with a solution of arsenious acid. The precipitate is soluble in most acids.

The impediments to the operation of this test are, a large quantity of water and ace acids, which hold it in solution, and gelatinous and oleaginous liquids, which keep it suspended.

The fallacies of this test are, carbonates, oxalates, tartarates, &c. which also throw down white precipitates with lime water. On the whole, it is a test of very little value.

2. Ammonio-sulphate of Copper.—If a dilute solution of ammonio-sulphate of copper be added to a solution of arsenious acid, a pale green precipitate (arsenite of copper, or Scheele's green) is obtained, and sulphate of ammonia remains in solution. This test is prepared as follows:—Add (cautiously) liquor ammonia to a solution of the sulphate of copper, so as to re-dissolve the oxide of copper, which it at first throws down. Care must be taken not to employ too much alkali, otherwise the test will not act. Moreover, the solution must not be concentrated, or no precipitate will be obtained.

The impediments to the action of this test are astringents, as tea, infusion of alls, &c. which prevent its acting characteristically.

The fallacies to be guarded against are, yellow-coloured and other organic acids, which give a green colour, and slight precipitate, even though no arsenic be present.

* Méd. Lég. ii. 218.
* Journ. de Pharm. xxiii. 356.
* MM. Thénard, Dumas, Bouchingault, and Regnault.
3. Ammoniaco-nitrate of silver: Hume's test.—If a solution of ammoniaco-nitrate of silver be added to a solution of arsenious acid, a yellow precipitate (arsenite of silver) takes place, and nitre of ammonia remains in solution. The precipitate is soluble in liquor nitric acid, solution of ammonia, and a solution of nitrate of ammonia. The mode of preparing this test is as follows:—Add a few drops of liquor ammonia to a solution of nitrate of silver, so that the oxide of silver which the alkali at first throws down may be nearly, but entirely, redissolved (see Solutio Argenti Ammoniati, E.). Great care is requisite to add neither too much nor too little; for if much be employed, the solution will not occasion any precipitate with arsenious acid; and if too little, it will produce a precipitate with phosphate of soda similar in colour to that produced with arsenious acid. The only certain way of knowing when the proper quantity has been employed is to test it. Arsenious acid, but phosphate of soda, ought to occasion a precipitate with it.

The impediments to the operation of this test, are, free acids (as hydrochloric, nitric, acetic, citric, or tartaric), chlorides, and organic matters. The acids may be readily neutralized by an alkali. If common salt, or other metallic chloride be present, ammoniaco-nitrate of silver throws down a white precipitate (a ride of silver), even though a considerable quantity of arsenic be present. To obviate this, add a few drops of nitric acid, then an excess of a solution of nitrate of silver. Filter to get rid of the precipitated chloride of silver, and apply ammoniaco-nitrate of silver. The presence of much organic matter impedes the action of this test.

Ammoniaco-nitrate of silver, when properly prepared, does not occasion a low precipitate with any substance save arsenious acid; and hence is not subject to any fallacy of that kind. If, however, it be not properly prepared, it may occasion a yellow precipitate (subsequeuiphosphate of silver) with phosphate of soda. There is an optical fallacy, against which the student should be put on his guard. If ammoniaco-nitrate of silver be added to certain yellow liquids containing mon salt, a white precipitate (chloride of silver) is produced, which, seen through a yellow medium, might, by a careless observer, be mistaken for a yellow precipitate.

4. Hydrosulphuric Acid (Sulphuretted Hydrogen).—If this gas be passed through a solution of arsenious acid, a yellow precipitate (sesquisulphuret of arsenicum or orpiment) is produced, while the oxygen of the arsenious acid, and the hydrogen of the hydrosulphuric acid, unite to form water. In order, however, for this effect to be produced, it is necessary that the liquid be slightly acidified by strong acid (as the hydrochloric). If the liquid be already acid, we must neutralize it by cautiously adding an alkali, and then acidify with hydrochloric acid.

In applying this test we may place the suspected liquid in a test tube, or conical wine or ale-glass (fig. 111); the gas being developed in a common Florence flask (or two-necked bottle, as recommended by Dr. Christison): the mouth of the flask is closed by a cork, perforated by a tube curved twice at right angles. The gas should, if possible, be passed through water contained in a double-necked bottle, before it is conveyed into the arsenical liquor, as a portion of the iron is apt to be carried over. The ingredients for developing the gas are a metallic sulphuret (as of iron or antimony) and sulphuric...
hydrochloric acid diluted with water. I prefer the sulphuret of iron with sulphuric acid. These are to be introduced into the flask previous to the adaptation of the cork. After the gas has passed through the arsenical liquid for a few minutes, portions of the yellow sesquisulphuret of arsenic (orpiment) begin to fall down. The separation of the precipitate is promoted by ebullition, and the exposure of the solution for a few hours to the air. The essential characters of the precipitate are, its yellow colour, its rapid solution in liquor ammonia, forming a colourless and very limpid liquid, and its yielding metallic arsenic when dried and heated with black flux, or a mixture of ignited carbonate of soda and charcoal. When the quantity of sesquisulphuret is small, some difficulty may be experienced in removing it from the filter for collection. The readiest way is that recommended by Devergie:—collect it on the filter in as small a space as possible, then wash it with liquor ammonia, which dissolves it. The filtered liquid may then be evaporated in a capsule or watch-glass: the ammonia flies off, and leaves the sesquisulphuret.

The fallacies of the hydrosulphuric acid test are, the salts of cadmium, the perls of tin, the antimonial compounds, and selenic acid, which occasion precipitates in hydrosulphuric acid, more or less analogous in colour to that produced by arsenious acid. The precipitate with cadmium closely resembles that with arsenie, and it is not soluble in alkaline solutions. This metal (cadmium) has been detected in some of the preparations of zinc. The perchloride of tin, sold under the name of spirit of tin, occasions a yellow precipitate (bisulphuret of tin) somewhat resembling sesquisulphuret of arsenic. Very weak solutions of emetic tartar form a reddish-yellow liquid, or throw down a reddish precipitate (hydrated sesquisulphuret of antimony) somewhat analogous in appearance to that formed by an arsenical liquid. If hydrosulphatic acid be transmitted through a liquid in which pulvis antimonialis has been boiled, the solution acquires a yellowish-red colour, from the formation of sesqui- or bisulphuret of antimony. From all the above precipitates sesquisulphuret of arsenic is readily distinguished by the reduction test already mentioned.

Hydrosulphate of ammonia (described at p. 478) is sometimes employed as a substitute for hydrosulphuric acid, an acid being added at the time of applying it to neutralize the ammonia; but it is liable to several serious objections. When prepared it causes a yellowish precipitate with arsenious acid, red with emetic tartar, and black with solutions of lead; but by exposure to the air for a few days or two, it forms a white precipitate with arsenious acid, yellow with emetic tartar, and red with lead!

5. Nascent Hydrogen: Marsh's test.—If arsenious acid be subjected to the action of nascent hydrogen, it is deoxidized, and the metallic arsenic thereby obtained, combining with hydrogen, forms denitrogenated hydrogen gas.

* Vide Thomson's History of Chemistry, ii. 220.
This test, which is the discovery of Mr. Marsh, of Wool may be thus applied:—Mix a small portion of the suspected with some diluted sulphuric acid (1 oil of vitriol and 7 water pour the mixture over some pieces of zinc previously introduced a proper apparatus: bubbles of gas immediately make their escape. If no arsenious acid be present, the evolved gas is hydro but if the liquor holds arsenic in solution, arseniuretted hydrogen is formed. This gas is recognised by the following character:

α. It has an alliaceous odour.
β. It burns with a bluish white flame and the evolution of whitish smoke. If a plate of mica (commonly termed tis) common window glass, or of porcelain (as a white saucer or plate), be held a short distance above the flame, arsenious acid in a finely pulverulent state is deposited on it, forming a white or the plate be depressed so as to cut the flame, and thereby slightly impede the combustion of the gas, a blackish deposit (arsenicum) is obtained. Or both these deposits may be readily simultaneously procured by holding vertically over the flame of glass, nine or ten inches long, and a quarter or half an inch in diameter: the tube becomes lined for the space of several with metallic arsenicum and arsenious acid, and the garlic can be detected at either end of the tube. To obtain solid the acid, let the flame successively play beneath three or four times water placed on the under side of a plate of mica; then apply liquid tests for arsenic before mentioned. Or apply separate pans of the liquid tests themselves to the plate, and then let the play on them successively for a few minutes, the characteristic effects of arsenious acid will be obtained. Care must be taken to apply a lighted taper to the jet of gas before the air is expelled or an explosion may be the result.

Various forms of apparatus may be used for this experiment. That en by Mr. Marsh is a simple glass tube, bent like a syphon (fig. 112). A glass rod is dropped into the shorter leg, then a piece of clean sheet in a stop-cock and jet are afterwards to be inserted. The suspected liquid with the dilute acid before mentioned, is to be then poured into the tube. Effervescence is then produced, and after allowing the air to be expelled stop-cock is to be closed, and when a sufficient accumulation of gas has place, it is again to be opened, and the gas ignited. Where the matter examined is very small in quantity, Mr. Marsh puts the suspected liquid acid, and the zinc, in a little glass bucket (fig. 113), attached to the stop by a platinum wire, and then introduces it into the short leg of the tube previously filled with common water.

When the quantity of arsenical liquor to be tested is large, an inverted glass with a stopcock attached may be used. The zinc is suspended. The bell glass is immersed in the diluted acid to which the suspected is added. This apparatus is similar to that used for obtaining fire by the stream of hydrogen gas thrown on spongy platinum.

* Trans. of the Soc. of Arts, ii. 62; also Lond. Med. Gaz. xxviii. 650.
modification (fig. 114) of Mr. Marsh's apparatus is supplied with two bulbs, in each leg of the instrument, and presents some advantages over the simple tube: thus it enables us to collect a larger quantity of gas, while the assists in checking the frothing by breaking the bubbles. But the simplest, cheapest, and often the most useful form of apparatus, is a two-ounce widethread phial, with a cork perforated by a glass tube or tobacco-pipe (as in 115). It presents this great advantage, that we can employ a fresh apparatus every experiment, and thus avoid all possibility of contamination from chemical liquids used in previous experiments.

If arsenuretted hydrogen be subjected to a red heat it is decomposed into arsenic, which is deposited, and hydrogen gas, which escapes. The gas may be generated in a double-necked flask, or in a wide-mouthed bottle, closed by a cork bored with two holes; and may be allowed to escape by a horizontal tube (made of fusible glass), which may be heated by a large-wicked spirit lamp. The gas is decomposed by the heat; and the arsenicum
is deposited in the form of a metallic ring, beyond the flame at the aperture.

Apparatus for subjecting Arseniuretted Hydrogen to the action of Heat on Silver.

a. Bottle for generating the arseniuretted hydro-
gen.
b. Funnel, or tube, by which the sulphuric acid
and arsenical liquor are introduced into the
bottle.
c. Escape tube, supplied with a bulb, to con-
dense any liquid which may rise from the
bottle.
d. Wider tube, loosely filled with asbestos, to
impede the passage of any water. This is
not essential.
e. Narrow tube of difficulty fusible
out to a fine point at the extr
f. Spirit lamp.
g. Curved and perforated metallic
sheet, or tinned iron, to sup-
tube in the event of its soften-
h. Curved glass-tube, which may
for the tube e, when the gas
through a solution of nitrate-
i. Test-glass, containing a solutic-
 silver.

The detection of arseniuretted hydrogen by heat was suggested by Berzelius', and Chevalier'. Some useful and practical improvements of this test were suggested by MM. Kroppelín and K. The Commissioners appointed by the French Academy introduced additional modifications of the experiment*. The latter recommend that the tube should be coated with gold or silver leaf, and subjected to the heat of which is preferred to the spirit-lamp flame, as it more effectually decomposes the gas. But it complicates the operation, and renders it much more troublesome.

The arsenicum deposited in the tube may be recognized by its physical properties before described (see p. 625).

If the arseniuretted hydrogen is completely decomposed, hydrochloric acid is evolved by the extremity of the tube e. But as a portion of gas is decomposed, the jet should be set fire to, and attempts made to obtain spots on a plate of porcelain.

δ. If the arseniuretted hydrogen be passed through a solution of silver nitrate, a mutual reaction takes place between these substances. Black metallic flocculi are deposited, and a solution of silver nitrate is obtained, mixed with free nitric acid. Hydrochloric acid is then cautiously added to the decanted liquor, to ensure the complete precipitation of the silver nitrate. The filtered liquor may then be tested for arsenious acid, or be evaporated to dryness, during which operation the nitrate of silver is deposited in the form of a metallic ring, beyond the flame at the aperture.

4 Journal de Pharmacie, t. xxiii. p. 568.
6 Ibid. t. xxiv. p. 160.
9 Ibid. t. xxv. p. 445.
ARSENIOUS ACID.

oxidizes the arsenious acid, and converts it into arsenic acid, which constitutes the dry residuum. This yields a brick-red precipitate, with a solution of nitrate of silver. Or the concentrated solution may be transferred to a very small Marsh's apparatus.

This test was suggested by Lassaigne. It has been adopted by the Commissioners appointed by the French Academy. It is a very valuable mode of using Marsh's test, and prevents the loss of the first portions of gas.

The apparatus fitted for performing Lassaigne's test has been already described and figured (see p. 432, fig. 116, b).

The black flocculi produced in a solution of nitrate of silver by arseniuretted hydrogen are regarded by Lassaigne as metallic silver, by Graham as arseniuret of silver. It appears to me to be metallic silver contaminated by some intimately adherent arsenic acid, which can be removed by repeated washing and boiling in water, and especially by washing with an alkaline solution.

In the performance of Marsh's test there are several impediments and fallacies, with which the student should be acquainted.

a. The impediments to the operation of Marsh's test are, organic liquids (as porter, soup, contents of the stomach, &c.), which occasion great frothing, and choke up the jet. To obviate these, various methods have been advised; such as greasing or oiling the interior of the short leg of the apparatus; putting a layer of alcohol or oil on the surface of the liquid in the short limb, and placing the apparatus aside for an hour or two, to allow the bubbles to burst. These methods are all more or less objectionable. They either imperfectly fulfil the object intended, or they mask somewhat the qualities of the arseniuretted hydrogen. The best mode of proceeding is to evaporate the arsenical liquor to dryness, and char it either by heat, very cautiously applied, or by means of oil of vitriol. Danger and Flandin give the following directions for its execution:—Add to the organic matter contained in a porcelain capsule, ½ of its weight of sulphuric acid, and heat until vapours of sulphuric acid appear. The matter is first dissolved, but during the concentration it is charred. The liquor is to be constantly stirred with a glass rod. The carbonization is effected without any swelling or frothing, and is to be continued until the charcoal is friable and almost dry. A small quantity of concentrated nitric acid or nitromuriatic acid is to be added, by means of a pipette, when the capsule is cold. This converts the arsenious acid into the more soluble arsenic acid. The mixture is then to be evaporated to dryness, treated with boiling water, and the simple liquor introduced into Marsh's apparatus, in which it never froths.

Nitric acid or nitrate of potash is sometimes used to charcoal the matter; but it is less manageable than sulphuric acid; for towards the end of the experiment it is difficult to prevent deflagration, by which part of the arsenic is lost.

b. The fallacies of this test arise from the presence of either antimony or imperfectly charred organic matter in the suspected liquid, or from the employment of either zinc or sulphuric acid contaminated with arsenic. A solution of Emetic Tartar, placed in Marsh's apparatus (with zinc and dilute sulphuric acid) evolves antimonius or arseniuretted hydrogen gas, which agrees in several of its characters with arseniuretted hydrogen. Thus it has a marked odour (dependent probably on the hydrogen), and which might be confounded with that of arseniuretted hydrogen. It burns in the air with a yellowish flame, and the deposition of a black crust of metallic antimony surrounded by a white one of oxide (on mica glass held over it), resembling arsenic and arsenious acid deposited by arseniuretted hydrogen: moreover, the action of hydrosulphuric acid and of ammoniacal-sulphate of copper on the oxide of antimony, produces colours

1 Journal de Chimie Méd. t. vii. IV Sér. p. 538.
3 Elements of Chemistry, p. 652.
5 Mr. L. Thompson, Lond. and Edinb. Phil. Mag. May 1837. Also Pfaff, Pharmaceutisches Central-Blatt für 1838, S. 63.
similar to those generated by the action of these tests on arsenious acid. Furthermore, when heated during its passage through a glass tube, antimonilivered hydrogen is decomposed, and forms a dark metallic crust. It also occasions a black deposit in a solution of nitrate of silver. The antimonial, may be distinguished from the arsenical, crust by adding a drop of nitric acid, and evaporating to dryness; a white powder is left in each instance. A few drops of a dilute solution of the nitrate of silver being now added, and the whole exposed to the fumes arising from a stopper moistened with ammonia, the arsenical crust will give the well-known canary-yellow flocculi. Moreover, the greater volatility of arsenicum, and its conversion into octahedral crystals of arsenious acid, may serve, in some cases, to distinguish it from antimony. Furthermore, the solubility of the arsenious acid, and the reaction of the before-mentioned liquid tests on the solution, will distinguish it from oxide of antimony, which is insoluble. If antimonilivered hydrogen be conveyed into a solution of nitrate of silver, no arsenious or arsenic acid can be detected by the tests before directed to be used for arseniuretted hydrogen. Lastly, the metallic crust obtained by submitting a current of the gas to heat presents some distinguishing characters: the arsenical crust is always deposited in the more distant or anterior part of the tube, whereas the antimonial one is first deposited on the heated part of the tube, and by continuing the heat we obtain two rings, one in the anterior or more distant, the other in the posterior or less distant part of the tube.

In performing Marsh's test great care must be taken that the apparatus be perfectly clean, and that fresh zinc and acid liquor be used for every experiment. It has been already stated (p. 470) that sulphuric acid frequently contains arsenous acid. The experimenter should also be fully alive to the possibility of the zinc, or even the brasswork of the apparatus, containing minute traces of arsenic; hence the necessity of examining the quality of the hydrogen flame before adding the suspected arsenical liquid. It has been shown by Mohr that zinc which had been once used, but afterwards carefully washed both in water and acid, retained sufficient arsenic to produce the usual effects on the hydrogen flame.

Messrs. Danger and Flandin have asserted, and their statements are confirmed by the report of the commissioners of the French Academy, that imperfectly carbonized organic matter introduced into Marsh's apparatus may deposit on glass or porcelain crütts which strongly simulate those obtained from arsenical substances. These non-arsenical spots are composed of sulphate and phosphate of ammonia mixed with a small quantity of organic matter. They dissolve with difficulty in nitric acid, and the residue, obtained by evaporating the nitric solution to dryness, yields, on the addition of nitrate of silver, a yellow precipitate of phosphate of silver. The true arsenical spots, on the other hand, dissolve readily in nitric acid, and the residue obtained by evaporating the nitric solution to dryness forms, with nitrate of silver, a brick-red precipitate of arseniate of silver.

γ. Detection of Arsenious Acid in Organic Mixtures.—I shall confine myself to a brief notice of the modes of detecting arsenious acid when mixed with the contents and tissues of the stomach, and must refer the reader to the works of Dr. Christison and Devergie for further details, especially in reference to other organic mixtures.

When the stomach is laid open we sometimes observe in it a white powder or white particles; these are, of course, to be carefully removed; and if they be arsenious acid, no difficulty will be experienced in recognising them by the tests already mentioned (p. 625).

* Mr. L. Thompson, *op. cit.*
* Dr. E. Turner's *Chemistry*, by W. Turner.
* *Journ. de Pharm.*, xxiii., 364.
* *Journal de Pharmacie*, t. xxvil. p. 410.
* Ibid., p. 428.
* *Médecine Légale*, W. 78.
If no solid arsenious acid be observed, cut the stomach into small pieces, and boil it with the contents of this viscus for half an hour in distilled water, to which a small quantity of liquor potassa has been added; then filter, first through muslin, and afterwards through paper. Fibrin is insoluble in water, and, by boiling, albumen is coagulated, so that (with the exception of small portions of these principles held in solution by the alkali) the filtered liquor is free from both fibrin and albumen. A little acetic acid is now to be added, and the liquid boiled, by which any casein present will be coagulated, and got rid of by filtering a second time. Sometimes the liquor is now found sufficiently free from organic matters to enable us to detect the arsenious acid very readily by the ammoniacal-nitrate of silver. Dr. Christison says, that if this test act characteristically, that is, gives a copious yellow precipitate, the liquid is sufficiently free from foreign matter. If, however, it give no indication, or at least only imperfect ones, of arsenious acid, evaporate to dryness by a gentle heat (as a water-bath), and boil the residue in repeated portions of distilled water. We thus obtain a solution of arsenious acid, which, after being acidulated with acetic or hydrochloric acid, is to be decomposed by passing a current of hydro sulphuric acid through it. The precipitated orpiment (sesquisulphuret of arsenic) is to be collected, and reduced in the way already described (pp. 625 and 629).

Arsenious acid in organic liquids may sometimes be readily detected by the development of arseniuretted hydrogen when zinc and sulphuric acid are added to the suspected liquor (vide p. 630), but the frothing produced by the organic matter creates considerable difficulty. I have already pointed out the best method of obviating this (see p. 633).

Composition.—The following is the composition of arsenious acid:

<table>
<thead>
<tr>
<th>Atom</th>
<th>Equ. Wt.</th>
<th>Per Cent.</th>
<th>Berzelius</th>
<th>Mitscherlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenicium</td>
<td>1</td>
<td>38</td>
<td>75</td>
<td>75-78</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1 1/2</td>
<td>12</td>
<td>24</td>
<td>24-218</td>
</tr>
<tr>
<td>Arsenious Acid</td>
<td>1</td>
<td>50</td>
<td>100</td>
<td>100-000</td>
</tr>
</tbody>
</table>

Purity.—Powdered arsenious acid is sometimes adulterated with chalk or sulphate of lime. The fraud is readily detected by heat, which volatilizes the acid, but leaves the impurities.

It is entirely sublimed when heated. Mixed with charcoal and exposed to heat, it emits an allaceous smell. It is dissolved by boiling water; and hydro sulphuric, when added, throws down a yellow precipitate, and lime-water yields a white one. Ph. L.

The Edinburgh College merely observes, that arsenious acid "is entirely sublimed by heat."

Physiological Effects. a. On Vegetables.—The effects of arsenious acid on plants have been studied by Jäger⁵, Marcet, Macaire⁶,

⁵ Diss. Inaug. Tubingae, 1808; quoted by Marx, in his Die Lehre von den Giften, ii. 99.
and by others, and from their observations we learn that it is poisonous to all the higher, and most of the lower, families of plants. It appears that seeds which have been soaked in a solution of arsenious acid are incapable of germinating, and that buds which have been plunged in it are no longer capable of expanding. If roots or stems be immersed in this solution the plants perish; death being preceded by drooping of the leaves and petals, and the appearance of brownish patches on the leaves, the veins and midribs of which are discoloured. If the stem of the Common Barberry (*Rubus vulgaris*) be placed in a solution of arsenious acid, the plant dies, but the stamens, according to Macaire, become stiff, hard, and retracted, and on any attempts being made to alter their position, they readily break. On repeating the experiment, however, I did not observe this condition of the stamens. I found them not at all brittle, but quite flexible, and difficult to break by the point of a knife. The leaves when burnt evolved a garlic odour. Jäger has seen a small plant (supposed by De Candolle* to be Mucor imperceptibilis*) growing in water which contained 1/3 of its weight of arsenic. And, more recently, Gilgenkrantz* says he has seen an algaceous plant, of the genus either *Leptomitus* or *Hygroceris*, develop itself in a solution of arsenic. These are most remarkable exceptions to the general effects of this poison on vegetables, and deserve further examination. Jäger has shewn that arsenic is absorbed by plants; for he found that, on burning vegetables destroyed by this poison, he obtained a garlic odour, as I have also done.

3. On Animals generally. — Arsenious acid is poisonous to all classes of animals. No exceptions, I believe, are known to exist to this statement. The most extensive series of experiments on this subject are those performed by Jäger*. From them we learn, that in all animals, from the infusoria up to man, death from arsenic is invariably preceded by inordinate actions and increased evacuations, especially from the mucous membranes. In most animals the stools were frequent and fluid; and in those in which mucus is secreted on the surface, it was remarkably increased. The power of voluntary motion and susceptibility of external stimuli were decreased; and after death the muscles soon ceased to be influenced by the galvanic agency. In animals which breathe by lungs, respiration became difficult and laborious; and in warm-blooded animals great thirst was experienced. In birds and mammals convulsions came on, preceded by vomiting, except in those animals (as the rabbit) which cannot vomit (see p. 99). Enormous quantities of arsennious acid have been sometimes administered to horses with impunity. Berthe* gave two, and afterwards three, drachms to a mare, for the cure of an obstinate skin disease, without any injurious effects. Beissenhirtz* gave successively, on different days, one, four, three, two, and eight

* Phys. Vég., p. 1230.
* Journ. de Pharm. xxiii. 36.
* Quoted by Wörner, Die Wirksamkeit, etc., 1. 221.
ARSENIOUS ACID.

of arsenious acid to a horse: the animal did not die until the 10th day after taking the last-mentioned dose. Yet, notwithstanding these and some other analogous facts, which seem to prove arsenic has comparatively little effect on horses, the best in-veterinarians agree in considering it an energetic poison to animals.b

In Man. aa. Of very small or therapeutical doses.—In very small quantities (as one-sixteenth or one-twelfth of a grain) no effects are usually produced by the use of arsenic, unless it be fed for a long period. Indeed some writersc go so far as to say that it is a strengthening remedy, and that it improves the appetites digestion, promotes assimilation and secretion, excite muscular and nervous functions,—in a word, acts as a tonic. It is, indeed, true that sometimes experience a temporary increase of appetite from the small doses of arsenie; and it is also certain that this remedy is frequently beneficial in agues and other diseases in which tonics have been efficacious. But the analogy between the action of arsenious oxide, of the vegetable tonics, as cinchona (to which Vogt gives it), stops here. I have sought in vain for other evidences of operation. I have seen very minute doses of arsenic to patients affected with lepra, and continued for many months without being able to detect the least indication of its action, except the amelioration of the disease. When it was slightly increased, the appetite in some cases appeared increased; but the effect was neither universal nor continued. Shortly afterwards, a sensation of heat in the throat, oesophagus, stomach, came on, occasionally with nausea, but seldom with voicing in a few cases with gastrodynia; a febrile condition of the skin; there were dryness of the skin, increased secretion, relaxed bowels, sometimes with griping; the patients usually, ined of great languor, inaptitude for employment, and want of sleep by, redness of the eyes, and certain swellings, especially of (edema arsenicalis)—effects which are so different from those produced by the remedies called strengthening, that I cannot regard it as a tonic. In proof of the beneficial effects of this substance, Vogt says that he lives on of arsenic, that it promotes the appetite, the aliment the power of old enfeebled horses, and mentions that Jäger saw the same effects on a pigeon. To the first of these statements, the beneficial effects from the use of arsenic as a condiment, as I do not give credence; and, with respect to the action of

c See Vogt, Pharmakodynamik.
arsenic on horses, every well-informed veterinarian knows that
rates on these animals as a poison.

Dr. Fowler gives the following summary of the effects of arsenical solution in more than 320 cases:—In about one-third of the cases, nausea; and nearly one-third with an open body; and about one-third with griping. Vomiting, purgings, swellings, and at were but rare in comparison with the preceding effects, and the frequent occurrence was generally found in the order in which are here enumerated, swellings and anorexia being the sel...erly attended with nausea, and one-quarter of those attended with an open body, were unconnected with an effect. Griping did not often occur alone; purging and a seldom or never; and vomiting was always accompanied with or less nausea." In some cases salivation has been produced by the medicinal use of arsenic, as will be noticed presently.

\[\beta.\text{ Of long-continued small doses, or of large medicinal doses (or Chronic Poisoning).}\]

—Small doses of arsenious acid continued over a long period, act as a slow poison; and, if persevered in, ultimately occasion death. The same effects take place, in a period, from the administration of large medicinal doses. Some of the digestive apparatus, at other times the nervous system, first symptoms of the poisonous operation of this agent.

Hahnemann (quoted by Dr. Christison) has graphically described the condition of slow poisoning by arsenic as "a gradual sinking of the powers of life, without any violent symptom; a nameless and ill-defined illness, failure of the strength, an aversion to food and drink, and all the other enjoyments of life."

On some occasions the first symptoms which I have observed in this poisonous operation have been thirst, redness of the conjunctiva, and eyelids, followed by a cutaneous eruption. At other times irritability of the stomach is the leading symptom. In some cases ptyalism is brought on. Marcus noticed this effect; as also Dr. Ferrier. Furley has published five illustrative cases of it. Trousseau and Pidoux also mention this symptom as produced by the long-continued use of feeble doses of arsenic. Another instance of this has been published by Mr. Jones. This effect acquired some importance in the celebrated Bristol case of poisoning.

The following is an abstract of the symptoms produced by the long-continued employment of small doses of arsenious acid which are more or less modified in different cases:—Disorder of digestive functions, characterized by flatulence, sensation of weight or actual pain, in the stomach and bowels; loss of appetite; nausea, and vomiting; purging, or at least a relaxed condition.

* Ephemerides, 1689.
* Med. Hist. and Ref. iii. 206.
* Treaté de Therap. ii. 148.
* Ibid. xv. 519; and Trans. Proc. Assoc. iii. 431.
bowels, and griping; furred tongue, with dryness and tightness of the mouth and throat, or with salivation. Quick, small, and sometimes irregular, pulse; oppressed respiration, with a dry cough. The body wastes; the stomach being frequently so irritable that no food can be retained in it. Headache, giddiness, and want of sleep, are frequently observed. The limbs become painful, feeble, trembling, subject to convulsions; occasionally benumbed, and ultimately paralyzed. The cutaneous system is, in some cases, affected, an eruption makes its appearance, and now and then the hair and nails fall off. Swelling of the feet and of the face is not unfrequently observed; and under these symptoms the patient gradually sinks, in some cases retaining his consciousness to the last, but at other times delirium or stupor supervening.

γ. Of excessive or poisonous doses (Acute Poisoning).—The symptoms produced by the ingestion of a large dose of arsenious acid are not invariably alike, but put on three forms. In some cases the principal or leading ones are those indicating gastro-enteritis; the nervous system being not obviously, or at least only slightly, affected. In others, the gastro-enteritic symptoms are absent, and the principal operation of the poison is on the vascular and nervous systems. Lastly, there are other cases in which we have gastro-enteritic symptoms, with an affection of the nervous and vascular systems.

Form 1st: Acute poisoning with symptoms of gastro-enteritis. — In this form of arsenical poisoning, nausea and vomiting come on soon after the poison has been swallowed, and are attended with burning pain in the throat and stomach, which soon extends over the whole abdomen. Pain and vomiting, however, are not invariably present. The matters vomited vary in their nature and appearance; sometimes being bilious, at other times tinged with blood. Frequently there is a sense of heat, dryness, tightness, and constriction of the throat, accompanied with incessant thirst, and occasionally with an almost hydrophobic difficulty of swallowing. The lower part of the alimentary canal soon becomes affected, indicated by the burning pain, which is increased on pressure—by the hard and tense condition of the abdomen—by the diarrhoea (the stools occasionally being bloody)—by the tenesmus—and by the occasional heat and excoriations of the anus. When the lower part of the alimentary canal is powerfully irritated, the urogenital apparatus becomes affected; and thus there may be difficulty in passing the water, with burning pain in the genital organs. The constitutional symptoms are, in part, such as might be expected from this violent local disorder; thus the pulse is quick, but at the same time small, feeble, and irregular; there are cold clammy sweats; the action of the heart is irregular, giving rise to palpitation; the breathing is short, laborious, and often painful; the tongue is dry and furred; and the membrane lining the air-passages feels hot, and oftentimes painful.

Although, in this form of acute arsenical poisoning, the gastro-enteritis is the principal, and, in some cases, almost the only affection, yet there are generally observed some symptoms indicative of disorder of the cerebro-spinal system; sometimes in the form of tremblings or cramps of the limbs, or delirium, and even, in the last stage, insensibility. Occasionally, also, eruptions take place.

In this form of poisoning, death usually occurs in from twenty-four hours to three days after the administration of arsenic; but Dr. Christie says that Pyl has recorded a case where death occurred in three hours after swallowing the poison.

Form 2d: Acute poisoning with narcoism, without any remarkable symptoms of gastro-enteritis. — In some cases of poisoning, in both man and animals, the symptoms are those indicative of disorder of the cerebro-spinal and vascular systems: abdominal pain, vomiting, and purging, being either altogether absent, or very slight.
The symptoms are usually faintness, or perhaps actual syncope, convulsions, or paralysis; and, sometimes, insensibility; at other times, delirium. These symptoms constitute the state called narcotism. Of this form of arsenical poisoning (which is somewhat rare) Dr. Christison has given an abstract of twelve recorded cases. In most of them the quantity of arsenious acid taken was very large; for example, half an ounce, or even an ounce.

Form 3d: Acute poisoning with symptoms of gastro-enteritis, followed by an affection of the cerebro-spinal system.—In this form of poisoning we have at first the usual gastro-enteritic symptoms, and which I have already described under the first form of poisoning. When, from the smallness of the dose, or from other circumstances, the patient recovers from the gastro-enteritis, symptoms of a cerebro-spinal affection sometimes make their appearance. The kind of disorder, however, varies considerably in different individuals. "The most formidable," says Dr. Christison, "is coma; the slightest, a peculiar imperfect spasm of the arms or legs, resembling what is occasioned by the poison of lead; and between these extremes have been observed epileptic fits, or tetanus, or an affection resembling hysteria, or madness."

In a medico-legal point of view it is important to determine what is the smallest fatal dose of arsenious acid. It is not easy, however, to give a positive answer to this question. Dr. Christison says, "the smallest actually-fatal dose I have hitherto found records is $4\frac{1}{2}$ grains. The subject was a child four years old, and death occurred in six hours. In this instance, however, the poison was taken in solution." The powerful effects sometimes produced by $\frac{1}{2}$, $\frac{1}{4}$, or $\frac{1}{8}$ a grain, lead us to suspect that 1 grain might produce death; but we have no recorded case of this. Hahnemann says, 1 or 2 grains may prove fatal in a few days; and Dr. Christison remarks, that this statement cannot be very wide of the truth. Of course a repetition of much smaller quantities might cause death. However, under certain circumstances, enormous quantities have been swallowed with very trivial effects. Some years ago I opened the body of a man who destroyed himself by taking arsenic, and I was informed by the friends that about a fortnight previous to his death, he made an attempt to destroy himself by swallowing a quantity of powdered arsenic, which they found, on inquiry at the druggist's of whom it was purchased, to have weighed half an ounce. It was taken immediately after dinner, and the only effect produced was violent vomiting. Here it is evident that the distension of the stomach with food saved the patient's life. This unfortunate individual repeated the attempt, and death was the result. Another remarkable case of recovery, after the ingestion of half an ounce, has been recorded by Dr. Skillman.

Morbid appearances produced by arsenious acid.—When arsenious acid kills by its narcotic operation (constituting the second form of arsenical poisoning), no morbid condition is observable after death. In other cases, however, various alterations are observed, which may be most conveniently arranged under the following heads:

a. Morbid appearances of the alimentary canal.—The alterations observed in the condition of the intestinal canal vary with the quantity

1 See some remarks on this subject by Mr. A. S. Taylor, in the Guy's Hospital Reports, No. 29
the poison taken, and probably with other circumstances, but they
all indicative of inflammation: thus we have redness as one
symptom, sometimes accompanied with extravasations of blood into
the tissue of the canal; ulceration is also frequently observed, some-
times softening of the mucous coat, effusion (of lymph or blood), and
occasionally even gangrenous spots.

3. Morbid appearances of the vascular system.—The blood is
metimes, though not invariably, fluid after death, and dark coloured.
The heart is mostly flabby, and it is asserted that on its inner surface
pecially the carnea columnae and valves, particularly of the left
c, is observed redness, sometimes diffused, sometimes in the form
spots", which penetrate a line in depth into the substance of the
art. The pericardium usually contains serum.

y. Morbid appearances of the respiratory system.—These are
ther very remarkable nor constant, and principally consist in red-
ness of the pleura, effusion of lymph or serum into the cavity of the
ura, red spots, and occasional congestion of the lungs, and red-
ness of the membrane lining the air tubes.

3. The morbid appearances of other parts deserve little attention.
In some cases inflammation, and even gangrene, of the genital organs
have been observed; the conjunctivae is sometimes very vascular, and
andations are occasionally observed in the condition of the skin.
Redness, extravasation of blood, and effusion of serum, are said to
have been seen in the brain.

In connexion with the morbid appearances produced by arsenic, the following
arks, made by Orfila, deserve notice. "Under certain circumstances the
cous membrane of the stomach and intestines is lined with a multitude of
lignant points, composed of fat and albumen: placed on burning coals these
decrepitate on drying, and produce a noise which has been improperly
ominated detonation: they inflame as a fatty body when they contain a notable
ity of fat, and exhale an odour of burned animal matter. These fatty and
uminous globules may be met with in the bodies of individuals who have not
poisoned, and require attentive examination in order to distinguish them
arsenious acid. The best method of avoiding this error is to digest these
icular parts with water, and to apply the tests proper for demonstrating the
ence of arsenious acid."

INFLUENCE OF ARSENIOUS ACID ON THE PUTREFRACTIVE PROCESS.—
till the commencement of the present century it was supposed that
bodies of animals poisoned by arsenious acid were unusually prone
putrefaction. This, however, has been satisfactorily disproved by
periments and observations of Klank, Kelch, Hünefield, and
ers; and it appears that, when placed in contact with animal
atures, it acts as an antisepic. "I have kept a bit of ox's stomach
ears in a solution of arsenic," says Dr. Christison, "and, ex-
t slight shrivelling and whitening, I could not observe any change
uced in it." This antiseptic property of arsenious acid, which

White spots are frequently met with on the surface of the heart when no arsenic has been taken
hospital Reports, vol. iii.)

Bd. de Med. col. 5, art. Arsenic.

Quoted by Wibmer, in his Wirkung d. Arsenium. u. Gift; and by Dr. Christison, in his Treatise
 Poisons.
commences, and is attended with the usual gradual increasing in the customary manner, it seems for a stand-still, and then a series of changes commences character: the soft parts become firmer and drier, at retaining their structure; the putrid odour is frequent, one resembling garlic; the skin becomes brown and the muscular fibres and cellular tissue (especially of the parietes) are changed into a tallowy cheesy-like mass, spleen, and heart, become dry, while the bowels, form a greasy mass. During these processes the quantity in the body diminishes, probably by exhalation,—very probable, when we bear in mind the garlic odour body, and which has been observed by several writers, however, must be exceedingly small. After the cheesy smell disappears, and the body becomes dry, in some cases the alimentary tube has been found little composed, although other parts of the body had been mummified.

I ought, however, to remark, that some writers do phenomena to the influence of arsenious acid, but 7 Jäger7 tells us that in his experiments the putrefactive of animals poisoned by arsenic seemed neither to hastened, whether they were buried or not; but he and in contact with an arsenical solution seem preserved. Seemann8 likewise states, that the bodies of the went the usual kind of putrefaction after death. In many cases arsenic modifies the putrefactive process think, be doubted by those who carefully examine adduced in favour of this opinion.

Does this mummifying process depend on the change of the arsenic, or ought we to refer it to a change of
ARSENIOUS ACID.

advocated by Dr. Christison, appears to me untenable; for, in the first place, there is no evidence of any peculiar change of this kind during life; secondly, that this does not take place appears probable, from the putrefactive process commencing after death as usual; and it would appear that the peculiar influence of the arsenic does not commence, or at least is not evident, until this process has existed for some time, and when a garlic odour is evolved by the body. It is, indeed, true that the quantity of arsenic which has been detected in the body after death, is, as Dr. Christison remarks, "almost inappreciably small;" but it is probable that the quantity is much larger than chemists have yet been able to recognise: and it is not at all unlikely that the arsenious acid may enter into new combinations while within the dead body, and in this way become diffused, probably in a gaseous state: the garlic odour which is evolved favours this notion, as well as the statement made by some, that the quantity of arsenic in the body diminishes during the progress of the mummifying process.

Modus Operandi.—When we consider that arsenious acid operates as a poison to whatever part of the body it be applied, the nerves and muscular fibres excepted; that the quickness with which it acts is in proportion to the absorbing powers of the part, and that the most soluble are the most energetic preparations, we can have little difficulty in admitting that absorption into the blood-vessels is necessary to the action of this potent agent. Lassaigne\(^*\) states, that he detected it in the infiltrated pleura of a horse: and Fodéré\(^\ast\) twice got indications of its presence in the urine: but Hardeg and Schubarth, on the other hand, failed to recognise it. An acquaintance of Beissenzirz\(^*\) obtained nearly three grains of metallic arsenic from the stomach, cæcum, lungs, liver, heart, and brain of a horse poisoned by six drachms of arsenious acid, taken at divided doses: but the extraction of this substance from the stomach and cæcum is no evidence of its absorption. More recently, and by the aid of Marsh's apparatus, it has been detected in the liver and urine of dogs poisoned by it\(^\ast\).

Arsenious acid appears to exercise a specific influence over several parts of the body, especially the alimentary canal, the heart, and the nervous system. That the alimentary canal is specifically affected is shown by the inflammation of the stomach, induced by the application of arsenic to wounds, and which, according to Sir B. Brodie\(^**\), is more violent and more immediate than when this poison is taken into the stomach itself. That the heart is also specifically acted on by arsenious acid is proved by the symptoms (the anxiety at the precordia, the quick irregular pulse, &c.), and by the post-mortem appearances (red spots in the substance of this viscus), and by the diminished susceptibility to the galvanic influence. The specific

\(^\ast\) Quoted by Dr. Christison.
\(^*\) Quoted by Wibmer, op. cit. l. 318.
\(^**\) Phil. Trans. for 1812, 205.
affection of the nervous system is inferred from the symptoms of the headache, giddiness, wandering pains, impaired sensibility of the extremities, and delirium or coma, are indications of the affection; while the feebleness, lassitude, trembling of the limbs, paralysis or tetanic symptoms, are evidences of the disordered condition of the true spinal or excito-motory system of Dr. Hall.

The alimentary canal, heart, and nervous system, are not the parts on which this acid appears to exercise a specific influence. The lungs, the skin, the salivary glands, &c., are also specifically affected. The disorder of the lungs is inferred from the local pain, cough, and occasional inflammatory appearances after death. The eruptions of other altered appearances of the skin, and the falling off of hair and nails (sometimes noticed), have led to the idea of the specific influence of arsensious acid on the cutaneous system,—an opinion seems further supported by the fact of the remarkable influence it exercises on the skin in some cutaneous diseases, especially leprosy. This opinion is noticed by Marcus, Ferrier, Mr. Furley, Cazenave, and other observers, and seems to indicate that the salivary glands are specifically influenced. The sweat, the face, and the irritation and redness of the eyelids, also suggest the fact that these effects are produced when used as a medicinal agent.

USES.—So powerful a poison as arsenic necessarily requires to be employed with great caution, and to have its effects carefully and attentively watched; for it has on more than one occasion proved fatal when used as a medicinal agent.

In intermittent fevers and other periodical diseases, arsenic is employed with great success. For its introduction into these cases in this country, we are indebted to the late Dr. P. Stafford; but Lemery and Wepfer appear to have first recommended it as a febrifuge property. Dr. Fowler was led to its use from the remarkable effects obtained by the use of the "Tasteless Ague Drop," according to the information of Mr. Hughes, that this patent medicine was made from arsensious acid. The reports published by Dr. Fowler as to the good effects of arsenic in periodical diseases, as observed by himself and Dr. Brown, and by Dr. Withering, have been amply confirmed by the subsequent experience of the profession generally. No medicine has been more successful in the treatment of ague. It will frequently put a stop to the disease, even when cinchona sulphate of quina has failed. Dr. Brown, who has used it in hundreds of cases, never saw any permanently ill effect arising from its use; he considers it superior to crude bark, but inferior to quina sulphate in its effects on the kidneys.

It is given three times a day. It is not necessary to intermit its use during the febrile paroxysm, for I have repeatedly seen it given with good effect during the attack. In agues, accompanied with inflammatory conditions, in which cinchona and sulphate of quina are antagonistic, arsenic may, according to Dr. Brown, be sometimes needed.
ARSENIOUS ACID.

645

tered with the best effects. It is also very successful in relapses after the use of the above remedies. Dr. Macculloch states that \(\frac{7}{8} \) of a grain of white arsenic given three or four times a day, will sometimes cure ague when the *liquor potasse arsenitis* fails. A combination of arsenic and cinchona, or arsenic and sulphate of quina, sometimes succeeds, where these agents used separately fail. When the stomach is very irritable, opium is occasionally advantageously conjoined with arsenic. If the bowels be confined during the use of the remedy, gentle laxatives should be employed. Arsenic has been beneficially employed in various other periodical diseases; as periodical headaches, intermittent neuralgias, &c.

In various *chronic affections of the skin*, particularly the scaly diseases (lepra and psoriasis), eczema, and impetigo, arsenic is one of our most valuable agents. I can confidently recommend it in lepra, having seen a large number of cases treated by it without a single failure. Frequently the disease is relieved without any obvious constitutional effect: sometimes a febrile condition of the body is brought on, with a slight feeling of heat in the throat, and thirst; occasionally with an augmentation of appetite: the urine and cutaneous secretion are often promoted; the bowels may be constipated or relaxed, and occasionally, as I have already noticed, salivation takes place. If the patient complain of swelling and stiffness about the face, or itching of the eyelids, the use of the medicine ought to be immediately suspended. Ichthyosis and lepantiasis are said to have been benefited by the use of it.

Various *chronic affections of the nervous system* have been treated by the arsenious acid, and with occasional benefit: for example, neuralgia, epilepsy, chorea, and even tetanus. I have seen arsenic used in a considerable number of epileptic cases, and in none was the disease cured. In some the fits occurred less frequently, but I am not sure that this was the effect of the medicine. In chorea, I have seen great advantage attend its use. It has also relieved angina pectoris, is said to possess the power of controlling determinations of blood to the head.

In bites of venomous snakes and of rabid animals, arsenious acid has been recommended. In India, the Tanjore pill (the basis of which is arsenious acid) has long been celebrated for the cure of the bite of the Cobra di Capello, and other venomous serpents. There is, however, no valid reason for supposing that it possesses any real power in these cases. Arsenic has been employed as an internal agent in various other diseases—as *chronic rheumatism*, especially when attended with pains in the bones; in *diseases of the bones*, particularly venereal nodes; in *syphilis*; in *passive dropsies*; in the last stage of *typhus*, &c.

For further information on the use of arsenic in skin diseases, consult Rayer, *Treatise on
Cases of the Skin*, by Dr. Willis, p. 80.
Colbourn and Bost, Amer. Med. Record. iii. and iv.
Ferris, Med. Hist. l. 94.
Arsenious acid has long been employed as an external application. It has been applied and recommended by Sir A. Cooper, Dupuytren, and other high authorities, but its use is always attended with some danger. M. Roux, a celebrated surgeon at Paris, states that he amputated the breast of a girl 18 years of age, on account of a scirrhous of considerable magnitude. After the cicatrix had been several days completed, ulceration commenced, accompanied with darting pains. To avoid frightening the girl by the use of the actual cautery, he applied an arsenical paste over a surface of about an inch in diameter. Colic, vomiting, and alteration of countenance, came on the next day; and in two days afterwards she died in violent convulsions. "I am convinced," says M. Roux, "that this girl died poisoned by arsenic." I could quote several other cases illustrative of the same fact, but shall content myself with referring to ibner's work for an account of them. The following case, related by Desgranges, shows the danger of applying arsenic externally, even when the skin is sound: A chamber-maid rubbed her head with an arsenical ointment, to destroy vermin. Though the skin was perfectly sound, the head began to swell in six or seven days after; the ears became twice their natural size, and covered with scabs, as were also several parts of the head; the glands of the jaw and face enlarged; the face was tumesced, and almost erysipelatous. Her pulse was hard, tense, and febrile; the tongue parched, and the skin dry. To these were added exacerbating pain, and a sensation of great heat. Vertigo, fainting, cardialgia, occasional vomiting, ardor urinae, constipation, trembling of the limbs, and delirium, were also present. In a day or two after, the body, and especially the hands and feet, were covered with a considerable eruption of small pimples, with white heads. She finally recovered, but during her convalescence the hair fell off.

Though employed as a caustic, yet the nature of its chemical influence on the animal tissues is unknown. Hence it is termed by some a dynamical caustic, in opposition to those caustics acting by known chemical agencies. Mr. Blackadder asserts that the danger of employing arsenic consists in not applying a sufficient quantity. A small quantity, he says, becomes absorbed, whereas a large quantity quickly destroys the organization of the part, and stops absorption.

Arsenic has been extolled as a remedy for cancer. Justamond esteemed it a specific. Various empirical compounds, which gained temporary notoriety in the treatment of this affection, owe their activity to either arsenious acid or the sesquisulphuret of arsenic. But by the best surgeons of the present day it is never employed, because experience has fully shewn that it is incapable of curing genuine cancer, while it endangers the lives of the unfortunate patients. It cannot, however, be denied that diseases resembling cancer have been much relieved, if not cured, by it, and that the pro-

1 *Nouv. Eleu. de Méd.*
2 *Die Włchung, &c.*
3 *Orfila's Toxicol. Générale.*
4 *Observations on Ulcerated Gangrenous.* Edinburgh, 1818.
5 *An Account of the Methods pursued in the Treatment of Cancerous and Scirrhous Disorders, and other Indurations.* London, 1818.
ress of cancer itself has occasionally been somewhat checked by its use.

In some forms of severe and unmanageable ulceration, especially lupus or not me tangere, arsenical applications are employed with occasional benefit, where all other local remedies fail. In such cases arsenic is not to be regarded as a mere caustic; for other, and far more powerful agents of this kind, are generally useless. It must act by substitution: that is, it sets up a new action in the part incompatible with that of the disease. The late Baron Dupuytren employed an arsenical dusting powder (composed of 99 parts of calomel and 1 part arsenious acid) in lupus, not as an escharotic, but rather as a specific. Mixed with gum-water or with fatty matters, it has been sometimes used as a paste or ointment. These applications are to be allowed to fall off spontaneously, and to be repeated five or six times. Sir A. Cooper recommends an arsenical ointment (arsenious acid; sublided sulphur, $\frac{2}{3}$; spermaceti cerate, $\frac{1}{2}$) to be applied, on lint, for twenty-four hours, and then to be removed. When the dough comes away, the ulcer is to be dressed with simple ointment, and will generally heal in a short time. Cazenave says he has seen arsenical applications used by Biett, and has himself employed them many times, without having met with one instance of injurious consequences. The arsenical paste (arsenious acid, cinnabar and burnt eather, made into a paste with saliva or gum-water) is used where a powerful action is required; but, besides the danger of causing constitutional symptoms, to which all arsenical compounds are liable, it is apt to occasion erysipelas.

In onychia maligna, my friend Mr. Luke regards an arsenical ointment (composed of arsenious acid, gr. $\frac{1}{2}$, and spermaceti ointment, $\frac{1}{2}$) a specific.

Arsenious acid is a constituent of some of the preparations sold as depilatories.

Administration.—Arsenious acid may be administered, in substance, in doses of from one-sixteenth to one-eighth of a grain, made into pills, with crumb of bread. In making a mass of pills, great care should be taken that the arsenic be equally divided; for this purpose it should be well rubbed in a mortar with some fine powder (as sugar) before adding the bread crumb. A much safer mode of exhibition is to give this potent remedy, in the form of solution, with potash (as the liquir potasse arsenitis). But I have already mentioned, that Dr. Macculloch found solid arsenic more efficacious than this solution: and Dr. Physick, of the United States, thinks "that they act differently, and cannot be substituted for one another." Whether given in the solid or liquid form, it is best to exhibit it immediately after a meal, when the stomach is filled with food; for when given on an empty stomach (as in the morning, fasting), it is much more apt to occasion gastric disorder. It is sometimes advisable to conjoin opium, either to enable the stomach to retain it, or to check purging. In

$Lancet$, 1, 264.

$United States Dispensatory.$
debilitated constitutions, tonics may be usefully combined with it. An emetic (as ipecacuanha), or a laxative (as rhubarb), may be employed where the stomach is overloaded, or the bowels confined. Its effects are to be carefully watched, and whenever any unpleasant symptoms (as vomiting, griping, purging, swelling or redness of the eyelids, dryness of throat, ptialism, headache, or tremors) make their appearance, it will of course be advisable to diminish the dose, or suspend for a few days the use of the remedy. Indeed, when none of these symptoms occur, it is not proper to continue its use more than two weeks without intermitting its employment for a day or two, in order to guard against the occasional ill consequences resulting from the accumulation of the poison in the system.

Antidotes.—In cases of poisoning by arsenic, the first object is to expel the poison from the stomach. For this purpose the stomach-pump should be immediately applied. If this be not in readiness, and vomiting have not commenced, tickle the throat with a feather or the finger, and administer an emetic of sulphate of copper or sulphate of zinc. Promote vomiting by diluent and demulcent liquids; as milk, white of egg and water, flour and water, gruel, sugared water, and broths. Administer as speedily as possible moist hydrated sesquioxide of iron (the preparation of which will be hereafter described). The quantity necessary to be given to render the arsenic inert, is large. Dr. Maclagan applies that “as far as chemical evidence goes, at least twelve parts of oxide, prepared by ammonia, and moist, are required for each part of arsenic.” As, however, we cannot ascertain, in many instances, how much arsenic has been taken, we should administer to an adult a tablespoonful at least, and to children, a dessert spoonful, every five or ten minutes, until relief from the urgent symptom is obtained. The hydrated sesquioxide forms, with the arsenious acid, an arsenite of iron. This becomes a protarseniate of iron. “The arsenious acid derives oxygen from the peroxide [sesquioxide] of iron, and becomes arsenic acid, while the peroxide of iron becomes protoxide; a protarseniate of iron being the result, which is insoluble and inert.”

Charcoal, magnesia, and any inert powder, when swallowed in large quantities, may be occasionally of service, by enveloping the particles of arsenic, and preventing their contact with the gastric surface. Olive oil, on which, according to Dr. Paris, the Cornish miners rely with confidence, can only act mechanically in the way just mentioned.

The subsequent part of the treatment of poisoning by arsenic consists in neutralizing or counteracting its effects, and which is to be effected on general principles, as we have no counter-poison. When the gastro-enteritis is marked, our principal reliance must be on the usual antiphlogistic measures, particularly blood-letting, both general and local, and blisters to the abdomen. One drawback to

Graham’s Elements of Chemistry.
Pharmacologia
The success of this treatment is the great depression of the vascular system, so that the patient cannot support large evacuations of blood. Opium is a very valuable agent. Indeed, Jäger seems to regard it in the light of a counter-poison. However, on this point he has probably taken a too exaggerated view of its efficacy; but it is undeniable that on most occasions it is of great service. If the stomach reject it, we may employ it in the form of oysters. If constipation and tenesmus be troublesome, mild laxatives, especially astringent astrig, should be exhibited.

1. LIQUOR POTASSÆ ARSENITIS, L. Liquor Arsenicalis, E. D. Fowler's Solution; Mineral Solution.—(Arsenious Acid [broken in small pieces, L.; in powder, E.]; Carbonate of Potash, each grs. xxx.; Compound Tincture of Lavender, 1/3 v.; Distilled Water, 1/3. Boil the Arsenious Acid and Carbonate of Potash with half a pint of the Water in a glass vessel until they are dissolved. Add the Compound Tincture of Lavender to the cooled liquor. Lastly, add besides, of distilled water, as much as may be sufficient, that it may accurately fill a pint measure, L. E.—The preparation of the Dublin College is one-ninth weaker: the proportions of materials used are of Arsenious Acid, in powder; Carbonate of Potash, from Tartar, of each sixty grains; Compound Spirit of Lavender, 1/3 v.; Distilled water, Oss. {wine measure}.—In this preparation the arsenious acid combines with the potash of the carbonate, and disengages the carbonate. A slight excess of carbonate is used. The compound tincture of lavender is used as a colouring and flavouring ingredient. The dose of this solution is four or five minims, gradually and cautiously increased. I have known 15 minims taken three times a day for a week, without any ill effects. Dr. Mitchell, of Ohio, has given from 15 to 20 drops, three times a day, in intermittents. But as some persons are peculiarly susceptible of the influence of arsenic, we ought always to commence with small doses. It has been given to children, and even pregnant women. Dr. Dewees administered it successfully to a child only six weeks old, affected with a severe tertian ague. Dr. Fowler drew up the following table of doses for patients of different ages:

<table>
<thead>
<tr>
<th>Ages</th>
<th>Doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 2 to 4 years</td>
<td>from 2 or 3 to 5 drops</td>
</tr>
<tr>
<td>5—7</td>
<td>5—7</td>
</tr>
<tr>
<td>8—12</td>
<td>7—10</td>
</tr>
<tr>
<td>13—18</td>
<td>10—12</td>
</tr>
<tr>
<td>18, and upwards</td>
<td>12</td>
</tr>
</tbody>
</table>

But it may be remarked that the quantities here indicated are larger than it will be safe, in most cases, to commence with.

2. PILULE ASIATICE: Asiatic Pills. — (Arsenious Acid, gr. lv.;

* United States Dispensatory.
* Asiatic Researches, vol. ii. p. 133. The formula for these pills, given in the text, is that usually followed [Rayer, Treatise on Skin Diseases, by Willis, p. 1218]. The original recipe is very indefinite.
* 1/1200 [10 grs.] of arsenic and six times as much black pepper are to be made into pills, "as large as peas or small pulse."

Powdered Black Pepper, 3ix.; Gum Arabic, a sufficient quantity make 800 pills; each of which contain about $\frac{1}{2}$ of a grain of arsenious acid).—These pills are employed in the East for the cure of syphilis and elephantiasis.

3. UNGUENTUM ARSENICI: Arsenical Ointment.—An ointment containing arsenious acid is used of different strengths by surgeons. For onychia maligna I have already mentioned one containing two grains of arsenic to an ounce of lard or spermacetum ointment. The Ceratum Arsenici of the United States Pharmacopoeia consists of arsenious acid, in very fine powder, 3j.; Simple Cerate, $\frac{3}{2}$. This is used as a dressing for cancerous sores, but must be applied with great circumspection (see another formula at p. 649).

4. PASTA ARSENICALIS: Arsenical Paste.—Various formulae for this are given. The Pulvis Escharotica Arsenicalis (Poudre caustique du frère Cosme ou de Roussetot) of the French Codex is composed of finely levigated Cinnabar, 16 parts; powdered Dragon’s Blood, 10 parts; finely levigated Arsenious Acid, 8 parts. Mix intimately. At the time of employing it, it is made into a paste, by means of a little salvia, or mucilage. This preparation is employed to cauterise cancerous wounds. It must be used very cautiously, and applied to limited portions only of the ulcerated surface. I have already referred to its occasional dangerous or fatal effects. It deserves especial notice, that this official preparation of the French Codex is very considerably stronger than was used either by Roussetot or Cosme, notwithstanding that it is named after them.

OTHER COMPOUNDS OF ARSENICUM.

1. ARSENICI IODIDUM: Iodide of Arsenic.—This compound is prepared by gently heating, in a tubulated retort placed in a sand-bath, a mixture of part finely pulverized metallic arsenic and five parts of iodine; the iodide, afterwards to be sublimed, to separate the excess of arsenic. The compound thus obtained is an orange-red solid, volatile, and soluble in water. If the solution be rapidly evaporated to dryness, we procure the iodide; but if we concentrate, and then place the solution aside, white pearly plates are obtained which by Plisson are regarded as periodide of arsenic, but by Scorrus as a compound of oxide and iodide of arsenic. The iodide of arsenic is probably composed of $\frac{3}{4}$ eq. iodine = 187.5, and 1 eq. arsenic = 38. It has been employed by Biett in the form of ointment (composed of iodide of arsenic, gr. 4). Lard, 3j.) as an application to corroding tubercular skin diseases.

Dr. A. T. Thomson has administered it internally in doses of from one-eight to one-third of a grain, in lepra, impetigo, and diseases resembling carcinoma. Its general effects appear to be similar to those of arsenious acid.

2. REALGAR: Red Sulphuret of Arsenic; Red Arsenic; Protosulphuret of Arsenic. Bisulphuret of Arsenic, Graham; Sandarach (sanda pāṇinema). Though this substance occurs native, the commercial article is prepared artificially. It is met with in the

1 See p. 646.
2 For further information respecting Arsenical Paste, see Patrix, L’Art d’appliquer le Plomb ARSÉNIQUE, 2nd ed. Paris, 1816.
3 Souverain, Nouv. Traité de Pharsa, liv. 2nd ed. 569; also Scorrus, Journ. de Chim. Méd. ii. 90.
4 Magendie, Formulaire.
6 The term Sandarach is also applied to the resinous substance commonly called Gum Jumby.
m of red vitreous masses or as a red powder. It consists of 1 eq. Arsenicum + 1 eq. Sulphur 16 = 54. It is an energetic poison. It was the agent employed by Mrs. Burdock to destroy Mrs. Smith. The body of the victim was burned after having been buried for fourteen months. It was then discovered that the realgar had been transformed into orpiment, which was found in the march. Mr. Hecathorpe has shown that ammonia and sulphurated hydrogen as evolved during putrid decomposition are each capable of converting algar into orpiment. Realgar is not used in medicine, but is employed by rotechnists, and as a pigment. Heated with black flux it yields arsenicum (see p. 625).

3. ORPIMENT; Yellow Sulphuret of Arsenic; Yellow Arsenic; Sesquisulphuret of Arsenic; Sulphoarsenious Acid; King's Yellow.—This is both found native and prepared artificially. Native orpiment is the Auripigmentum of the ancients. Orpiment consists of 1 eq. Arsenicum 38, + 1/2 eq. Sulphur 24 = 62. It is soluble in alkalis (by which it is readily distinguished from sulphuret of cinium, which is insoluble in alkalis), and is precipitated from its alkaline solutions by acids. Heated with black flux it yields metallic arsenic (see p. 626). As met with in the shops it is a powerful poison. It is a constituent of some depilatories (see p. 218). According to Dr. Paris, Deleroux's depilatory, called Poudre Subtile, consists of quicklime, orpiment, and some vegetable power. Orpiment is used by pyrotechnists, and as a pigment.

ORDER XVIII. — COMPOUNDS OF ANTIMONY.

ANTIMONII SESQUISULPHURETUM, L.—SESQUISULPHURET OF ANTIMONY.
(Antimonii Sulphuretum, E. D.)

HISTORY.—Black sulphuret of antimony was known in the most ancient times, being used by the Asiatic and Greek ladies as a pigment for their eyebrows. It was formerly called Stimmi (στίμμα vel στιμμόν), Stibium (στίβων), Platophthalmon (πλατοφθαλμός), or Lartson (λάρτσαν). In the native state it is technically termed Antimony Ore, and when first fused out of its gangue, Crude Antimony, or Sulphuret of Antimony.

NATURAL HISTORY.—Sesquisulphuret of antimony is found native in various parts of the world, especially in Hungary; in the Hartz, in France, in Cornwall, and in Borneo. From the latter place it is imported into this country by way of Singapore, being brought over as ballast to the vessels. In the years 1835-36, and 37, the quantities of ore imported were respectively 645, 825, and 629 tons (Trade List, Jan. 10, 1837, and Jan. 9, 1838). In 1840 there were imported 627 tons.

PREPARATION.—The old method of separating the sesquisulphuret from its siliceous gangue was to melt it in a covered crucible or pot, in the bottom of which there were several holes, through which the fused sulphuret passed into an inferior or receiving pot. According to Gensennne's method, the melting pots were placed in a circular reberatory furnace, and were connected by curved earthen tubes
with the receiving pots which were on the outside of the furnace. At La Vendée neither vessels nor tubes are used: the ore is placed on the bed of a reverberatory furnace, in which is an aperture to allow of the passage of the fused sesquisulphuret which flows into a receiving vessel placed externally to the furnace.

Properties.—The fused sesquisulphuret (called *Common or Crude Antimony*) occurs in commerce in roundish masses, called loaves or cakes: these when broken present a striated crystalline appearance, a dark steel or lead grey colour, and a metallic brilliancy. The commercial sesquisulphuret is opaque, tasteless, odourless, brittle, easily pulverizable, and has a sp. gr. of about 4·6. Its powder is black, but that of pure sesquisulphuret is reddish black. It is a little less fusible than metallic antimony. It is volatile, but cannot be distilled; and it appears to be partially decomposed by heat, for when heated in an earthen crucible for an hour it loses from 10 to 20 per cent. of its weight. By roasting it is converted into *Antimony-Ash* or *Cas Antimonii* (a mixture of antimonious acid and sesquioxide of antimony, with more or less unburned sesquisulphuret): sulphurous acid escapes during the process. When reduced to a very fine powder by levigation and elutriation it constitutes the *Antimonii Sulphuratrum Praeparatum* of the Dublin Pharmacopoeia.

Characteristics.—It fuses and is dissipated before the blow-pipe with a smell of sulphurous acid and the formation of a white smoke. Digested in hydrochloric acid it evolves hydrosulphuric acid, and forms a solution of sesquichloride of antimony, which produces a white precipitate (*Powder of Algaroth*, or oxysulphuret of antimony) with water, and an orange red one with hydrochloric acid. If a current of hydrogen gas be passed over heated sesquisulphuret of antimony, metallic antimony and hydrochloric acid gas are obtained: the metal decomposes nitric acid, and yields a white powder: it readily dissolves in nitro-hydrochloric acid.

Composition.—Sesquisulphuret of antimony has the following composition:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>1</td>
<td>65</td>
<td>73</td>
<td>72·8</td>
<td>72·7</td>
</tr>
<tr>
<td>Sulphur</td>
<td>1·9</td>
<td>21</td>
<td>27</td>
<td>27·2</td>
<td>27·2</td>
</tr>
<tr>
<td>Sesquisulphuret of Antimony</td>
<td>1</td>
<td>89</td>
<td>100</td>
<td>100·0</td>
<td>100·0</td>
</tr>
</tbody>
</table>

Impurities.—The crude antimony of commerce is rarely, if ever, quite pure. It frequently contains the sulphurets of iron, lead, arsenic, and copper, and on this account is not adapted for medicinal use. When pure it is completely soluble in hydrochloric acid: but when mixed with sulphuret of arsenic this remains undissolved, and may be detected by reducing it with a mixture of charcoal and carbonate of soda (*vide* p. 626). If the hydrochloric solution be diluted with water (so as to precipitate the greater part of the antimony), the presence of lead, iron, or copper, in the filtered liquor,
SEQUISULPHURET OF ANTIMONY. 653

e detected by the appropriate tests for these metals, hereafter to
mentioned.
heat it is totally dissolved by hydrochloric acid. From the acid in which
filed, a white precipitate is thrown down by distilled water; from the
liquor, hydro sulphuric acid afterwards throws down a reddish coloured
ice. Ph. Lond. Entirely soluble in muriatic acid, with the aid of heat.” Ph. Ed.

PHYSIOLOGICAL EFFECTS. a. On Animals.—Rayer* introduced
an ounce of it into the cellular tissue of the back of a dog; but
effects resulted from it. Fifteen grains placed in the perito-
neum caused inflammation, and in twenty-four hours death, but
at any peculiar symptoms. Moiroud** says, that given to
in doses of from two to four ounces, it acts as an excitant,
ng increased frequency of pulse and respiration, and softer stools.
On Man.—In most cases it produces no obvious effects, even
taken in very large doses. Rayer† gave half an ounce of it in
, for several days, without the slightest effect. Cullen‡, how-
has seen it cause nausea and vomiting in one or two instances in
it was largely employed. Rayer says that the decoction of the
is sulphuret is much more active than an equal quantity of the
preparation in powder. How are these facts to be explained?
cribes the activity of the decoction to arsenious acid
by boiling sulphuret of arsenicum (contained in the
ary crude antimony) with water; for Guibourt§ obtained in this
grs. of arsenious acid by boiling an ounce of crude anti-
. But the presence of arsenic is not necessary to explain the
activity of the decoction, since by long-continued boiling
water, the sesquisulphuret of antimony yields hydrosulphuric
and sesquioxide of antimony. The occasional nausea and
ng may arise from the decomposition of the sulphuret by the
in the alimentary canal.

ES.—As a medicinal agent it is occasionally employed as a dia-
tic and alterative in some skin diseases, especially lepra and
es, in scrofula and glandular affections, and in rheumatism and

a pharmaceutical and chemical agent it is a most important
ance, being the source from which the metal, and all its com-
ds, are procured.

NISTRATION.—The usual dose of it, when taken internally, is
ten to thirty grains of the powder; but several drachms of it
been taken without much effect. The Tisan de Feltz, which is
ionally used in skin diseases, is prepared by boiling Sarsapa-
, and Crude Antimony (tied up in a bag), \sfrac{3}{4} in a pint and a
of Water; then add Isinglass, \sfrac{3}{4} IV., previously dissolved in

* Diet. de Méd. et Chir. Pratique. iii. 54.
† Pharm. Veter. 423.
§ Treat. of Med. Materia. ii. 482.
© Rayer, op. supra crit.
Geiger, Handb. d. Pharm.
water, and reduce the whole (by boiling) to a pint, which is taken during the day.

ANTIMONII SULPHURETUM PREPARATUM, D. Prepared Sulphuret of Antimony.
(Take of Sulphuret of Antimony any requisite quantity according to the mode directed in the preparation of chalk, and let the most subtile particles be preserved for use. powder sold in the shops as prepared sulphuret is usually prepared by grinding in mills without elutriation. Its uses are those of sulphuret before described.

2. **ANTIMO'NII SESQUICHLO'RIDUM.—SESQUICHLORIDE OF ANTIMONY.**

History.—Basil Valentine was acquainted with this preparation which has had various appellations; such as Oil or Butter of Antimony (Oleum seu Butyrum Antimonii), Muriate or Hydrochloric Acid of Antimony.

Preparation.—The impure hydrated sesquichloride, sold in the shops as butter of antimony, is usually prepared by dissolving sesquisulphuret of antimony (Cinis Antimonii) in hydrochloric acid and adding nitrate of iron to the solution as a colouring matter. It may also be prepared by dissolving the common crude antimonial muriatic acid. The addition of a little nitric acid facilitates the process.

Pure sesquichloride of antimony is not used in medicine: its preparation need not, therefore, be described in this work.

Properties.—The butter of antimony of the shops is a transparent liquid, varying in its colour (which depends on the presence of ammonia) from yellow to deep red. Its specific gravity is 1.2 to 1.5. It is much used in the air (especially when ammonia is present), in consequence of the gas containing an excess of hydrochloric acid. It reacts on very many substances as a powerful acid.

Characteristics.—Mixed with water it throws down a yellowish-white powder called Powder of Algaroth, or Mercury of Life (chlore of antimony). The hydrosulphuret produces a dark precipitate, alkalis a dirty white precipitate (sesquioxide of antimony mixed with some sesquioxide of iron). Nitrate of silver occasion white precipitate (chloride of silver and sesquioxide of antimony).

Composition.—Sesquichloride of antimony is thus composed:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>1</td>
<td>65</td>
<td>54.02</td>
</tr>
<tr>
<td>Chlorine</td>
<td>14</td>
<td>54</td>
<td>45.37</td>
</tr>
<tr>
<td>Sesquichloride Antimony</td>
<td>1</td>
<td>119</td>
<td>99.99</td>
</tr>
</tbody>
</table>

The Butter of Antimony of the shops contains Sesquichloride of Antimony, Free Hydrochloric Acid, a little Nitrous Acid, Water.

* Bayer, Treatise on Diseases of the Skin, by Dr. Willis, p. 1223.
* See Antimonii Oxysum Nitramartialis. B. v. 639.
Sesquichloride of Iron. It may also contain other impurities derived from the sesquisulphuret from which it is directly or indirectly prepared. Serullas says he never found arsenic in it.

Physiological Effects.—It acts as an energetic caustic, but I am not acquainted with any cases of poisoning by it. It cannot be diluted without undergoing decomposition.

Uses.—In medicine it is employed only as a caustic. It usually acts without much pain or inflammation, and, after the separation of the eschar, produces a clean healthy surface. It is sometimes used as an application to parts bitten by rabid animals or venomous serpents: its liquidity enabling it to penetrate into all parts of the wound. It is also applied to ulcers to repress excessive granulations. Richter and Beer have employed it in staphyloma: the mode of applying it is as follows:—Dip a camel’s hair pencil, or a point of lint, into the liquid, and apply it to the tumour until a whitish crust is perceived, when the whole is to be immediately washed away by means of a larger pencil dipped first into milk and afterwards into milk and water.

Antidotes.—The treatment of poisoning by this preparation is the same as for the mineral acids (vide pp. 281 and 473.) After the use of antacids, vegetable astringents (tea and infusion of nutgalls) should be administered to neutralize the effect of the powder of Algaroth separated in the stomach. Gastro-enteritis is of course to be combated by the usual antiphlogistic means.

3. Antimo’nii oxysulphure’ tum, L.—Oxysulphuret of Antimony.

(Antimonii Sulphuretum aureum, E.—Sulphur Antimoniatum fusum, D.)

History.—Basil Valentine was acquainted with this preparation, and probably also knew the substance called Kermes Mineral, though he does not mention it in his writings. Glauber, in 1658, and Lemeray, in 1707, are both said to be discoverers of the latter substance; but it is hardly possible for Basil Valentine to have been acquainted with it.

Natural History.—Kermes mineral, which is an oxysulphuret of antimony, though not identical with, yet nearly allied to, the preparation of the Pharmacopoeia, is found native in Saxony and other places: it is called by mineralogists Red Antimony or Native Kermes.

Preparation.—All the British Colleges give directions for the preparation of this substance.

The London College orders of Sesquisulphuret of Antimony, ʒvij.; Solution of Potash, Ǫv.; Distilled Water, Cong., ĳ.; Diluted Sulphuric Acid as much as may be sufficient. Mix the Sesquisulphuret of Antimony, Solution of Potash, and Water together, and boil with a slow fire for two hours, frequently stirring,

* Triumphant Chariot of Antimony, by Kirkingius, p. 131. Lond. 1678.
Distilled Water being often added, that it may fill about the same measure. Strain the liquor, and gradually pour into it as much diluted Sulphuric Acid as may be sufficient to precipitate the Hydrosulphuret of Antimony; then, with water, wash away the Sulphate of Potash, and dry what remains with a gentle heat.

The Edinburgh College orders of Sulphuret of Antimony, in fine powder, 3i.; Solution of Potash, 3xj.; Water, Oij.

The Dublin College directs of Prepared Sulphuret of Antimony, one part; Water of Caustic Potash, eighteen parts; Diluted Sulphuric Acid, eleven parts, or as much as may be sufficient.

Theory of the Process.—If black or sesquisulphuret of antimony be boiled in an alkaline liquid, a solution is obtained which, on cooling, deposits a reddish powder called *Kermes Mineral*. If a dilute mineral acid be added to the filtered mother liquor, an orange red precipitate is produced, called the *Golden Sulphuret of Antimony* (Berzelius; Liebig). If the acid be added before the kermes has deposited, we obtain the orange red precipitate, called in the London Pharmacopeia *Oxysulphuret of Antimony*. The Edinburgh College terms the latter substance the *Golden Sulphuret of Antimony*.

When sesquisulphuret of antimony and potash are heated together, the latter gives oxygen to the antimony, and potassium to the sulphur of the sesquisulphuret; and thus sesquioxide of antimony and sulphuret of potassium are produced. The sesquioxide combines with some undecomposed potash, forming *hypo-antimonite of potash*, and the sulphuret of potassium with sesquisulphuret of antimony, forming a double sulphur salt (the *antimonio-sesquisulphuret of potassium*). These changes are explained in the subjoined diagram:

```
<table>
<thead>
<tr>
<th>Materials</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sesquisulphuret of</td>
<td>Antimonio-sesquisulphuret of Potassium</td>
</tr>
<tr>
<td>Sulphur</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td></td>
</tr>
<tr>
<td>Sesquisulphuret of</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td></td>
</tr>
<tr>
<td>Potash</td>
<td></td>
</tr>
<tr>
<td>½ Potassium</td>
<td></td>
</tr>
<tr>
<td>½ Oxygen</td>
<td></td>
</tr>
<tr>
<td>Potash</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

The solution contains free potash, the antimonio-sesquisulphuret of potassium, and part of the hypo-antimonite of potash. There is a dark-red, undissolved residuum (similar to *Crocus Antimonii*) composed of hypo-antimonite of potash and oxysulphuret of antimony; this is got rid of by filtering.

On the addition of sulphuric acid, sulphate of potash is produced by the combination of the acid with free potash,—with some potash formed by the union of the potassium of the sulphuret with the oxygen of some decomposed water,—and with the potash of the hypo-antimonite. By these changes sesquisulphuret and sesquioxide of antimony are set free: the whole of the first, and part of the second, precipitate. The hydrogen of the decomposed water, with the sulphur of the sulphuret of potassium, form hydrosulphuric acid, a portion of which escapes in a gaseous form, while the remainder, reacting on some sesquioxide of antimony, produces water and sesquisulphuret, which are precipitated along with some water of the solution. These changes will be better comprehended by reference to the following diagram:
Further details respecting the theory of this process I must refer to the writings of Berzelius 7 and Liebig 8.

Properties.—Oxysulphuret of antimony is a red, odourless, almost as powder. It is insoluble in cold water, and only slightly so in liquor ammonia. Boiled in nitro-hydrochloric acid, chloride of antimony is formed in solution, and some sulphur remains undisolved. Heated in the air it burns, evolves sulphurous acid, and a greyish residuum.

Characteristics.—When heated with concentrated hydrochloric acid it evolves hydrosulphuric acid, shewing it to be a sulphuret. The other sulphurets or oxysulphurets of antimony it is to be shewn partly by its colour. Its hydrochloric solution is shewn to contain antimony by the tests before mentioned for the sesquichloride of this metal (vide p. 654). When boiled in a solution of bitartrate of potash, a solution of emetic tartar is obtained, which may be used by the characters hereafter to be mentioned for this salt. It be reduced by hydrogen and heat (vide p. 667).

Composition.—By boiling in a solution of bitartrate of potash, it according to Mr. Phillips, 12 per cent.; the amount of sesquioxide it contains. Its composition, according to the same authors as follows:—

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Phillips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sesquioxide Antimony</td>
<td>8</td>
<td>209</td>
<td>15</td>
<td>12.5</td>
</tr>
<tr>
<td>Oxysulphuret Antimony, Ph. L.</td>
<td>1</td>
<td>594</td>
<td>100</td>
<td>101.0</td>
</tr>
</tbody>
</table>

Antimonii Sulphuretum aureum, Ph. Ed., has a similar com-

m. The Edinburgh College, however, states that it is a mixture of sesquioxide of antimony, sesquioxide of antimony, phur. The sesquioxide and sesquioxide are perhaps only chemically mixed.

Commercial oxysulphuret is of a brighter colour than that ob-

tained according to the process of the Pharmacopoeia. A manufac-
ture informs me that it is prepared by boiling sulphur along with

quioxide of antimony and potash, and precipitating by an

the usual way.

* Mineral consists of two equivalents of sesquioxide of antimony and

valent of sesquioxide of antimony (consequently it has the same compo-

7 Traité de Chimie, ii. 301.
8 Handwörterb. d. Chemie, i. 430.
sition as Red Antimony Ore), and commonly contains also from 1 to 1½ per cent. of alkali combined with sesquioxide of antimony. By continued washing with water the hypo-antimonite of potash and sesquioxide of antimony may be extracted, leaving the sesquisulphuret only.

The term Golden Sulphuret of Antimony is usually applied to the persulphuret of antimony, which consists of 1 eq. of antimony and 2½ eqs. of sulphur.

PURITY.—Recently precipitated oxysulphuret of antimony is readily and completely soluble in liquor potassae; but the oxysulphuret of the shops leaves a white residuum. Boiled in hydrochloric acid, it is dissolved with the evolution of hydrosulphuric acid gas: the solution is opalescent or slightly milky, but becomes quite transparent on the addition of a small quantity of nitric acid. It should not effervesce with dilute sulphuric acid.

The London College states that it is
Totally soluble in nitro-hydrochloric acid, emitting hydrosulphuric acid.

But I find that it is not completely soluble in nitro-hydrochloric acid;—a portion of sulphur remaining behind.

The Edinburgh College states that it is
"Tasteless: twelve times its weight of muriatic acid, aided by heat, will dissolve most of it, forming a colourless solution, and leaving a little sulphur."

PHYSIOLOGICAL EFFECTS.—The medicinal activity of this preparation is principally or wholly owing to sesquioxide of antimony; and, as the quantity of this is probably inconstant, the preparation is uncertain in its operation. The obvious effects are precisely analogous to those of emetic tartar; namely, vomiting, purging, and sweating. In small doses it is employed as an alterative, expectorant, and diaphoretic; in somewhat larger doses it causes nausea and sweating; and sometimes vomiting; in still larger quantities it excites both vomiting and purging.

USE.—It is principally employed as an alterative in chronic diseases, particularly cutaneous affections, glandular enlargements, secondary syphilis, rheumatism, and diseases of the liver. In these complaints it is usually associated with mercurials (especially calomel) and sometimes with guaiacum or narcotics. Kermes mineral has been employed as an antiphlogistic in inflammatory affections of the respiratory organs, and sometimes as an emetic.

ADMINISTRATION.—As an alterative the dose is from one to three or four grains: as an emetic from five grains to a scruple. It is a constituent of the Pilulae Hydrargyri Chloridi Compositae, commonly termed Plummer’s pill.

ANTIDOTES.—Vide Potassae Antimonia-tartras.

4. ANTIMONII SESQUIOX’YDUM.—SESQUIOXIDE OF ANTIMONY—
(Antimonii Oxydatum, E.—Antimonii Oxydatum Nitromuriaticum, D.)

HISTORY.—Basil Valentine* was acquainted with sesquioxide of antimony prepared by the combustion of the metal, and which

* Liebig, op. cit. l. 430.
* For some experiments and observations on the action of Kermes Mineral and the Golden Sulphuret, consult later, in Dict. de Med. et Chir. Prat. iii. 37, et seq.
* Triumphant Chariot of Antimony, by Knirringen, p. 91. Lond. 1678.
formed Flowers of Antimony (Flores Antimonii). He also knew that the same compound might be procured by the action of water on the esquichloride of antimony.

Natural History.—This oxide is found native, and is known to mineralogists as White Antimony. It is found in Bohemia, Saxony, Hungary, &c.

Preparation.—There are various methods of preparing this oxide.

The Edinburgh College direct it to be prepared as follows:—"Take of Sulphuret of Antimony, in fine powder, iii.; Muratic Acid (commercial), Oz.; Water, Ov. Dissolve the sulphuret in the acid, with the aid of a gentle heat; boil for half an hour; filter. Pour the fluid into the water; collect the precipitate on a calico filter; wash it well with cold water, then with a weak solution of carbonate of soda, and again with cold water, till the water ceases to affect reddened litmus paper. Dry the powder over the vapour-bath.

The Dublin College order of prepared Sulphuret of Antimony, twenty parts; Muratic Acid, one hundred parts; Nitric Acid, one part. Gradually add the sulphuret to the acids, previously mixed in a glass vessel, avoiding the vapours; then with a heat gradually increased, digest, until the mixture ceases to effervesce; then boil during an hour. Receive the cooled and filtered liquor in a gallon of water. Let the oxide of antimony, when it has subsided, be washed with a sufficiently abundant quantity of water, until the decanted fluid shall have become free from acid, which may be ascertained by means of litmus; finally, let the oxide be dried on bibulous paper.

By the mutual reaction of sesquisulphuret of antimony and hydrochloric acid, a soluble sesquichloride of antimony is formed (see p. 654). The Dublin College uses a small quantity of nitric acid to decompose the hydrosulphuric acid remaining in the liquor, and which would impair the colour of the precipitate. When water is added to the solution of the sesquichloride, mutual reaction occurs, the products of which are free hydrochloric acid and sesquioxide of antimony; the latter combines with some undecomposed sesquichloride of antimony, and forms the Oxychloride of antimony, commonly termed the Pulvis Algarothi, Algarothi's Powder (from Algarotti, an Italian physician, who recommended its use in medicine). It is sometimes called the Mercury of Life (Mercurius Vitis). By continued washing with hot water, the sesquichloride which it contains is decomposed, and the product is sesquioxide of antimony.

When Algarothi's powder is washed with a solution of carbonate of soda, its sesquichloride is converted into sesquioxide of antimony by the action of the soda. Chloride of sodium is also formed, and carbonic acid evolved.

Properties.—Sesquioxide of antimony occurs native in tabular and acicular crystals, which belong to the right prismatic system. When prepared in the moist way it is a white powder, which becomes yellow by heat, and fuses at a full red heat into a yellow fluid, which concretes by cooling into a crystalline mass. If subjected to heat in the open air it absorbs oxygen, and becomes antimonial acid.

Characteristics.—Heated in liquid hydrochloric acid it completely dissolves: the solution contains sesquichloride of antimony, which, when mixed with water, yields a white precipitate (oxychloride of antimony). Hydrosulphurets form a red precipitate in the solution.
the sesquichloride. Boiled with a solution of bitartrate of potash is dissolved: the solution yields on cooling crystals of emetic to the characteristics of which will be hereafter given. Sesquioxide antimony melts before the blowpipe, and is volatilized in the form of a white vapour.

Composition.—Sesquichloride of antimony (Antimonii Oxychlorid Ph. Ed.) has the following composition:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>1</td>
<td>65</td>
<td>84.4</td>
<td>84.319</td>
<td>.....</td>
</tr>
<tr>
<td>Oxygen</td>
<td>14</td>
<td>12</td>
<td>15.6</td>
<td>15.681</td>
<td>.....</td>
</tr>
</tbody>
</table>

Sesquioxide of Antimony 1 77 100.0 100.000

Oxychloride of Antimony (Antimonii Oxydum Nitro-muriatic Ph. Dub.) is a compound of sesquioxide and sesquichloride of antimony. The proportion of the latter ingredient is diminished by washing. The composition of the oxychloride is thus stated by Phillips, Johnson, and Malaguti:—

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sesquioxide Antimony</td>
<td>9</td>
<td>693</td>
<td>74.94</td>
</tr>
<tr>
<td>Sesquichloride Antimony</td>
<td>2</td>
<td>238</td>
<td>25.06</td>
</tr>
<tr>
<td>Oxychloride Antimony</td>
<td>1</td>
<td>931</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Antimony Ash (Cinis Antimonii) is composed of antimonious acid, sesquioxide of antimony, and sesquisulphuret of antimony.

Glass of Antimony (Vitrum Antimonii) is prepared by roasting the sesquisulphuret, and subsequently fusing it in an earthen crucible. It is transparent of a red colour. It consists principally of sesquioxide of antimony, some sesquisulphuret of antimony, and about five per cent. of silica.

Purity.—The Edinburgh College give the following characteristics of its purity:—

"Entirely soluble in muriatic acid, and also in a boiling mixture of water and bitartrate of potash: snow-white: fusible at a full-red heat."

Physiological Effects and Uses.—Sesquioxide of antimony possesses similar medicinal properties to Emetic Tartar, in the preparation of which it is used. It is rarely employed as a medicine. Algaroth's powder is uncertain in its operation.

Administration.—Algaroth's powder is sometimes given in doses of from one to ten grains.

(Pulvis Antimonialis, E. D.)

History.—Dr. James, who died in 1776, prepared a celebrated patent medicine, long known as the Fever Powder of Dr. James (Pulvis Febrifugus Jacobi), or Dr. James's Powder (Pulvis Jamesi). The discovery of it was subsequently claimed for a German of
of Schwanberg. The specification which Dr. James lodged at the Court of Chancery is so ambiguously worded, that we cannot infer his powder by it. Hence the present preparation has been introduced into the Pharmacopoeia as a succeedaneum for it. In preceding editions of the London Pharmacopoeia it was termed Pulvis monialis (Antimonial Powder); but in the edition for 1836 this name was unnecessarily (as I conceive) altered to Pulvis Antimonii positis.

PREPARATION.—All the British Colleges give directions for its preparation.

The London College orders, of Sesquisulphuret of Antimony, powdered, lbj.; Shavings, lbj. Mix, and throw them into a crucible red-hot in the fire, stir constantly until vapour no longer arises. Rub that which remains together, and put it into a proper crucible. Then apply fire, and increase it gradually, that it may be red-hot for two hours. Rub the residue to a very fine powder.

The Edinburgh College directs equal weights of Sulphuret of Antimony, in the powder, and Hartshorn in shavings, to be used. Mix them, put them into a red-hot iron pot, and stir constantly till they acquire an ash-gray colour, and vapours no longer arise. Pulverise the product, and put it into a crucible with a perforated cover, and expose this to a gradually-increasing heat till a white; heat be produced, which is to be maintained for two hours. Reduce the heat, when cold, to fine powder.

The process of the Dublin College is essentially similar to that of the London College.

Manufacturers usually substitute bone sawings for hartshorn shavings.

The following is the theory of the process: the gelatinous matter of horn (or bones) is decomposed and burned off, leaving behind a earthy matter (subphosphate of lime, with a little calcareous matter). The sulphur of the sesquisulphuret is expelled in the form of sulphurous acid, while the antimony attracts oxygen from air, forming antimonious acid, and a variable quantity of sesquioxide of antimony. By the subsequent heating the sesquioxide is changed into antimonious acid; but one portion is usually left unchanged, while another is volatilized. The carbonate of the horn is decomposed by the united agencies of heat and antimonious acid; carbonic acid is expelled, and a small quantity of monite of lime formed. The sides of the crucible in which the last stage of the process has been conducted, are found, at the end of the operation, to be lined with a yellow glaze, and frequently with crystals of sesquioxide.

PROPERTIES.—Antimonial powder is white, gritty, tasteless, and tasteless. Boiling water extracts the antimonite (and, according to Maclagan, superphosphate of lime): the liquid becomes cloudy on boiling. Hydrochloric acid, digested in the residue, dissolves the phosphate of lime, all the sesquioxide of antimony, and that portion of the antimonious acid which was in combination with lime.

CHARACTERISTICS.—The solution obtained by boiling antimonial powder in distilled water occasions white precipitates, soluble in the acid, with oxalate of ammonia, nitrate of silver, and acetate of...
lead. The precipitate with the first of these tests is oxalate of lead with the second phosphate of silver, and with the third phosphate of lead. Hydrosulphuric acid gas transmitted through the solution produces an orange-red precipitate. If the portions of antimonial powder not dissolved by distilled water be digested in boiling liquid hydrochloric acid, a solution is obtained, which, on the addition of distilled water, becomes turbid, and deposits a white powder (a chloride of antimony): at least I have found this to take place with several samples of antimonial powder which I have examined, the same is noticed by Dr. Barker; but neither Mr. Phillips, Dr. Maclagan have observed it. Hydrosulphuric acid gas, transmitted through the hydrochloric solution, causes an orange-red precipitate: if this be separated by filtering, and the solution boiled to expel any traces of hydrosulphuric acid, a white precipitate (a phosphate of lime) is thrown down on the addition of caustic ammonia. That portion of antimonial powder which is not dissolved by hydrochloric acid is antimonious acid: if it be mixed with coal, and heated to redness, it is converted into sesquioxide, metallic antimony.

"Distilled water, boiled with it and filtered, gives, with sulphuretted hydrogen, an orange precipitate: muriatic, digested with the residue, becomes yellow. It does not sometimes does, according to my experiments, become turbid by distillation but gives a copious orange precipitate with sulphuretted hydrogen." Phil. Trans. 2nd ed. 1841.

Composition.—Dr. James's Powder has been analysed by Pearson, by Mr. Phillips, by Berzelius, by M. Pully, by Dr. Maclagan, and was imperfectly examined by Mr. Cheverton. Antimonial Powder has been analysed by Mr. Phillips, and Dr. D. Maclagan. Their results are, for the most part, shown in the following table:

<table>
<thead>
<tr>
<th></th>
<th>Pearson</th>
<th>Phillips</th>
<th>Berzel.</th>
<th>Maclagan</th>
<th>Phillips</th>
<th>Maclagan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimonous of Lime (with some superphosphate)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maclagan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sesquioxide of Antimony</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Antimonous Acid</td>
<td>57</td>
<td>56-9</td>
<td>65</td>
<td>43-47</td>
<td>34-21</td>
<td>35</td>
</tr>
<tr>
<td>Sulphosphate of Lime</td>
<td>43</td>
<td>42-2</td>
<td>53</td>
<td>50-24</td>
<td>55-21</td>
<td>65</td>
</tr>
<tr>
<td>Loss (Sesquioxide of Antimony and impurity)</td>
<td>-</td>
<td>1-8</td>
<td>-</td>
<td>0-53</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100-90</td>
<td>100-6</td>
<td>100</td>
</tr>
</tbody>
</table>

According to the Edinburgh Pharmacopœia (2nd ed. 1841), 204.

* Observations on the Dublin Pharmacopoeia, 204.
* Phil. Trans. lxxxi. for 1791, p. 317.
* Traité de Chimie, iv. 481.
* Phil. Trans. for 1804, p. 57.
* Ann. Phil. N. S. N. 266.
monial powder is "a mixture chiefly of antimonious acid and phosphate of lime, with some sesquioxide of antimony and a little antimonite of lime."

Pully found sulphate of potash and hypo-antimonite of potash in James's powder. Mr. Brande has found as much as 5 per cent. of sesquioxide of antimony in the antimonial powder of the shops.

The antimonite of lime is obtained in solution by boiling antimonial powder in distilled water; the greater part of it deposits as the solution cools. The existence of superphosphate was inferred by Dr. Maclagan, from the precipitates produced with the salts of lead and nitrate of silver. Mr. Phillips states that it contains but little, if any, sesquioxide of antimony, because the hydrochloric solution did not let fall any precipitate on the addition of water. But a small quantity of sesquioxide may be dissolved by this acid without our being able to obtain any evidence of it by the action of water. Dr. Maclagan has shown, that if hydrosulphuric acid gas be transmitted through the solution, an orange red precipitate is obtained, which he supposes to be an indication of the presence of sesquioxide. But unless the antimonial powder be boiled repeatedly in water, to remove completely the antimonite of lime, this test cannot be relied on: for if the least trace of this salt be present, on the addition of hydrochloric acid bichloride of antimony is obtained, which, it is well known, not only produces an orange red precipitate with hydrosulphuric acid, but even causes a white precipitate on the addition of water.

Physiological Effects.—Antimonial powder is most unequal in its operation,—at one time possessing considerable activity, at another being inert, or nearly so. This depends on the presence or absence of sesquioxide of antimony, which may be regarded as constituting its active principle, and which, when present, is found in uncertain and inconstant quantity. Moreover, this variation in the composition of antimonial powder cannot be regarded as the fault of the manufacturer, since it depends, as Mr. Brande has justly observed, "upon slight modifications in the process, which can scarcely be controlled."

Mr. Hawkins gave 3 j. morning and evening without any obvious effect; and the late Dr. Duncan, jun. administered 3 j. and sss. doses, several times a-day, without inducing vomiting or purging. Dr. Elliotson found even 120 grains nearly inert; nausea alone being in some of the cases produced. In these instances I presume it contained little or no sesquioxide.

But, on the other hand, a considerable number of practitioners have found it to possess activity. Dr. Paris observes, that "it will be difficult for the chemist to persuade the physician that he can never have derived any benefit from the exhibition of antimonial powder." I have above stated that the experiments on which Mr. Phillips found his assertion that this preparation contains but little if any sesquioxide, are inclusive, as Dr. Maclagan has shewn. I am acquainted with one case in which it acted with great activity. A workman employed in the manufacture of this powder in the laboratory of an operative chemist in London, took a dose of it (which, from his account,
I estimate at half a teaspoonful), and, to use his own words, "nearly killed him." It occasioned violent vomiting, purging, and sweating.

Dr. James’s powder, which some practitioners consider as active and certain than our antimonial powder, appears to be inconstant in its operation. Dr. D. Munro, who frequently administered this powder, and saw Dr. James himself, as well as other practitioners, administer it, observes—"like other active preparations of any kind, it sometimes acts with great violence, even when given in small doses; at other times a large dose produces very little visible effect. I have seen three grains operate briskly, both upwards and downwards; and I was once called to a patient, to whom Dr. James himself gave five grains of it, and it purged and vomited the bowels for twenty-four hours, and in that time gave her between twenty and thirty stools; at other times I have seen a scruple produce little visible effect." Dr. Cheyne thought highly of it in the apoplexy; but he used it in conjunction with bleeding, purging, and a strict antiphlogistic regimen.

The preceding facts seem to me to shew the propriety of the use of both antimonial and James’s powder, and substitute for them some antimonial of known and uniform activity; as Tartar (see p. 679).

Uses.—Antimonial powder is employed as a sudorific in fevers, and in rheumatic affections. In the former it is given either alone or in combination with mercurials; in the latter it is frequently compound with opium as well as with calomel. In chronic skin diseases it is sometimes exhibited with alteratives.

Administration.—The usual dose of it is from 3 or 4 to 6 grains, in the form of powder or bolus.

(Antimonii Potassio-Tartras, L.—Antimonium Tartarizatum, E. —Antimonii et Potassii Tartarum Emeticum, D.)

History.—This salt was first publicly noticed in 1631, by de Mynsicht. Besides the names above mentioned it is known by various others, as Tartarized Antimony, Emetic Antimony, and Stibiated Tartar (Tartarus Stibiatus).

Preparation.—Antimony-tartrate of potash is prepared by boiling water, and bitartrate of potash with sesquioxide of antimony with some antimonial preparation which contains it, as the chloride or oxy sulphuret of antimony.

Antimony-ash (Cinis Antimonii), procured by roasting the sesquisulphuret, is employed to yield the sesquioxide in an extemporaneous manufactory in London. As already stated (p. 652), this com
is a mixture of sesquisulphate of Antimony, sesquisulphuret of Antimony, and some undecomposed sesquisulphuric acid. The proportions of ash and bitartrate used vary according to the quality of the former: the average being equal parts. This, I am informed, is the cheapest method of obtaining emetic tartar.

The London College directs this salt to be prepared as follows:—Take of Sesquisulphuret of Antimony, rubbed to powder; Nitrate of Potash, powder, each, 1 lb.; Bitartrate of Potash, powder, 1 lb.; Hydrochloric Acid, 1 lb.; Distilled Water, 1 gallon. Accurately mix the Sesquisulphuret of Antimony with the Nitrate of Potash; the Hydrochloric Acid being then added, and the powder spread upon iron plate, ignite it. Rub what remains to very fine powder, when it is cold, and wash it frequently with boiling water until it is free from taste. Mix the powder thus prepared with the Bitartrate of Potash, and boil for half an hour in a gallon of distilled water. Strain the liquor while hot, and set it aside that crystals may be formed. These being removed and dried, let the liquor again evaporate that it may yield crystals.

The theory of the process is this: part of the sulphur and of the antimony are oxidized at the expense of the oxygen of the acid of the nitrate, by which sulphuric acid and sesquisulphate of antimony are formed, while nitrogen and binoxide of nitrogen escape. The sulphuric acid unites with part of the potash of the nitrate. The hydrochloric acid reacts on another portion of potash, and produces water and chloride of potassium. If no hydrochloric acid had been employed, the potash would react on some undecomposed sesquisulphate, and generate antimonio-sesquisulphuret of potassium and sesquisulphide of antimony. The residuum of this operation is, then, sulphate of potash, chloride of potassium, sesquisulphide of antimony, and some undecomposed sesquisulphuret of antimony. By washing, the sulphate and chloride are got rid of. The following diagram, though imperfect, may perhaps assist the student in comprehending the foregoing changes:

\[
\begin{align*}
\text{MATERIALS} & \quad \text{COMPOSITION} & \quad \text{PRODUCTS} \\
\text{Nitric Acid} & \quad \text{Nitrogen} & \quad \text{Nitrogen} \\
\text{Nitrate of Potash} & \quad \text{Nitrogen} & \quad \text{Binary Nitrogen} \\
\text{Potash} & \quad \text{Oxygen} & \quad \text{Sulphate Potash, Water} \\
\text{Potash} & \quad \text{Oxygen} & \quad \text{Potassium} \\
\text{Hydrochloric Acid} & \quad \text{Hydrogen} & \quad \text{Chloride of Potash} \\
\text{Sesquisulphuret Antimony} & \quad \text{Antimony} & \quad \text{Sesquisulphuret Antimony, Sulphur} \\
\text{Sesquisulphuret of Antimony} & \quad \text{Antimony} & \quad \text{Sesquisulphuret Antimony} \\
\end{align*}
\]

Six equivalents of nitrate, 7 equivalents of sesquisulphuret, and 1\(\frac{1}{2}\) equivalents of hydrochloric acid, contain the elements of 6 eqs. of binoxide of nitrogen, 4\(\frac{1}{2}\) eqs. of sulphate of potash, 1\(\frac{1}{2}\) eqs. of water, 1\(\frac{1}{2}\) eqs. of chloride of potassium, 3 eqs. sesquisulphide of antimony, and \(\text{qs. sesquisulphuret.}

\[
\begin{align*}
\text{MATERIALS} & \quad \text{PRODUCTS} \\
\text{eqs. Nitrate of Potash} & \quad 612 & \quad \text{eqs. Binary Oxide of Nitrogen} & \quad 180 \\
\text{eqs. Sesquisulphuret of Antimony} & \quad 623 & \quad \text{eqs. Sulphate of Potash} & \quad 396 \\
\frac{1}{2} \text{ eqs. Hydrochloric Acid} & \quad 55.5 & \quad \text{eqs. Water} & \quad 13.5 \\
\hline
\text{1299.5} & \quad 114 & \quad \text{eqs. Chloride of Potassium} & \quad 396 \\
\frac{1}{2} \text{ eqs. Chloride of Potassium} & \quad 114 & \quad \text{eqs. Sesquisulphide of Antimony} & \quad 231 \\
3 \text{ eqs. Sesquisulphuret of Antimony} & \quad 335 & \quad \text{eqs. Sesquisulphuret of Antimony} & \quad 55.5 \\
\end{align*}
\]
The changes in the second stage of the process are readily comprehended: two equivalents or 154 parts of sesquioxide of antimony combine with one equivalent or 180 parts of dry bitartrate of potash, to form one equivalent or 334 parts of dry emetic tartar, which, in crystallizing, unite with three equivalents, or 27 parts of water. The sesquisulphuret is unacted on by the bitartrate of potash.

\[
\begin{align*}
\text{MATERIALS.} & \quad \text{PRODUCTS.} \\
3 \text{ eq. Water} & \quad 27 \quad \quad 3 \text{ eq. Water} & \quad 27 \\
1 \text{ eq. dry Bitartrate} & \quad 186 \quad \quad 1 \text{ eq. Tart. Acid 65} & \quad 1 \text{ eq. Tart. Potash 114} \\
1 \text{ eq. Potash} & \quad 48 \quad \quad 1 \text{ eq. Potash} & \quad 48 \\
2 \text{ eq. Sesquiox. Ant. 154} & \quad \quad 1 \text{ eq. Bitartr. Antim. 220} \\
\end{align*}
\]

The *Edinburgh College* gives the following directions for the preparation of this salt:—Take of Sulphuret of Antimony, in fine powder, 31v.; Muriaic Acid (commercial), Oj.; Water, Ov. Dissolve the sulphuret in the acid with the aid of a gentle heat; boil for half an hour; filter; pour the liquid into the water; collect the precipitate on a calico filter, wash it with cold water till the water ceases to redden litmus paper; dry the precipitate over the vapour bath. Take of this precipitate, 3ii.; Bitartrate of Potash, 3iv. and 3ii.; Water, 3vxxvi. Mix the powders, add the water, boil for an hour, filter, and set the liquid aside to crystallize. The mother liquor when concentrated yields more crystals, but not so free of colour, and, therefore, requiring a second crystallization.

By the mutual reaction of sesquisulphuret of antimony and hydrochloric acid, we obtain a sesquichloride of antimony (see p. 654). When this is mixed with water an oxichloride of antimony is precipitated (see p. 659). The sesquioxide contained in this unites with the bitartrate of potash and forms emetic water.

The *Dublin College* orders Emetic Tartar to be prepared with Nitro-Muriatic Oxide of Antimony (Oxichloride, see p. 659), four parts; Bitartrate of Potash triturated to a most subtile powder, five parts; Distilled Water, thirty-four parts.

Properties.—Emetic tartar crystallizes in white, transparent, inodorous, rhombic, octahedrons, whose lateral planes are striated. By exposure to the air the crystals become opaque, probably by giving out an equivalent of water. Their taste is feebly sweetish, then styptic and metallic. They dissolve in 14 or 15 parts of water at 60° F. (12° C. at 70° F., Brandes),—and in two parts (27° C. parts, Brandes) at 212°. The aqueous solution slightly reddens litmus and undergoes decomposition by keeping, like solutions of tartaric acid and most tartrates 3. Emetic tartar is not soluble in alcohol. When calcined in close vessels it yields a pyrophoric alloy of antimony and potassium. The crystals crepitate in the fire.

Characteristics.—Heated in a porcelain or glass capsule this salt is charred, shewing that it contains an organic substance (tartaric acid). If the charred
Antimony-Tartrate of Potash.

Let a solution of emetic tartar (vide fig. 111, p. 629), the latter being red; if a small quantity of hydrochloric acid be then added, an orange-red precipitate (hydrated sesquisulphuret of antimony) takes place. This precipitate is then collected and dried, and placed into a green glass tube, and a current of hydrogen gas is passed over it. When the process has gone on for a few minutes, the heat of a spirit-lamp should be applied to the tube. The sesquisulphuret of antimony is then decomposed into hydrosulphuric acid and metallic antimony. A portion of the latter is [spuriously?] sublimed. The metal is known to be antimony by dissolving it in nitro-hydrochloric acid; the solution forms a white precipitate (Powder of Algareuth) on the addition of water, and an orange-red one with hydrosulphuric acid gas, or hydrosulphate of ammonia. The mode of reducing the sesquisulphuret will be readily understood from the accompanying woodcut (fig. 118). This process was described by Dr. E. Turner.

The solution of emetic tartar forms white precipitates with oxalic and sulphuric acids, the alkalis and their carbonates, and lime,
white precipitate with oxalic and sulphuric acids, the alkalis and their carbonates, and lime,
white precipitate with oxalic and sulphuric acids, the alkalis and their carbonates, and lime.

Hydrochloric acid does not form a precipitate at
1,200
Sulphuric (or oxalic) acid: ditto
1,000
Lime water: ditto
2,500
Potash (soda, ammonia, or carbonate of ammonia) stops at
1,200
Hydrosulphuric acid (or hydrosulphate of ammonia) ditto
10,000

Dioxide of antimony, thrown down by the alkalis, is soluble in water. The precipitate formed by sulphuric acid is the sesquioxide combined with a small quantity of Acetic acid does not occasion any precipitate.

Médi. Leg. II. 730.
COMPOSITION.—The following is the composition of this salt:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sesquioxide of</td>
<td>2.154</td>
<td></td>
<td>42.05</td>
<td>42.99</td>
</tr>
<tr>
<td>Antimony</td>
<td>0.835</td>
<td></td>
<td>12.53</td>
<td>12.25</td>
</tr>
<tr>
<td>Potash</td>
<td>1.000</td>
<td></td>
<td>42.00</td>
<td>42.00</td>
</tr>
<tr>
<td>Tartaric Acid.</td>
<td>1.000</td>
<td></td>
<td>27.47</td>
<td>27.47</td>
</tr>
<tr>
<td>Water</td>
<td>1.000</td>
<td></td>
<td>14.00</td>
<td>14.00</td>
</tr>
</tbody>
</table>

Ditartrate of Antimony:

<table>
<thead>
<tr>
<th></th>
<th>Eq.</th>
<th>Atom.</th>
<th>Wt.</th>
<th>Cat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarrate Potash</td>
<td>1.000</td>
<td></td>
<td>14.00</td>
<td>114</td>
</tr>
<tr>
<td>Water</td>
<td>3.000</td>
<td></td>
<td>27.00</td>
<td>747</td>
</tr>
</tbody>
</table>

Emetic Tartar: 1..361.100.00.100.90.100.00.190.90.90.

PURITY.—In the crystalline state the purity of this salt is easily determined. The crystals should be well formed, perfectly colourless, transparent, or opaque, and, when dropped into a solution of hydro-sulphuric acid, have an orange-coloured deposit formed on them.

When pure the powder of this salt is perfectly white. Some ignorant druggists prefer a yellowish white powder, and I am informed by a manufacturer of this salt that he is obliged to keep two varieties (one white, the other yellowish white), to meet the demands of his customers! The yellow tint is owing to the presence of iron, which is readily detected in the salt by the blue colour immediately produced in its solution by adding first a few drops of dilute sulphuric acid, and then ferrocyanide of potassium.

Emetic tartar is sometimes adulterated with bitartrate of potash. According to Mr. Hennell, the antimonial salt may contain 10 per cent of bitartrate, and yet the whole will dissolve in the proper quantity (14 or 15 parts) of water. In order to detect any uncombined bitartrate, he adds a few drops of a solution of carbonate of soda to a boiling solution of the antimonial salt, and if the precipitate formed be not dissolved, he concludes that there is no bitartrate of potash present.

A dilute solution of emetic tartar occasions no precipitate with chloride of barium: it produces a white precipitate (unless the solutions be very dilute) with nitrate of silver, soluble in excess of water.

Totally soluble in water, no bitartrate of potash remaining in the vessel; an hydrosulphuric acid being added, a reddish coloured precipitate is obtained. Neither chloride of barium nor nitrate of silver being added to a dilute solution, precipitates any thing. Nitric acid throws down a precipitate, which is dissolved by an excess of it.

"Entirely soluble in twenty parts of water; solution colourless, and not affected by solution of ferrocyanide of potassium: a solution in forty parts of water is not affected by its own volume of a solution of eight parts of acetate of lead in thirty-two parts of water and fifteen parts of acetic acid." Ph. Ed.

PHYSIOLOGICAL EFFECTS. a. On Vegetables.—Emetic tartar acts as a poison to plants.

b. On Animals.—An extended examination of the effects of emetic tartar on the different classes of animals is still a desideratum. Hitherto experiments with it have been principally confined to dogs, rabbits, horses, oxen, sheep, and cats. Moiroud has given two...
rachms to horses, and gradually increased the dose to six ounces, without perceiving any remarkable and permanent derangement in the exercise of the principal functions. Gilbert (quoted by Moiroud) has exhibited ten drachms to a cow, and four to a sheep, without any remarkable effect: but six drachms killed an animal of the latter species. Magendie examined its effects on dogs. He found that from six to ten grains introduced into the stomach killed the animals in from two to three hours, when the gullet was tied: those who were able to get rid of it by vomiting took as much, as a drachm without experiencing any bad effects, and in some cases half an ounce caused no ill effects. From his experiments it appears to operate locally and by absorption, its principal action being on the intestinal canal and lungs: for nausea, vomiting, alvine evacuations, difficulty of respiration, and accelerated respiration, were produced by injecting a solution of the salt into the veins, by introducing it into the stomach, as well as by applying it in the solid state to the cellular tissue. Traces of pneumonia, gastritis, and enteritis, were found after death. These experiments have been repeated by Rayer and Bonnet on rabbits; but without obtaining the lesion of the lungs mentioned by Magendie: in some cases no appreciable lesion was observed in any organ. Dr. Campbell (quoted by Dr. Christison) found no pulmonary inflammation in a cat killed by this salt. According to Flourens, emetic tartar injected into the veins of ruminants causes efforts to vomit, but not actual vomiting: of the four stomachs possessed by these animals, the reed or true stomach is the only one affected by it. Orfila has detected antimony in the viscera of animals to whom emetic tartar had been administered by the stomach.

γ. On Man. aa. Local effects.—Emetic tartar is a powerful local irritant. Its irritant properties may be regarded as of a peculiar or specific kind; at least if we are to judge from its well-known effects when applied to the epidermis (as in the form of solution or ointment, or sprinkled over a plaster). It causes an eruption of painful pustules, resembling those of variola or cethyema. The smaller ones are semiglobular; the larger ones, when at their height, are flattened, are surrounded with an inflammatory border, contain a pseudo-membranous deposit and some purulent serum, and have a central dark point. When they have attained their greatest magnitude, the central brown spots become larger and darker, and, in a few days, desiccation takes place, and the crusts are thrown off. The largest are produced by using the powder sprinkled over a plaster; the smallest are developed by applying the solution. They are usually very painful. I am acquainted with no agent which produces an eruption precisely similar. The facility with which this eruption is produced varies considerably in different individuals, and in the same individual at different times.

Orfila, Toxicol. Gén.

Diet de Méth. et de Chir. Prat. iii. 69.

Memorie de l'Académie Royale des Sciences, t. xvi. 1838; also Journal de Chimie Méd. ix. 21.

A similar pustular eruption has been met with in the mouth, oesophagus, and small intestines, from the internal use of emetic tartar, and white aphthous spots have been observed on the velum and tonsils. But these effects are rare. Severe inflammation of the throat (angina antimonialis?) has sometimes followed the employment of antimony.

We have further evidence of the local irritation produced by emetic tartar, in its action on the stomach and intestines. When swallowed in full doses it gives rise to vomiting and purging, and pain in the epigastric region. After death, redness of the gastro-intestinal membrane has been found. However, it would appear from the experiments of Magendie, before referred to, that part of this effect should be referred to the specific influence which emetic tartar exerts over the stomach, independent of its direct local irritation, since the same symptoms have been induced by the application of this substance to wounds, or by its injection into the veins.

Occasionally constitutional effects (nausea, vomiting, and griping pains) have appeared to result from the application of emetic tartar to the skin\. In one instance death resulted from its employment: the patient was an infant two years of age, and death occurred in forty-eight hours. These effects, if really produced by this salt, occur very rarely. I have applied to the skin emetic tartar (in the form of solution, ointment, and plaster) in a very large number of cases, without having observed any constitutional effect; though I have occasionally fancied that it ameliorated pulmonary affections, even when no eruption or redness was produced, and which might arise from absorption.

βββ. Remote or constitutional effects.—Taken internally, in small doses, emetic tartar increases the secretion and exhalation of the gastro-enteric membrane, and of the liver and pancreas. Subsequently it acts powerfully on other emunctories: thus it causes sweating, without any very marked vascular excitement; it renders the mucous membranes (especially the aérian membrane) moister, and, when the skin is kept cool, promotes the secretion of urine. These effects are produced more certainly and speedily by this salt than by any other antimonial preparation.

In somewhat larger doses it excites nausea, frequently with vomiting, disorders the digestive functions, gives rise to an uneasy sensation in the abdominal region, depresses the nervous functions, relaxes the tissues (especially the muscular fibres), and occasions a feeling of great feebleness and exhaustion. These symptoms are accompanied by followed by increased secretion and exhalation from the different emunctories, but especially from the skin, as above mentioned. Of all emetic substances this creates the most nausea and depression.

\[3\] Journal de Chimie Med. iv. 176.
\[4\] Med. Repor., xvi. 357.
\[5\] See also some experiments on this subject in Mem. of the Med. Soc. Lond., vol. ii. iv. and 8.
In excessive doses emetic tartar has, in a few instances, acted as an irritant poison, and even occasioned death. In one case a scruple, in another 27 grains, nearly proved fatal. In a third 40 grains caused death. The symptoms in the latter case were vomiting, hyperaesthesia, convulsions, epigastric pain and tumefaction, and delirium. Death occurred four days after the ingestion of the poison.

Were the above cases not well authenticated, we should be disposed to ascribe the dangerous symptoms, and death, to some other circumstance than the use of the above-mentioned quantities of emetic tartar; for of late years this salt has been extensively employed in enormous and repeated doses with perfect safety. Rasori has given many drachms in twenty-four hours, and many ounces during the course of a disease, without occasioning either vomiting or abundant saline evacuations. Laennec has confirmed, to a certain extent, the statements of Rasori. He gave a scruple, two scruples, and even a drachm and a half, within twenty-four hours (usually in doses of one, two, or three grains) without ever having seen any injurious consequences. The usual effects which I have observed from the continued use of one or two grain doses are, nausea, vomiting, and purging, which in most cases are much diminished, or entirely cease, after the use of the medicine for a day or two. Perspiration I have found to be a frequent effect. In all the instances above referred to, in which these large doses were administered, the patients were affected with inflammatory diseases. Now it is to this morbid state, or diathesis, that, according to Rasori, we ought to ascribe the tolerance of, or capability or aptitude of bearing, these immense quantities of so powerful a medicine (vide p. 129 for some remarks on the Italian theory of contra stimulus). Consequently, if the opinion be worth anything, the susceptibility to the influence of the medicine should increase as the disease subsides; a circumstance which Rasori asserts really takes place. But in this the theoretical views of this distinguished Italian have probably led him to overlook the fact. "It is certainly true," observes Laennec, "that after the acute period of the disease [peripneumonia], the tolerance diminishes, or sometimes entirely ceases; but it is more common to find the patient become habituated to the medicine, insomuch that during convalescence, and when he has begun to use food as in health, he will take daily, without knowing it, six, nine, twelve, or even eighteen grains of the emetic tartar." Though I have seen this salt extensively employed in both public and private practice, I have never met any satisfactory cases supporting Rasori's assertion of the diminished tolerance when the patient becomes convalescent. Moreover, large doses have been taken by healthy individuals without any remarkable effects.

e Orfila, Traité de l'Hydrocorticisme.

f Ibid.

g B'uyère's Bibliothèque de Thérapie, i, 398.
h Treatise on Diseases of the Chest, by Dr. Forbes, p. 349.

who swallowed 27 grains of this salt, and did not vomit.

The action of large doses of emetic tartar on the circula-
respiration is usually that of a sedative. This has be-
quently, though not constantly observed. In one case of
tonia, the daily use of from six to eight grains of this sub-
the pulse, in nine days, from 120 to 34 beats per minute,
ished the number of inspirations from 50 to 18 p. In this
pulse descended, in three days, from 72 to 44 beats per minute.

Modus Operandi.—Emetic tartar (or the antimony) has
be detected in the viscera of animals, as I have ab-
M. Barré,* however, endeavoured to prove that emetic
tartar would not be absorbed by the healthy mucous membrane of the
alimentary canal. Minaret* states that a young woman labouring
ritis took emetic tartar, which operated on the child at birth as well as on herself.

Several parts of the body are influenced by this salt.
affection of the alimentary canal (especially of the stomach)
by the vomiting and purging produced, not only when it is swallowed, but when it is injected into the veins or into the
pipe, or when applied to the serous coats of the intestines or the
cellular tissue. If it purge or occasion sweating, it us
thirst, but not commonly otherwise. The appetite and appe-
frequently unimpaired. After the use of it for some days
sometimes complain of irritation in the mouth and the
metallic taste: this has been considered a sign that the sub-
ated with antimony, and that the use of it should be sup-
pustular eruption has occasionally appeared in the mouth,
already mentioned (p. 669).

Magenta ascribes to emetic tartar a specific power of
gengorge or inflammation of the lungs; for he found
bodies of animals killed by it, that the lungs were of an orange or violet colour, incapable of crepitating, gorged with blood, and there hepatized. Moreover, it has been assumed that the effects are produced in the human pulmonary organs; and in support of this opinion a case noticed by Jules Cloqueta has been referred to: it is that of a man who died of apoplexy, but who, within days of his death, had taken 40 grains of tartar emetic. "In lungs were observed very irregular blackish spots, which extended or less deeply into the parenchyma of this organ." Furthermore, it is argued, that unless we admit a specific influence of antity over the lungs, we cannot well explain the beneficial effects of this remedy in peripneumonia. In opposition to this view, I would say, that in cases of poisoning by this substance in the human breast, no mention is made of difficulty of breathing, cough, pain, or other symptom, which could lead to the suspicion that the lungs were acting; and in the case of poisoning related by Recamierb; we are distinctly told that the thorax was sound. Besides, we should expect that if emetic tartar had a tendency to inflame the lungs, or at least to occasion pulmonary engorgement, that large doses of it would be very beneficial in acute peripneumonia. It would even seem that this substance must have an influence over the human lungs of opposite kind to that supposed by Magendie; for, as already said, it reduces the frequency of respiration in a considerable number of instances.

The sedative influence of emetic tartar over the circulatory system has been already noticed; it is, however, not always evident. The great depression of the muscular power, the diminution of the frequency of the pulse and fainting, the epigastric pain sometimes experienced under circumstances that almost preclude the supposition of gastric inflammation, the cramps and convulsions, the delirium and insensibility, caused by emetic tartar in poisonous doses, are referable to the influence of this substance over the nervous system.

The absorbent system is supposed to be stimulated to greater activity by emetic tartar, in consequence of the disappearance of serous synovial effusions under its use. Moreover, Laennecc ascribed efficacy of it in peripneumonia to the increased activity of the intestinal absorption. The influence of it over the secreting organs has been before referred tod. Every one is familiar with its diaphoretic properties. Its diuretic effect is best seen when the skin is kept cool, and when the vomiting nor purging supervene. Magendie says, it augments the secretion of saliva in dogs; and the same effect has been observed in man by Drs. Griffith and Jackson. The menstrual discharge is not checked by it; but occasionally has come on under its

a Villa, Toxicol. Gén.
b Villa, op. cit.
c p. cit. p. 283.
d p. cit. p. 383.
e have already made some observations on the mode by which resolvents operate: see p. 196.
f L'homme, p. 194.
Uses.—As an emetic, this salt is usually administered by mouth, but it is sometimes used as an enema, and occasionally injected into the veins. When administered by the stomach, it is generally given in doses of one or two grains, frequently in combination with ten or fifteen grains of ipecacuanha. When our object is to evacuate the contents of the stomach, and with as little irritation as possible (as in cases of narcotic poisoning), emetics (as the sulphates of zinc and copper) are to be preferred, since they occasion less nausea and depression of system, and excite speedy vomiting. On the other hand, when we use them as a means of making an impression on the system, and of putting a sudden stop to the progress of a disease, emetic tartrate of iron is our best vomit. It is with this view that it is sometimes employed in the early stages of fever, especially when accompanied by bilious disorder. It is most efficacious when given at the commencement of the symptoms, and before the disease is well formed. In such cases it occasionally puts an entire stop to the progress of fever. But, unfortunately, the practitioner is not always called in to see the patient until the proper period for the exhibition of an emetic has passed by,—that is, until the disease is fully established. Emetic tartar is used as a vomit, with considerable advantage in the early stage of inflammatory diseases; especially in croup, scrofula, scrofula, swelled testicle, bubo, and ophthalmia. Here, also, the success of the remedy is in proportion to its early application, and it should be given to excite in the first instance vomiting, and afterwards prolonged nausea. Under this plan of treatment I have seen two or three slight cases completely recover without the use of any other remedial agent. Dr. Copland also bears testimony to the efficacy of the practice. In most cases it will be found advisable to precede the employment of emetic tartar in the second stage of croup, for the purpose of moderating vascular action, and of promoting the secretion of the adventitious membrane. But I am disposed to rely on calomel (given so as speedily to occasion ptosis and bowel action). Dr. Cheyne recommends half a grain of emetic tartar to be given in a tablespoonful of water, and given to a child two or three years of age, every half hour till sickness and vomiting are produced in two hours after the last act of vomiting, the same process being recommenced, and so repeated while the strength will admit. This disease which is relieved by the occasional use of emetics is cough. They should be administered at the commencement of the disease, every, or every other day. They diminish the violence and length of the fits of spasmodic coughing, and promote expectoration. Emetic tartar is particularly valuable in this disease in consequence of being tasteless, and, therefore, peculiarly adapted for infants and children. In derangements of the hepatic functions, indications

* Essay on Cynanche Tracheatia, 1801.
ANTIMONY-TARTRATE OF POTASH.

675

unt of emetics, this salt is usually preferred to other vomiting account of its supposed influence in promoting the secre-

containing emetic tartar have been employed to occasion but they are very uncertain in their operation. Rayer has been employed from six to twelve grains without producing sea or vomiting.

been repeatedly injected into the veins to excite vomiting dose is two or three grains dissolved in two ounces of t in some cases six grains have been employed. The effects d: when vomiting does occur it is not always immediate; it does not take place at all a. In several cases of choking, judgment of pieces of meat in the oesophagus, this remedy has ed with great success: vomiting was produced, and with it tion of the meat. It has also been tried in epilepsy and d frequently with dangerous consequences b. Meckel emr o restore animation in asphyxia by drowning c. It has also in tetanus d.

useant, to reduce the force of the circulation and the mus- er, emetic tartar is frequently of considerable service. Thus, ions of the larger joints (the hip and shoulder, for example), ng, and nauseating doses of emetic tartar, are employed to be resistance of the muscles opposing the reduction. Even lated hernia it has been given d. tartar, in large doses, is a most powerful and valuable re treatment of inflammation, especially peripneumonia. tic, nauseant, or diaphoretic, it has long been in use in this having been employed by Riverius in the 17th century, and tly by Stoll, Brendel, Schroeder, and Richter, in Germany ; Cullen, and Marryat, in England. But as a remedy for i on, independent of its evacuant effects, we are indebted for i e who first used it in the years 1799 and 1800, in an epide which raged at Genoa. Subsequently he exhibited it much assively, and in larger doses, in peripneumonia. This mode at was tried and adopted in France, first by Laennec e; and in ry by Dr. Balfour f. Its value as an antiphlogistic is now rversally admitted. Practitioners, however, are not quite to the best method of using it. Rasin b, Laennec e, Re troussais b, Bouillaud b, Dr. Mackintosh m, Drs. Graves and

- p. 49.
- li. for 1836-37, vol. i. p. 35.
- Id. p. 876.
- The French translation of his Memoir, in Bayle's Biblioth. de Thérap. i. 198.
- cite on Diseases of the Chest, translated by Dr. Forbes.
- Extractions of the Power of Emetic Tartrar, 2d edit. 1819.
- cit.
- cit.
- cette Médicale, 1839, p. 308.
- ess de Pathologie et de Thérapeutique générale, ii. 521.
- Éloignement de Médecine et de Chirurgie pratique, xiii. 405.
- actice of Physic, i. 426.
Stokes*, Dr. Davis* and most practitioners of this country, employ blood-letting in peripneumonia, in conjunction with the use of emetic tartar. But by several continental physicians the abstraction of blood is considered both unnecessary and hurtful. Thus Pesch* advises on no account to draw blood: and Trouseau* observes, blood-letting, far from aiding the action of emetic tartar, as R. Laennec, and most practitioners, imagine, is, on the contrary, scarcer injurious to the antiphlogistic influence of this medicine. I have published some numerical results of the treatment of inflammation of the lungs by blood-letting and by emetic tartar; from which it appears that this substance, given in large doses, where blood-letting appeared to have no effect, had a favourable action, and appeared to diminish the mortality†. But he particularly states that blood-letting must not be omitted (p. 32).

Laennec's mode of using this salt, and which, with some modification, I believe to be the best, is the following:—Immediately after bleeding give one grain of emetic tartar, dissolved in ounces and a half of some mild fluid [cold weak infusion of orange flowers], sweetened with half an ounce of syrup of marshmallow; this is to be repeated every two hours for six times, and then continued for seven or eight hours, if the symptoms are not urgent, if there be any inclination to sleep. But if the disease has already made progress, or if the oppression be great, or the head ache, continue the medicine until amendment takes place; and in such cases increase the dose to two, or two and a half grains. The modification in this plan, which I would venture to propose, begin with a somewhat smaller dose (say one-third or one-half grain), and gradually increase it; for in consequence of the vomiting which one grain has sometimes produced, I have seen patients positively refuse to continue the use of the medicine.

From my own experience I should say, that emetic tartar nearly as serviceable when it causes moderate sickness and purging, as when it occasions no evacuation: but many practitioners deny this. Laennec observes, that “in general the effect of emetic tartar is never more rapid, or more efficient, than when it gives to no evacuation; sometimes, however, its salutary operations are accompanied by a general perspiration. Although copious vomiting and purging are by no means desirable, on account of the dangerous and hurtful irritation of the intestinal canal which they may occasion, I have obtained remarkable cures in cases in which such evolutions had been very copious.” A few drops of tincture of quinine may be sometimes conjoined with the antimony, to check its action on the alimentary canal.

* Dublin Hospital Reports, v. p. 48.
* Lectures on Diseases of the Lungs and Heart, 188.
* Bayle, Bibliothèque Thérapeutique, i. 246.
* Dictionnaire de Médecine, 2nd ed. iii. 226.
ANTIMONY-TARTRATE OF POTASH.

The attempts which have been made to explain the modus medendi of emetic tartar in pneumonia and other inflammatory diseases, are most unsatisfactory. Whilst almost every writer, even Broussais, admits its efficacy in inflammation, scarcely two agree in the view taken of the mode by which its good effects are induced; as the following statement proves. Rasori explains its operation according to the principles of the theory of contra-stimulus, of which he may regarded as the founder. He considers emetic tartar endowed with the power of directly diminishing the inflammatory stimulus; of destroying the phthisis, and of being, therefore, a real contra-stimulus. Broussais, Bouillaud, d'Barbier, ascribes its curative powers to its revalve or derivative action on the gastro-intestinal membrane. Laennec thinks that it acts by increasing the diety of interstitial absorption. Fontanelles supposes that the antiphlogistic effect depends on alterations in the composition of the blood. Eberie refers to the sedative effects, first, on the nervous system, and consequentl

y on the art and arteries. Teallier thinks that, like many other therapeutic agents, influences the organism by concealed curative properties. Dr. Macketney regards it as a medicine diminishing the force of the circulation, by the nausea which it occasions. These examples are sufficient to show the unsatisfactory condition of our present knowledge as to the mode by which emetic tartar produces its curative effects. But this is no argument against the existence of medial powers. Shall we deny the efficacy of blood-letting in inflammation, mercury in syphilis, of cinchona in intermittents, of arsenic in lepro, of sulfur in scabies, of hydrocyanic acid in gascodynia, and of a host of other remedies, simply because we cannot account for their beneficial effects? The fact that in the present state of our knowledge we cannot explain the modus medendi of a large number of our best and most certain remedial means. (I have ready offered some remarks on the modus medendi of liquefacients and resolvents, at p. 196).

In pleurisy emetic tartar does not succeed so well as in inflammation of the substance of the lungs. "It, indeed, reduces speedily the inflammatory action," says Laennec, "but when the fever and pain have ceased, the effusion does not always disappear more rapidly under the ucl of tartar emetic than without it." I have sometimes conjoined opium (always after copious blood-letting) with advantage. In bronchitis (both acute and chronic) it may be most usefully employed, in conjunction with the usual antiphlogistic agents. In rheumatism (especially the kind called articular), next peripneumonia, emetic tartar has been found by some practitioners (especially by Laennec), more efficacious than in any other inflammatory affection: the usual duration of the complaint, when treated with this remedy, was found by Laennec to be seven or eight days. Muscular rheumatism it succeeds less perfectly. Synovial effusions (whether rheumatic or otherwise) have, in some cases, given rapidly to the use of emetic tartar. In arachnitis, Laennec seen all the symptoms disappear, under the use of emetic tartar, forty-eight hours. In three instances of acute hydrocephalus, all symptoms disappeared in the same space of time. In phlebitis;
in inflammation of the mammae, occurring after delivery; in ophthalmia, and various other inflammatory affections, emetic tartar has been successfully employed as an antiphlogistic.

In continued fever, it is of considerable service. Mild cases are benefitted by the use of small doses (as from one-sixteenth to one-fourth of a grain), as a diaphoretic. In the more severe forms of this disease, accompanied with much vascular excitement, emetic tartar, in the dose of half a grain or a grain, may be usefully administered as an antiphlogistic; but its use should, in general, be preceded by blood-letting. In the advanced stages of typhus fever, accompanied with intense cerebral excitement, manifested by loss of sleep, delirium, &c., Dr. Graves has obtained most beneficial results from the use of emetic tartar and opium. The same combination has been employed with great success in delirium tremens, as well as in delirium of erysipelas, scarlatina, and measles, by Dr. Law.

Emetic tartar is one of our most valuable sudorifics, being often available when other agents of this class are inadmissible: for example, when we are desirous of producing diaphoresis, in fever and other diseases which are accompanied with preternatural vascular action about the head, the use of opiate sudorifics (as the compound ipecacuanha powder) is objectionable; whereas emetic tartar may be employed with safety, since it has no tendency to increase disorder of the nervous system, but to reduce cerebral excitement. On the other hand, when much gastric or enteritic irritation is present, the narcotic sudorifics are generally to be preferred to antimony.

As an expectorant, in various pulmonary affections, small doses of this salt are frequently employed with advantage.

In some spasmodic complaints the use of it has been followed, in the few instances in which it has been tried, with good effects. In apoplexy it has been employed to depress cerebral vascular action, but its tendency to occasion vomiting renders it objectionable.

As a local irritant, applied to the skin, it may be employed in the form of aqueous solution, ointment, or plaster. It is used in the same cases as vesicatories, over which it has the advantage of affecting the urino-genital organs. When it is desirable to keep up long-continued irritation, blisters are in some cases preferable.

In chronic diseases of the chest it is used with the greatest advantage. I have found it much more serviceable than blisters, or any other kind of counter-irritant. I frequently direct one part of the chest to be rubbed until the eruption is produced; and then, after the interval of a day or two, another part; thus keeping up irritation by a succession of applications to different parts of the chest for several months. In this way it is most serviceable in chronic catarrhs, peripneumonia, and pleurisy. Even in lingering phthisis I have seen the cough and pain alleviated by the occasional use of antimonial frictions.

* Dr. E. Kennedy, Mr. Lever, and Dr. Ashwell, Lond. Med. Gaz. xx. 761.
‡ Ibid. xvi. 258 and 654.
hooping-cough, it is also serviceable. Autenrieth recommended it as a means of diminishing the frequency of the paroxysms and the violence of the cough. In laryngitis, it is occasionally of great service; as also in various affections of the joints, especially chronic inflammation of the capsular ligament, or of the synovial membrane, hydrops articuli, particularly when connected with inflammation, and tumors of various kinds about the joints. In tic dououreux, it has also been employed with benefit. In the paralysis of children the region of the spine should be rubbed with the ointment. Its effects are most beneficial, especially when one leg only is affected. It is sometimes necessary to keep an eruption out for many weeks. In hysteria, the same application to the spine has been found serviceable.

A stimulating wash, composed of one scruple of tartar emetic to an ounce of water, was proposed by the late Sir William Blizard, in the year 1787, to cleanse foul ulcers, repress fungous growths and venereal warts, and as an application to tinea capitis. A weak solution (as half a grain to the ounce of water) has been employed as a stimulant in chronic ophthalmia, and in spots on the cornea.

Administration.—The dose of emetic tartar, in substance, is, as a diaphoretic and expectorant, 1/2 to 1 of a grain; as a nauseant, from 1/2 to 1 a grain; as an emetic, from 1 to 2 grains; as an antiphlogistic, from 1/2 a grain to 3 or 4 grains. This salt is, however, rarely employed in substance. Sometimes a grain of it, mixed with ten or fifteen grains of powdered ipecacuanha, is employed as an emetic. A mixture of one grain with sixteen grains of sulphate of potash may be employed, in doses of from two to four grains, as a substitute for antimonial powder, to promote diaphoresis. In solution, it is commonly employed, as an expectorant, diaphoretic, nauseant, or emetic, in the form of antimonial wine. When used as an antiphlogistic, an aqueous solution of greater strength may be administered: it should be made with boiling distilled water in a glass vessel (as a Florence flask).

For external use, emetic tartar is employed in the form of liniment, ointment, or plaster. A saturated solution is a very useful liniment: it is prepared by pouring an ounce and a half of boiling water over a drachm of emetic tartar, and allowing the solution to stand till cold. In many cases it will be found preferable to the ointment; being the mildest, least painful, and cleanest. Another mode of employing emetic tartar externally is by sprinkling from ten grains to a drachm of the salt in fine powder over a Burgundy pitch plaster.

Antidote.—Promote vomiting by tepid bland liquids. The antidote is said to be tannic acid, and vegetable substances which contain it (as yellow bark, tea, nutgalls, &c.) Faure recommends the decoction in preference to other preparations of yellow bark. But though cinchona decomposes emetic tartar it does not destroy its activity.

2. Tate, A Treatise on Hysteria. Lond. 1830.
Some years since, at the General Dispensary, I saw from 1 to 2 grains of this salt, mixed with either powder or decoction of yellow bark given by Dr. Clutterbuck to nearly 100 patients: and in almost every instance nausea and vomiting occurred. The experience of Laennec, as well as of Rayer, is to the same effect. Opium is a most valuable agent for checking excessive evacuations. Venesection and the warm bath are also important means of relieving the gastro-enteritis.

1. Vinum Antimonii Potassio-Tartratis, L.; Vinum Antimoniale, E.; Liquor Tartari Emetici, D.; Antimonial Wine. (Emetic Tartar, 3ij.; Sherry, Oj., L. E.—Emetic Tartar, 3ij.; Hot distilled Water, fivij.; Rectified Spirit of Wine, fij.)—Each fluid ounce contains two grains of emetic tartar. It is important that Sherry, and not an inferior kind of wine, be employed: for the latter frequently contains matters which precipitate the sesquioxide of antimony. If the wine be good, and the salt pure, no precipitate is formed in the solution, unless it be kept for a long period, when decomposition of the salt ensues. The Dublin formula is objectionable on account of its want of colour.

Antimonial wine is used, as a diaphoretic or expectorant, in doses of from ten to thirty drops frequently repeated; as a nauseant, from one to two fluid drachms; as an emetic, about half a fluid ounce, or two fluid drachms given at intervals of about ten minutes for four or five times, or until the desired effect is produced; as an emetic for children, from thirty drops to a fluid dram; and as an antiphlogistic in peripneumonia, from two or three fluid drachms to an ounce; but for this latter purpose an extemporaneous but carefully made aqueous solution is to be preferred.

2. Unguentum Antimonii Potassio-Tartratis, L.; Unguentum Antimoniale, E.; Unguentum Tartari Emetici, D.; Tartar Emetic Ointment. (Emetic Tartar, rubbed to very fine powder, 3j.; Lard, 3v.; L. E.—The Dublin College orders 5j. of the Emetic Tartar to 8j. of Lard).—In the preparation of this ointment it is important that the emetic tartar be in the state of a very fine powder, in order to avoid the irritation produced by rubbing gritty particles on the skin. A portion of ointment about the size of a small nut is to be rubbed on the skin night and morning. After the use of it for two or three times, the painful condition of the part thereby induced commences to prevent the further employment of friction. It is sometimes applied spread on linen, without rubbing. By either of these methods a crop of painful pustules is produced: but the facility and rapidity with which they are developed varies considerably in different individuals. Occasionally adventitious eruptions have appeared in other parts of the body, which have been ascribed to absorption of antimony into the system.

But I believe with Rayer, that they arise from the inadvertent application of the ointment to these parts. This one

4. *Treat. on Diseases of the Skin*, by Dr. Walls, p. 540.
GOLD.

1. AU'RUM.—GOLD.

History.—Gold has been known from the most remote periods of antiquity. It was in common use 3,300 years since, and was probably the first metal with which mankind was acquainted. The ancients termed it Sol or Rex metallorum.

Natural History.—It is found only in the metallic state; commonly alloyed with other metals, especially with silver, tellurium, copper, and iron. It occurs in veins in primitive rocks; and is also found in alluvial deposits in small lumps or particles, called gold dust. It is found in several parts of Europe, Asia, and Africa, but principally in America, especially the southern part.

Preparation.—The mode of extracting gold varies in different countries, principally according to the nature of the gangue. The ore is smelted as much as possible from foreign matters, by mechanical processes (stamping, washing, &c.); and sometimes by roasting; and is then smelted with some flux, as borax, to separate the stony matters. It is fused with lead, and afterwards submitted to cupellation: or amalgamated with mercury, and, after straining, distilled.

The separation of gold from silver (parting) may be effected in the air by fusion, either with sulphur, by which metallic gold and sulphuret of silver are procured; or with sesquisulphuret of antimony, which sulphuret of silver and an alloy of gold and antimony are fused: the last-mentioned metal may be separated by heating the alloy in the air, as well as by other methods. Gold may also be freed from silver in the wet way by the process of quartation: that is, by treating an alloy of three parts of silver and one of gold with nitric acid, which dissolves the silver; or by action of sulphuric acid (see *Puri Sulphas*).

Properties.—The crystalline forms of native gold are the cube, irregular octahedron, and their modifications. Pure gold has a rich yellow colour, a sp. gr. of 19.2 to 19.4, is soft, very ductile, and malleable, fuses at a bright red heat (2016 F. according to Daniell), and the liquid state has a brilliant greenish colour. Its equivalent is

Exodus, xi. 2.
somewhat uncertain: Gmelin fixes on 66,—Thomson, 100,—Pellizzius and Graham, 99½,—Turner, 199-2,—and Brande, 200: I adopt the last.

Characteristics.—Gold is readily distinguished by its colour, softness, by its being unacted on by nitric acid, and by its insolvability in nitro-hydrochloric acid. The solution is yellow, when organic matters (as the skin) purple, throws down, by the addition of protosulphate of iron, metallic gold in the finely-divided state, protochloride of tin a dark or black precipitate, and by proton of mercury a black precipitate: heated with borax by the blowpipe it forms a pink or rose-coloured glass, but is subsequently reduced.

Physiological Effects.—Gold, like other metals, has been frequently supposed to be inert while it retains its metallic condition, in this, as well as in some other instances, the accuracy of the supposition has been denied. Both Christien* and Niel†, as well as other writers, assert that finely-divided metallic gold (pulvis aur) produces the same constitutional effects as those caused by the various preparations of this metal, but in a milder degree, while it excites little or no local irritation. It is said to promote the secretions of skin, kidneys, and salivary glands.

Uses.—It has been employed as an antivenereal and antiscroful remedy by Christien, Niel, and others, with considerable success. It is said to be preferable to the other preparations of this metal. It is delicate and nervous subjects, females, and infants. Gold leaf (aurum foliatum seu lamellatum) is used by dentists for filling decayed teeth and was formerly employed by apothecaries for covering pills (insaurandae seu obducendas pilulas).

Administration.—It has been administered internally in doses from a quarter of a grain to a grain three or four times a day. Christien used it by way of friction on the tongue and gums. Niel employed it under the name (that is, applied it to the skin deprived of epithelium) in the form of ointment, composed of one grain of gold and thirty grains of lard.

PULVIS AURI (Fr. Cod.) is prepared by rubbing leaf gold (aurum laminas extissimas complanatum) with sulphate of potash, rinsing with boiling water to remove the sulphate: or by adding protosulphate of iron to protocloride of gold, and washing the precipitate, first with water, then with dilute nitric acid.

2. AU’RI TERCHLO’RIDUM.—TERCHLORIDE OF GOLD.

Preparation.—In the French Codex this is ordered to be prepared by dissolving, with the aid of heat, one part of gold in three parts of nitro-hydrochloric acid. The solution is to be evaporated until the vapours of chlorine begin to be disengaged, and then allowed to crystallize.
Properties and Composition.—Chloride of gold is in the form of small crystalline needles, of an orange-red colour, inodorous, and having a strong, styptic, disagreeable taste. It is deliquescent, on which account it should be preserved in a well-stoppered bottle: it is soluble in water, alcohol, and ether. When heated it evolves chlorine, and is converted, first, into protochloride, and then into metallic gold, which is left in the spongy state. It reddens litmus, stains the cuticle purple, is reduced by many metals (as iron, copper, tin, zinc, &c.), by several of the non-metallic elementary substances (as phosphorus), by some metallic salts (as protosulphate of iron), and by many organic bodies (as charcoal, sugar, gum, gallic acid, extractive, &c.), all of which, therefore, are incompatible with it. Nitrate of silver occasions a precipitate of chloride of silver and oxide of gold: hydrochloric acid removes the latter. Terchloride of gold consists of 1 eq. gold = 200 + 3 eqs. chlorine, 108. The before-mentioned crystals also contain hydrochloric acid: hence they are regarded by some as constituting a double chloride of hydrogen and gold.

Physiological Effects. a. On Animals.—Orfila examined the effects of chloride of gold on animals, and infers from his experiments that when introduced into the stomach it acts as a corrosive (but with less energy than the bichloride of mercury), and destroys animals by the inflammation of the coats of the alimentary canal which it sets up.

b. On Man.—On man its effects are analogous to those of bichloride of mercury. In small doses it acts, according to Dr. Chrestien, more energetically as a stimulant, though less powerfully as a salagogue, than corrosive sublimate. It promotes the secretions of the skin, the salivary glands, and the kidneys. Taken to the extent of one-tenth of a grain daily, it has occasioned violent fever. "This excitation," says Chrestien, "I regard as indispensably necessary for the cure of the diseases against which I administer gold: restrained within proper limits, it is never accompanied with any remarkable or even sensible lesion of the functions. The mouth is good, the tongue moist, the appetite continues, the bowels are not disordered, and there is ordinarily only augmentation of urine and transpiration: but if carried too far, we incur the risk of producing general erythema, inflammation of this or that organ, according to the predisposition of the patient, which will not only check the treatment, but may even induce a new disease, often more troublesome than the original one. The suspension or modification of the remedy should be governed by the unusual and sustained heat of the skin." Cullerier, the nephew, has seen one-fifteenth of a grain excite, at the second dose, gastric irritation, dryness of the tongue, redness of the throat, colic, and diarrhoea. When it promotes the secretion of saliva, it does not, as mercury, affect the teeth and gums. Magendie has seen violent gastritis, accompanied by nervous symptoms (cramps and pains in the limbs,

a For other characteristics, vide p. 602.
1 Toxicol. Gen.
2 Magendie, Formulaires, 2me ed. p. 365.
3 Grötner, Bust's Magazine, B. 21, quoted by Wibmer.
agitation, and loss of sleep), and afterwards great heat of skin, sleeplessness, and fatiguing erections. In large doses, it probably occasion symptoms analogous to those produced by the use of poisonous doses of bichloride of mercury.

Uses.—It has been employed, with variable success, as a substitute for mercury in the treatment of the secondary symptoms of syphilis. A more extended experience of its use is necessary to enable us to speak of its remedial powers with confidence. The hands of Christien**, Niel*, Cullerier?, Legrand?, and others, are at present the best in the world, if they have proved most successful.

It has also been used in scrofulous affections, bronchocele, of obstinate ulceration of the face, regarded by him as cancerous growths, and ulcerations of the neck of the uterus.

Administration.—Internally, it has been given in doses of a grain, made into pills with starch. But as the effects of it are generally temporary, it is better to use it in distilled water, or to apply it by friction to the mouth, in quantities of from one-sixteenth to one-sixth of a grain.

Antidote.—The same as for poisoning by bichloride of mercury.

3. SODII AU’RO-TERCHLORIDUM.—AURO-TERCHLORIDE OF SODIUM.

In the French Codex this is ordered to be prepared by dissolving 85 parts by weight of terchloride of gold, and 16 parts of chlorate of sodium, in a small quantity of distilled water: the solution is evaporated by a gentle heat until a pellicle forms, and then put to crystallize.

The auro-terchloride of sodium crystallizes in orange-yellow, quadrangular, elongated prisms, which are permanent in the air when they contain any uncombined terchloride of gold, and are slightly deliquescent. They are soluble in water. When chlorine is evolved, and a mixture of gold and chloride of sodium is left behind. They consist of 1 eq. terchloride of gold = 308 parts of chloride of sodium = 60, and 4 eqs. of water = 36.

Its effects and uses are analogous to the terchloride of gold, which it has the advantages of being more constant and less poisonous. It is exhibited internally in doses of one-twentieth to one-tenth of a grain, made into pills with starch or lycopodium. Mixed with

† Diet. des Sciences Méd. xxxvii. art. Or.
‡ De l’Or, de son Emploi dans le Trajetement de la Syphilis. Paris, 1822.
§ Ann. de Chimie, lxxviii. 55.
weight of orris powder or lycopodium, it may be used in frictions the tongue and gum. An ointment (composed of one grain to forty-six grains of lard) may be applied, endermically, to the skin, prived of its epidermis by a blister.

4. **AURI TEROXYDUM.**—TEROXIDE OF GOLD.

This substance, sometimes called peroxide of gold or auric acid, is tereed, in the French Codex, to be prepared by boiling 4 parts called magnesium with 1 part perchloride of gold and 40 parts of water. Ten wash, first with water, to remove the chloride of magnesium, evers with dilute nitric acid, to dissolve the excess of magnesia. Teroxide of gold is brown; in the state of hydrate, reddish yellow. is reduced by heat and solar light. It is insoluble in water, but solubile in hydrochloric acid (forming perchloride of gold), and in alalis (forming aurates). It consists of 3 equivalents oxygen, 24 + eq. gold = 200.

It is used internally, in venereal and scrofulous diseases, in doses from one-tenth of a grain to a grain, made into the form of pills th extract of mezereon.

4. **AURATE OF AMMONIA.** Ammoniuret of Teroxide of Gold; Fulminating Gold.—This is prepared by adding ammonia to a solution of chloride of gold. It is a yellowish-brown powder, which explodes when heated to 400°. It has been employed in the same cases as the preceding compounds, as well as in fevers, nervous affections, &c. Some cases it has produced very serious, and even fatal, results.

2. **PURPURA MINERALIS CASSII.** Purple of Cassius; Aurum Stannum ratum, Fr. Cod.—The nature of this compound is so imperfectly own, that it is impossible at present to assign to it its proper checal name. Its active principle is probably oxide of gold. There are several methods of preparing it: the simplest is to add a solution the mixed protochloride and perchloride of tin to a solution of chloride of gold, until a precipitate is no longer produced. Filter and dry the precipitate.

The purple of Cassius is soluble in ammonia, and does not form amalgam with mercury: hence it does not appear to contain any stalling gold. Its composition varies according to the mode of proing it. Gold, oxygen, and tin, are its essential constituents.

This preparation is used in the same cases as the other preparons of gold.

5. **AURI IODIDUM.**—IODIDE OF GOLD.

This is ordered to be prepared, in the French Codex, by adding a solution of iodide of potassium to a solution of chloride of gold. Double decomposition takes place, and iodide of gold falls down.

* Plienck, Toxikologie, ed. 2nd, 230.
This is to be collected on a filter, and washed with alcohol, to remove the excess of iodine which precipitates with it.

Iodide of gold is of a greenish-yellow colour, insoluble in water, but slightly soluble in boiling water. Heated in a crucible it evolves iodine vapour, and is converted into metallic gold. It is probably composed of 1 eq. iodine = 126, and 1 eq. gold = 200.

It has been employed internally, in venereal affections, in doses from one-fifteenth to one-tenth of a grain. Externally it has been applied in the form of ointment to venereal ulcers.

6. Au’RI TERCYAN’IDUM.—TERCYANIDE OF GOLD.

The directions for preparing this salt, in the French Codex, somewhat diffuse. The process consists essentially in very carefully adding a solution of pure cyanide of potassium to a solution of chlorate of gold, until a precipitate (cyanide of gold) ceases to be formed. The chloride of gold, prior to solution, should be deprived of excess of acid by heating it in a salt-water bath.

Cyanide of gold is a yellow powder, which is insoluble in water. It consists, probably, of 3 eqs. cyanogen = 78, and 1 eq. gold. It has been used in venereal and scrofulous affections, both externally and internally. The dose is from one-fifteenth to one-tenth of a grain, made into a pill, with some inert powder.

ORDER XX.—SILVER AND ITS COMPOUNDS.

1. ARGENT’UM, L. E. D.—SILVER.

History.—Silver, like gold, has been known from the most remote periods of antiquity, being mentioned in the earliest books of the Testament. It was termed by the alchemists and astrologers Dia or Luna.

Natural History.—It is found in the mineral kingdom in various states; sometimes nearly pure; or alloyed with other metals (especially gold, antimony, tellurium, arsenicum, and copper); combined with sulphur, selenium, iodine, or chlorine. Of the various forms, native silver and the sulphuret are by far the most abundant. A native carbonate of silver is described, but is exceedingly rare.

Preparation.—The processes followed for the extraction of silver vary in different places, according to the nature of the ore: they principally amalgamation and cupellation. At Freyberg the ore is mixed with common salt, and roasted, by which the sulphuret of silver is converted into the chloride of this metal: water and iron are then added, to remove the chlorine, and the disengaged silver is finally dissolved in mercury (amalgamation), and the solution submitted to distillation, by which the mercury is volatilized, and the
SILVER.

697

silver left behind. The process of amalgamation followed in America is somewhat different. Silver is obtained from argentiferous galena, as follows:—The ore is first roasted to expel the sulphur, and afterwards smelted with charcoal. The argentiferous lead is then submitted to cupellation, by which the lead becoming oxidized, is partly volatilized, and partly sinks into the cupel (cinerium), leaving the silver.

Pure silver is obtained by immersing a copper rod in a solution of the nitrate. The precipitate is to be digested in caustic ammonia, to remove all traces of copper, and afterwards washed with water.

Properties.—In the native state, silver occurs crystallized in the cube and regular octahedron. When pure this metal is white, with a slight shade of yellow; inodorous and tasteless. It is moderately hard and elastic; very ductile and malleable: a single grain may be drawn out into 400 feet of wire, and leaf silver (argentum in laminas extensus; argentum foliatum) may be procured, whose thickness is only 1/10,000 of an inch. Its sp. gr. is 10.474. It melts at a bright red heat (1873° F. according to Daniell). When exposed to the air it does not oxidate, but readily tarnishes by sulphurous vapours. Its equivalent is 108.

Characteristics.—It is soluble in nitric acid.—(For the characteristics of the nitric solution, see p. 689.)

Purity.—The silver of the shops usually contains traces of gold and copper.

It is totally dissolved by diluted nitric acid. This solution, on the addition of chloride of sodium, throws down a precipitate, which an excess of ammonia dissolves, and it should be free from colour. The chloride of silver being removed, hydrosulphuric acid added to the solution, it is not coloured by it, and nothing is thrown down. The specific gravity of silver is 10.4. Ph. L.

Soluble entirely in diluted nitric acid: this solution, treated with an excess of nitrate of soda, gives a white precipitate entirely soluble in aqua ammonis, and which is not affected by sulphuretted hydrogen. Ph. Ed.

Physiological Effects.—Silver in the metallic state is totally inert. It may remain for many months in the alimentary canal without exciting any ill effects. Colic, however, has been ascribed to the handling of silver.

Uses.—In pharmacy it is used for the preparation of the nitrate, which is employed as a medicine and as a test. Silver leaf is used for filling the hollows of decayed teeth, and was formerly employed to cover pills. An amalgam of silver is also used by some dentists for stopping teeth. It is objectionable on account of its becoming black by the sulphuretted or phosphuretted hydrogen exhaled by the breath.

Boussingault, Annales de Chimie, ii. 357; also, Ward, Mexico in 1827, vol. ii. 437.
On the smelting processes of Hungary, Saxony etc., consult Taylor's Records of Mining, p. 51.
Journal de Chimie Medicale, t. vi. 2nd Series, 1840.
2. ARGENTI NÆTRAS, L. E.—NITRATE OF SILVER.

(Argenti Nitritus Crystallī; and Argenti Nitratus fusum, D.)

HISTORY.—Geber describes the method of preparing crystallized nitrate of silver. When this salt is fused, it is termed Lūnār Causītum (Causticum Lunare). The term Infernāl Stone (Lapis Infernālis) is sometimes applied to this salt as well as to hydrate of potash [see p. 481]. Nitrate of silver is sometimes called Argentum Nitritum.

PREPARATION.—All the British Colleges give directions for the preparation of this salt.

The London College orders of silver, $$$; Nitric Acid, $\frac{1}{3}$ $$; Distilled Water $\frac{1}{2}$ $$$$. Mix the nitric acid with the water, and dissolve the silver in them in a sand-bath. Afterwards increase the heat gradually, that the nitrate of silver may be dried. Melt this in a crucible, with a slow fire, until the water being expelled, ebullition has ceased; then immediately pour it into proper moulds.

The directions of the Edinburgh College are essentially similar, except that the salt is ordered to be fused in an earthenware or porcelain crucible, and the fused matter poured into iron moulds previously heated and greased slightly with tallow. Preserve the product in glass vessels.

The Dublin College directs two forms of nitrate of silver to be prepared; the one in crystals, the other fused. The crystallized nitrate is prepared of silver laminated and cut into small fragments, thirty-seven parts; Diluted Nitric Acid sixty parts. Let the silver be passed into a glass vessel, and let the acid, previously diluted with water, be poured on it. Dissolve the metal with a heat gradually increased; then, by evaporation and refrigeration, let crystals be formed, to be dried without heat, and to be preserved in a glass vessel placed in darkness.

The following are directions for preparing the fused nitrate:—Let Silver be dissolved in Diluted Nitric Acid as above described; then let the liquor be evaporated to dryness. Let the remaining mass, passed into a crucible, be liquefied by a slow heat. Let it then be poured into proper moulds, and preserved in a glass vessel.

The fusion may be more readily and safely effected in a Berlin porcelain capsule over a spirit or gas lamp, by means of Griffin’s lamp furnace, than in a crucible over a slow fire, as directed in the London Pharmacopoeia. It is unnecessary and objectionable to grease the moulds, as directed by the Edinburgh College.

The theory of the process is readily comprehended. Three equivalents or 324 parts of silver abstract three equivalents or 24 parts of oxygen from one equivalent or 54 parts of nitric acid, thereby disengaging one equivalent or 30 parts of binoxide of nitrogen, and forming three equivalents or 348 parts of oxide of silver, which unite with three equivalents or 162 parts of nitric acid to form three equivalents or 510 parts of nitrate of silver.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Nitric Acid</td>
<td>4 eq. Binox. Nitro. 30</td>
</tr>
<tr>
<td>3 eq. Silver</td>
<td>$\frac{1}{3}$ eq. Oxygen $\frac{24}{24}$</td>
</tr>
<tr>
<td>3 eq. Nitric Acid</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>540</td>
</tr>
</tbody>
</table>

1. Invention of Verity, ch. xxi.
NITRATE OF SILVER.

Properties.—Nitrate of silver forms transparent, colourless, right
ic prismatic crystals. Its taste is strongly metallic and bitter.
When heated it fuses: if the temperature
be increased, decomposition ensues; and
metallic silver is obtained. The fused ni-
trate forms on cooling a whitish, striated
mass, having a crystalline texture. The
salt is soluble in both water and spirit.
It does not deliquesce: when exposed to
the atmosphere and solar light it blackens,
probably from the action of organic mat-
ter, or hydrosulphuric acid, contained
atmosphere. Mr. Scanlan finds that nitrate of silver in
a dry glass tube, hermetically sealed, undergoes no change
or by exposure to solar light: the contact of organic matter,
er, readily occasions it to become black. A solution of nitrate
of distilled water is unchanged by exposure to solar light; but
nesence of organic matter causes the liquid to become black
fish. (See pp. 257, 258, and 259).

racteristics.—It is known to be a nitrate by its deflagration when
on charcoal, and the evolution of nitrous fumes, as well as by the
characters before mentioned for this class of salts (see p. 289). Its
sters as a salt of silver are as follows:—It yields with hydrochloric
a white precipitate (chloride of silver), whose properties have
fore stated (see p. 226). It forms also, with solutions of the
碳ates, oxalates, and ferrocyanides, white precipitates
ate, oxalate, and ferrocyanide of silver). With solutions of
aline arsenites and phosphates it yields yellow precipitates
ite and subsequiphosphate of silver); red with the arseniates
ate of silver); and with lime water or the fixed alkalies olive-
oxide of silver). Phosphorus and metallic copper each preci-
crystals of metallic silver from the aqueous solution of this
ydrosolphuric acid occasions a black precipitate (sulphuret
er).

osition.—Nitrate of silver is thus composed:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide of Silver</td>
<td>1</td>
<td>116</td>
<td>69.5</td>
</tr>
<tr>
<td>Nitric Acid</td>
<td>1</td>
<td>54</td>
<td>30.5</td>
</tr>
<tr>
<td>Nitrate of Silver</td>
<td>1</td>
<td>170</td>
<td>99.9</td>
</tr>
</tbody>
</table>

ity.—Nitrate of silver should be white, and completely soluble
tilled water. By the action of organic matters and light it
ms from a partial reduction. The presence of copper may be
ed in its solution by the blue colour produced with caustic am-

The watery solution from which the silver has been thrown
by hydrochloric acid, should be unchanged by the addition of
ulphuric acid, showing the absence of lead and copper; and
pletely volatilized by heat: if any saline residuum be obtained,
the nitrate was adulterated. A chemical manufacturer informs me that he has detected 10 per cent. of nitrate of potash in the nitrate of silver of commerce. It was recognised by precipitating the silver by means of hydrochloric acid, and subsequently crystallizing the nitrate of potash. The white precipitate produced with either hydrochloric acid or chloride of sodium should be readily dissolved by caustic ammonia: if chloride of lead be present the effect will be otherwise.

It is originally white, but blackens by exposure to light. It is entirely soluble in water. Copper put into the solution precipitates silver; its other properties are as above detailed respecting silver. Ph. Lond.

Soluble in distilled water, with the exception of a very scanty black powder. Twenty-nine grains dissolved in one fluidounce of distilled water, acidulated with nitric acid, precipitated with a solution of nine grains of muriate of ammonia briskly agitated for a few seconds, and then allowed to rest a little, will yield clear supernatant liquid, which still precipitates with more of the test. Ph. Ed.

Physiological Effects. a. On Animals.—Orfila found that it acted on animals as a powerfully corrosive poison. When dogs were made to swallow it, gastro-enteritis was induced. No symptoms indicating its absorption were observed. Dissolved in water, and thrown into the jugular vein, it produced difficult respiration, convulsive movements, and speedy death.

b. On Man.—The local action of nitrate of silver is that of a caustic or corrosive. This might be expected, from observing its action on albumen and fibrin—substances which form the principal part of the animal textures. If a solution of nitrate of silver be added to an albuminous liquid, a white curdy precipitate is formed, composed of albumen 84·5, and nitrate of silver 15·5. This precipitate is soluble in caustic ammonia, and in solutions of nitrate of silver, albumen, and chloride of sodium. After sometime it becomes coloured and ultimately blackish, from the partial or complete reduction of the silver. The action of nitrate of silver on milk is, as well as on fibrin, is analogous to that on albumen; that is, a white compound of nitrate of silver and of these organic substances is at first formed, but gradually the metal is reduced. These facts assist us in comprehending the nature of the changes produced by the application of nitrate of silver to different tissues.

Applied to the skin it produces first a white mark, owing to its union with the coagulated albumen of the cuticle: gradually this becomes bluish-grey, purple, and ultimately black, owing to the partial reduction of the silver. If the integument be moistened, and the nitrate applied three or four times, it causes at the end of some hours vesication, which is usually attended with less pain than that produced by cantharides. In some cases it excites acute pain. In one instance in which I applied it freely to the scalp for a cutaneous affection, fever with delirium was produced, which endangered the life of the patient.

* Taxicol. Gén.
* Lassaigne, Journ. de Chim. Méd., t. vi. 11·5·5·5, p. 366.
* Dr. C. G. Müscherich, Pharmaceutisches Central-Blatt für 1839, S. 447.
* See some remarks of Mülker on the action of metallic salts on fibrin and albumen, in the Pharmaceutisches Central-Blatt für 1839, S. 509.
girl of six years). This is deserving of notice, because in Mr. Higginsbottom's work we are told, that nitrate of silver applied as a vesicant "causes scarcely any constitutional irritation, even in children." In a few days the black and destroyed cuticle cracks and falls of, without any destruction of the subjacent cutis vera.

Applied to the hair or nails the nitrate stains them black, as in the case of the cuticle; and, in consequence, it is one of the substances employed as a hair dye (see p. 218). When recently applied, the black tint of the hair, and even of the cuticle, may be removed by washing with a solution of chloride of sodium, and then with ammonia-water, to dissolve the chloride of silver which is produced. To detect silver in stained hair, the latter is to be treated with chloride, by which chloride of silver is produced, which is soluble in ammonia, and precipitable from its solution by nitric acid. Part of the black colour of the hair stained by the nitrate depends on the formation of sulphuret of silver.

When nitrate of silver is applied to an ulcer it produces a white film (owing to its union with the albumen, and perhaps also with the chloride, of the secretion). This film in a few hours assumes a dark colour, and ultimately forms a black eschar. This hardens, and in a few days becomes corrugated, separates at the edges, and at length peels off altogether, leaving the surface of the sore beneath in a healed state. The intensity of the pain varies much in different cases; but it is, on the whole, very much less than might be imagined by those who have not tried this remedy.

When applied to mucous membranes, a similar white compound of the nitrate with the animal matter of the secreted mucus is formed, and this defends the living tissue from the action of the caustic, so that the effects are not so violent as might be expected. Thus the solid nitrate may be applied to the mucous surface of the vagina, and even to the os uteri, in cases of leucorrhea and gonorrhea, oftentimes without exciting any pain or inflammation; in some instances, however, it produces smarting pain, which lasts for several hours, but no serious effects have resulted from its use, even when, by accident, "droachms of nitrate have been left to dissolve in the vagina."

Its chemical effects on the other mucous membranes are analogous to those just mentioned; but the pain which it produces varies with different membranes, and in the same membrane under different states. Its application to the conjunctiva is attended with acute pain (especially when inflammation is going on), though in general this soon subsides. On all these surfaces it acts as an astringent.

The safety with which, in most cases, large doses of the nitrate are administered internally, must depend on the presence of the mucus which lines the internal coat of the stomach, and on chlorides and hydrochloric acid contained in this viscus. These form with the

Essay on the Use of the Nitrate of Silver, 2d ed. p. 198.

regis, Med. Leg. ii. 943.

Hinsbottom, op. cit. p. 10.

Hannay, Lond. Med. Gaz. xx. 188; also Mr. Bell, ibid. 473; and Dr. Jewell, Pract. Obere.

leucorrhea.
nitrato new compounds (albuminate and chloride), less energetic in
their local action than the nitrato. It is deserving of especial notice
that larger doses may be exhibited without inconvenience the stom-
ach, in the form of pill, than in that of solution; in consequence, I
presume, of the latter acting on a larger surface. Dr. Powell, in
some cases, was enabled to give 15 grains at a dose in the form of
pills, while he rarely found stomachs that could bear more than five
grains in solution. Fouquier has also remarked the greater activity
of the solution. If cautiously exhibited, beginning with small doses
and gradually increasing them, it may be exhibited for a considerable
period without producing any obvious changes in the corporeal func-
tions, though it may be exercising a beneficial influence over the
constitution, evinced by its amelioration of certain diseases, as epi-
lepsy. In some cases it has caused an eruption. If the dose be
too large it occasions gastrodyinia, sometimes nausea and vomiting,
and occasionally purging. Taken in an excessive dose it acts as a
corrosive poison; but cases of this kind are very rarely met with.
Boerhaave mentions an instance in which it caused excruciating
pain, gangrene, and sphacelus of the first passage.

All the above-mentioned effects are referrible to its local action,
and from them we have no evidence of its absorption, or of the na-
ture of its influence over the general system. But the discolora-
tion of the skin, presently to be noticed, fully proves that absorption
does take place when the medicine is exhibited in small but long-continued
doses. It exercises a specific influence over the nervous system; at
least I infer this, partly from the effects observed by Orfila when
it was injected into the veins of animals, and partly from its occa-
sionally curative powers in affections of this system, as epilepsy and chorn.

The blueness, or slate colour, or bronze hue of the skin just alluded
to, has been produced in several patients who have continued the use
of the nitrato during some months or years. In some of the cases
the patients have been cured of the epilepsy for which they took the
medicine; in others the remedy has failed. In one instance which
fell under my notice, the patient, a highly respectable gentleman,
residing in London, was obliged to give up business in consequence of
the discoloration; for when he went into the street, the boys gathered
around him, crying out "There goes the blue man." In this instance
no perceptible diminution of the colour had occurred for some
years, but in some cases it fades in intensity. The corion is the es-
sential seat of it. Dr. Baddeley found that blisters rose white-
proof that in his patient the colouring matter was below the epider-
mis. But in some instances the cuticle and corpus mucosum of the
face and hands participate in the tint. In one instance the mucous
membrane of the stomach and intestines was similarly tinted.

1 Med. Trans. of the College of Phys. iv. 85.
2 Diet. Med. i. 409.
3 Sementini, Quart. Journ. of Science, xii. 189; Copland, Diet. Pract. Med. i. 68.
4 Medico-Chirurg. Trans. viu. and ix.
5 Bayer, Treatise on Skin Diseases, by Willis, 903.
case is mentioned by Wedemeyer of an epileptic who was cured by nitrate of silver, but eventually died of diseased liver and dropsy: all the internal viscerals were more or less blue, and Brande, a German chemist, obtained metallic silver from the plexus choroides and pancreas. The discoloration of the skin is usually regarded as permanent and incurable; but I have been informed that in one instance washes of dilute nitric acid diminished it. If this observation be correct, I would suggest the exhibition of nitric acid internally, as well as its external use. Dr. A. T. Thomson suggests that if nitric acid were conjoined with nitrate of silver the discoloration might be prevented; and the suggestion certainly deserves attention. But I would observe, that if the acid should prove efficacious, its hypothesis, that the colour depends on blackened chloride of silver, will be disproved; for nitric acid can neither prevent the action of the compounds of chlorine on the salts of silver, nor can it dissolve the white chloride or the black subchloride.

Uses.—Nitrate of silver has been employed *internally* in a very few cases only; and of these the principal and most important are epilepsy, chorea, and angina pectoris. Its liability to discolor the skin is a great drawback to its use; indeed, I conceive that a medical man is not justified in risking the production of this effect without previously informing his patient of the possible result. Dr. Osborne describes its good effects to its allaying irritation of the gastric membrane. But in a large number of instances the asserted existence of this irritation is a mere assumption, perfectly devoid of proof.

In epilepsy it has occasionally, perhaps more frequently than any other remedy, proved successful. Drs. Sims, Bailie, R. Harrison, Roget, and J. Johnson, have all borne testimony to its beneficial effects. Its *methodus medendi* is imperfectly understood. This, indeed, is to be expected, when it is considered that the pathology and causes of epilepsy are so little known; and that, as Dr. Sims has justly observed, every thing concerning this disease is involved in the greatest doubt and obscurity, if we except the descriptions of a single fit, and that it returns at uncertain intervals. In this state of ignorance, and with the already-mentioned facts before us, as to the curative powers of this salt, the observation of Georget, that he has great difficulty in conceiving how the blindest empiricism could have led any one to attempt the cure of a diseased brain by uterizing the stomach, is, I conceive, most absurd and unwarranted. The cases which have been relieved by it are probably those termed by Dr. M. Hall eccentric. In the few instances in which I have tried this remedy, it has proved unsuccessful; but it was not continued long, on account of the apprehended discoloration of the skin.

In chorea it has been successfully employed by Dr. Powell, Uwins, Dr. Crampton, Lombard, and others. In angina pectoris it has been administered in the intervals of the paroxysms with occasional success by Dr. Cappe and Dr. Copland.

In chronic affections of the stomach (especially morbid sensibility of the gastric and intestinal nerves) it has been favourably spoken of by Autenreith, Dr. James Johnson, and Ruel. It has been employed to allay chronic vomiting connected with disordered innervation, as well as with disease of the stomach (scirrhus and cancer) and to relieve gastrodynia. The foregoing are the most important of the diseases against which nitrate of silver has been administered internally.

As an external agent its uses are far more valuable, while they are free from the danger of staining the skin. It is employed sometimes as a caustic, and as such it has some advantages over potassa and the liquid corrosives. Thus, it does not liquify by its application, and hence its action is confined to the parts with which it is placed in contact. It is used to remove and repress spongy granulations in wounds and ulcers, and to destroy warts, whether venereal or otherwise. It is applied to chancre on their first appearance with the view of decomposing the syphilitic poison, and thereby stopping its absorption, and preventing bubo or secondary symptoms. This practice has the sanction of Mr. Hunter. I have several times seen it fail, perhaps because it was not adopted sufficiently early. The nitrate should be scraped to a point, and applied to every part of the ulcer. This mode of treating chancre has been recently brought forward by Ratier as if it were new, and as forming part of Bretonneau's ecretiote (ecretia, ἐκτρέπω, I abort,) method of treating diseases!

The application of nitrate of silver to punctured wounds is attended with most beneficial effects, as Mr. Higginbottom has proved. It prevents or subdues inflammatory action in a very surprising manner. It is equally adapted for poisoned as for simple wounds. To promote the healing of ulcers it is a most valuable remedy. In large indolent ulcers, particularly those of a fistulous or callous kind, it acts as a most efficient stimulant. To small ulcers it may be applied so as to cause an eschar, and when at last this peels off, the sore is found to be healed. Mr. Higginbottom asserts that "in every instance in which the eschar remains adherent from the first application, the wound or ulcer over which it is forma
invariably heals." Dry lint will, in general, be found the best dressing for sores touched with the nitrate.

Nitrate of silver was proposed by Mr. Higginbottom as a topical remedy for external inflammation. It may be applied with great advantage to subdue the inflammatory action of erythema, of paronychia or whitlow, and of inflamed absorbents. In some cases it is merely necessary to blacken the cuticle; in others, Mr. Higginbottom recommends it to be used so as to induce vesication. In erysipelas nitrate of silver is used by many surgeons as a cautery both to the inflamed and the surrounding healthy parts. But I have so often seen the disease continue its course as if nothing had been done that I have lost confidence in its efficacy. I have found tincture of iodine (see p. 246) much preferable.

Bretonneau and Serres recommend the cauterization of variolous pustules by nitrate of silver, in order to cut short their progress. It is principally useful as a means of preventing pitting, and should be employed on the first or second day of the eruption. The solid caustic is to be applied to each pustule after the apisces have been removed. This ictrotic method has also been employed in the treatment of shingles (herpes zoster) in one case the disease was cured in a few hours. Some good rules for its application have been laid down by Rayer.

In some diseases of the eye nitrate of silver is a most valuable remedial agent. It is used in the solid state, in solution, and in ointment: the solution may be used as a wash or injection, or applied by a camel's hair pencil. In deep ulcers of the cornea, a cone of the solid nitrate should be applied,—in superficial ones, a solution (of from 4 to 10 grains of the salt to an ounce of distilled water) may be employed. There is one drawback to the use of this substance in ulcers of the cornea, as well as other affections of the eye: viz. the danger of producing dark specks in the cornea, or of staining the conjunctiva; but this occurrence is certainly very rare. Velpn has employed it in many hundred cases without ever observing such an effect. In both acute and chronic ophthalmia, Mr. Guthrie employs this salt in the form of ointment (Arg. Nitr. gr. ij. ad gr. x.; liq. Plumbi Subacet. gtt. xv.; Ung. Cetacei, 3j.) Of this he directs a portion (varying in size from a large pin's head to that of a garden pea) to be introduced between the lids by the finger or a camel's hair pencil. It causes more or less pain, which sometimes lasts only half an hour, at others till next day. Warm anodyne fomentations are to be used; and the application of the ointment repeated every third day. In acute cases, two or three applications will arrest the disease. With this treatment, blood-letting, and the
use of calomel and opium, are preceded or conjoined with
many surgeons hesitate to use nitrate of silver in the first
acute purulent opthalmia, all are agreed as to its value
in the second stage of the disease, as well as in chronic ones.
Besides the diseases of the eye already mentioned, there
are others in which the oculist finds this salt of the greatest
benefit. A caustic, astringent, or stimulant.

In inflammatory affections and ulcerations of the mucous
membrane of the mouth and faucæ, nitrate of silver is sometimes a
valuable application. When the fibrinous exudation of
the surface of the tonsils and arches of the
further progress may be stopped, according to Mr. Mackenzie,
application of a solution composed of a scruple of
silver and an ounce of distilled water. The solid nitrate
introduced through an aperture in the trachea, and applied to
the inner surface of the larynx, in a case of phthisis laryngeal,
appears to have been of apparent benefit.

In some forms of leucorrhœa the application of nitrate
of silver either in the solid state or in solution, is attended with
more or less success. This practice was first recommended by Dr. Jewel;
I believe, most successful in cases dependent on local in
subacute inflammation, and not arising from constitutional
causes. The solution may be applied by a piece of lint or sponge,
the means of a syringe with a curved pipe. Its effects vary
according to circumstances. Dr. Jewel generally
applied three grains of nitrate to an ounce of water; but in
the Hospital, solutions are sometimes used containing half an
ounce, even two scruples to the ounce. In some cases the solid
nitrate has been applied to the cervix uteri and vagina by means of a
sponge. In gonorrhœa of the female a solution of the nitrate of silver,
this caustic in the solid state, has been used with the best
results. It was first employed by Dr. Jewel, but subsequently, and on
more extensive scale, by Dr. Hannay, and without any
colateral effects. In many cases the discharge ceased, never to
return in twenty-four hours. The fear of ill effects has prevented
the general adoption of this practice. In gonorrhœa of the male,
the introduction of a bougie, smeared with an ointment of nitrate of
silver, occasionally, a most effectual cure: but the practice is
dangerous and protracted.

In one case I saw acute and nearly fatal urethritis brought
to a happy conclusion. The patient was a dresser at one of the
hospitals, and had practised this mode of treatment in
the case of a patient with the happiest results.

* For some judicious remarks on this practice, consult the article Ophthalmia, by Dr. Mackenzie, in Cyclop. of Pract. Med. ill. 201.
* Vide Dr. Mackenzie's Treatise on Diseases of the Eye, and Mr. Ryall's paper, in the King and Queen's College of Phys. of Ireland, v. 1.
* Liston, Elements of Surgery, part ii. p. 256.
* Practical Observations on Leucorrhœa, 1830
NITRATE OF SILVER.

Aqueous solution of the salt has been successfully used in chronic gonorrhoea.

In fissured or excoriated nipples the application of the solid nitrate of silver is of great service. It should be insinuated into all the chaps or cracks, and the nipple afterwards washed with tepid milk and water.

The application of solid nitrate of silver is a most effectual remedy for the different forms of porrigo which affect the heads of children. The caustic should be well rubbed into the parts. I have never known the practice to fail, or to cause the loss of hair. Where the greater portion of the scalp is involved, the different spots should be cauterized successively at intervals of some days; for, as already mentioned, I have seen fever and delirium produced in a child from the too extensive use of the remedy. In psoriasis the same medicine was found by Dr. Graves most effectual. An aqueous solution of the nitrate is also valuable as an astringent wash in other skin diseases, as impetigo. The solid nitrate is sometimes employed to stop the progress of irritative or erysipelas inflammation, by applying it in a circular form around, and at a little distance from, the inflamed portion; but I have frequently observed the inflammation extend beyond the cauterized part. Mr. Higginbottom reports favourably of the effects of applying the nitrate to burns and scalds; and his observations have been confirmed by those of Mr. Cox.

In strictures of the urethra and oesophagus, bougies armed with lunar caustic in their points (the caustic or armed bougie) are occasionally employed with great advantage, at least in urethral strictures. When the common bougie (cereolus simplex) is formed, the point of it should be heated with a conical piercer, and the caustic introduced while the composition is quite soft. The point of the bougie should then be rubbed smooth on a piece of polished marble till no inequality in the size of it appear. Notwithstanding that the application of nitrate of silver to stricture of the urethra has been advocated by Mr. Hunter, Sir E. Home, Mr. Wilson, Dr. Andrews, and others, it is now but little employed; yet of its efficacy and safety in many obstinate cases, where the simple bougie fails, I am assured by repeated observation. It is commonly supposed that it acts by burning or destroying the stricture: such is not the fact. It induces some change in the vital actions of the part, which is followed by relaxation of the narrowed portion of the canal, but which change is as difficult to explain as is the subduction of external inflammatory action by the application of this salt. Of the use of the caustic bougie in stricture of the oesophagus I have no experience.

ADMINISTRATION.—Nitrate of silver may be exhibited in doses of one-sixth of a grain, gradually increased to three or four grains, three
times a day. As before mentioned, Dr. Powell has augmented the dose to fifteen grains. The usual mode of administering it is in the form of pills made of bread-crumbs, but the chloride of sodium, which this contains, renders it objectionable: some mild vegetable powder with mucilage is preferable. Common salt or salted foods should not be taken either immediately before or after swallowing these pills. Dr. Johnson\(^a\) asserts "that there is no instance on record where the complexion has been affected by the medicine when restricted to three months' administration." It is advisable, however, not to continue the use of it beyond a month or six weeks at a time.

For external use an aqueous solution is employed of strengths varying from a quarter of a grain to two scruples, in an ounce of distilled water. The formula for Mr. Guthrie's ointment has already been given.

Antidote.—The antidote for nitrate of silver is common salt (chloride of sodium). When this comes in contact with lunar caustic, nitrate of soda and chloride of silver is produced; the latter compound is, according to the experiments of Orfila\(^b\), innocuous. The contents of the stomach should be removed, and the inflammatory symptoms combated by demulcents, blood-letting, and the usual antiphlogistic means.

When the local use of nitrate of silver causes excessive pain, relief may be gained by washing the parts with a solution of common salt. Pieces of caustic have been left in the vagina and urethra without unpleasant consequences resulting. Injections of a solution of common salt are the best means of preventing bad effects.

To diminish the slate-coloured tint of the skin arising from nitrate of silver, acids or the super-salts offer the most probable means of success. The external and internal use of dilute nitric acid, or the internal employment of bitartrate of potash, may be tried: the discoloration is said to have yielded to a steady course of the last-mentioned substance\(^c\).

1. **Liquor Argenti Nitratis**, L.; *Solutio Argenti Nitratis*, E. (Nitrate of Silver, 5[grs. 40, E.]; Distilled Water, 3[grs. 1600, E.]) Dissolve the nitrate of silver in the water, and strain; then, the access of light being prevented, keep it in a well-closed vessel.)—This solution is employed as a test of chlorine, chlorides, or hydrochloric acid (see p. 226).

2. **Solutio Argenti Ammoniati**, E.; *Solution of Ammonioaceto-Nitrur of Silver; Hume's Test for Arsenious Acid*. (Nitrate of Silver, 4[grs. xlix.]; Distilled Water, 3[grs.]; Aqua Ammonia, a sufficiency. Dissolve the salt in the water, and add the aqua ammonica gradually, and towards the end cautiously, till the precipitate at first thrown down is very nearly, but not entirely, redissolved.)—Employed as a very delicate test for arsenious acid (see p. 628).

\(^b\) ToxicoL Gén.

\(^c\) United States Dispensatory.
3. ARGENTI CYANIDUM, L.—CYANIDE OF SILVER.

HISTORY.—This compound, sometimes called Hydrocyanate, cyanuret, or Cyanodide of Silver, or Argentum Zootinicum, has been studied by Scheele, Ittner, and Gay-Lussac.

PREPARATION.—In the London Pharmacopoeia it is directed to be prepared as follows:—

Take of Nitrates of Silver, \(\frac{3}{5} \) and \(\frac{5}{5} \); Diluted Hydrocyanic Acid, Distilled Water, each \(\frac{1}{9} \). Dissolve the Nitrate of Silver in the Water, and add to them the diluted Hydrocyanic Acid, and mix. Wash what is precipitated with distilled water, and dry it.

In this process one equivalent or 27 parts of hydrocyanic acid react on one equivalent or 170 parts of nitrate of silver; thereby generating one equivalent or 134 parts of cyanide of silver, and one equivalent or 9 parts of water, and setting free one equivalent or 54 parts of nitric acid.

MATERIALS.

<table>
<thead>
<tr>
<th>1 eq. Nitrate Silver</th>
<th>170</th>
<th>1 eq. Nitric Acid</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Oxygen</td>
<td>8</td>
<td>1 eq. Water</td>
<td>9</td>
</tr>
<tr>
<td>1 eq. Silver</td>
<td>108</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Products.

<table>
<thead>
<tr>
<th>1 eq. Hydrocyanide</th>
<th>197</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Cyanogen</td>
<td>197</td>
</tr>
</tbody>
</table>

PROPERTIES.—When first thrown down it is a curdy precipitate, which by drying becomes pulverulent. It is insipid, insoluble in water, but dissolves in caustic ammonia. It is decomposed by hydrochloric and hydro sulphuric acid, both of which develope with it hydrocyanic acid. It combines with other metallic cyanides to form the argento-cyanides. By exposure to the atmosphere and solar rays it assumes a violet tint. It is decomposed by mixture with neutral vegetable substances.

Characteristics.—It is insoluble in cold nitric acid, but soluble in the boiling acid. When carefully dried and then heated in a glass tube it yields cyanogen gas (which is readily known by its combustibility and the bluish-red colour of its flame) and a residuum of metallic silver. The latter is recognised by the before-mentioned tests for this metal.

Composition.—The following is the composition of this substance:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>1</td>
<td>108</td>
<td>80.90</td>
</tr>
<tr>
<td>Cyanogen</td>
<td>1</td>
<td>26</td>
<td>19.40</td>
</tr>
<tr>
<td>Cyanide of Silver</td>
<td>1</td>
<td>134</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Physiological Effects and Uses.—I am unacquainted with any experiments made to determine its effects on man and animals. Sere, of Montpellier, gave it in syphilitic maladies, in doses of one-tenth and even one-eighth of a grain, without the least inconvenience. It has been introduced into the London Pharmacopoeia, at the suggestion of Mr. Everitt, as a source of hydrocyanic acid (vide p. 430).

Other Compounds of Silver.

1. Argenti Oxydum; Oxide of Silver.—This compound is precipitated from a solution of nitrate of silver by lime water or liquor potassae. Its color is greyish brown. Its composition is 1 eq. silver 108, and 1 eq. oxygen 8 = 116. It was employed in medicine by Vans Mons and Sementini. More recently it has been used by Mr. Lane. Internally it has been exhibited, in doses of half a grain, in epileptic and gastric affections. In the form of ointment, composed of ten grains of oxide to a drachm of lard, it has been applied to venereal sores, and to the urethral membrane, by means of a bougie, in gonorrhoea. It does not possess the powerful chemical action of the nitrate of silver on the animal tissues.

2. Argenti Chloridum; Chloride of Silver.—It is thrown down, in the form of a white curdy precipitate, from a solution of nitrate of silver by hydrochloric acid. Several of its properties have been already described (see p. 225). It is composed of 1 eq. of Silver 108 and 1 eq. Chloride 36 = 144. This, like the last-mentioned preparation of silver, was formerly used in medicine, but fell into disuse. More recently its medicinal employment has been recommended by Dr. Perry, an American physician, in epilepsy, chronic dysentery, and chronic diarrhoea.—Dose, three grains four or five times daily. Thirty grains at one dose caused vomiting. Twelve grains administered daily for three months produced unpleasant symptoms.

Order XXI.—Mercury and Its Compounds.

1. Hydargyrum, L. E. D.—Mercury or Quicksilver.

History.—No mention is made of quicksilver in the Old Testament; nor does Herodotus allude to it. From this we might infer that both the ancient Hebrews and Egyptians were unacquainted with it. But we are told on the authority of an Oriental writer, that the Egyptian magicians, in their attempts to imitate the miracles of Moses, employed wands and cords containing mercury, which, under the influence of the solar heat, imitated the motion of serpents.

1 Medico-Chirurgical Review, July 1840.
3 Ibid. 3rd Series, Vol. III.
4 D’Herbelot, Bibliothèque Orient. sur. Musée.
Both Aristotle and Theophrastus mention "Ἀργυρὸς χυτὸς (Argentum liquidum): and the first of these naturalists says that Dædalus (who is supposed to have lived about 1300 years before Christ) communicated a power of motion to a wooden Venus by pouring quicksilver into it. We are also told that Dædalus was taught this art by the priests of Memphis. Pliny and Dioscorides also speak of mercury, and the latter writer describes the method of obtaining it from cinnabar.

Mercury was first employed medicinally by the Arabian physicians Avicenna and Rhazes; but they only ventured to use it externally against vermin and cutaneous diseases. We are indebted to that renowned empiric Paracelsus for its administration internally.

SYNONYMES.—The names by which this metal has been distinguished are numerous. Some have reference to its silvery appearance and liquid form: as Ἰδράργυρος, Hydrargyrus and Hydrargyrum, from Ἰδρά, Aqua, and Ἀργυρός, Silver; others to its mobility and liquidity, as well as its similarity to silver, such as Argentum vivum, Aqua argentea, Aqua metallorum, and Quicksilver. It has been called Mercury, after the messenger of the gods, on account of its volatility.

NATURAL HISTORY.—Mercury is comparatively a rare substance. It is found in the metallic state, either pure (Native or Virgin Mercury), in the form of globules, in the cavities of the other ores of this metal, or combined with silver (Native Amalgam). Bisulphuret of mercury (Native Cinnabar) is the most important of the quicksilver ores, since the metal of commerce is chiefly obtained from it. The principal mines of it are those of Idria in Carniola, and Almaden in Spain. The latter yielded 10,000 lbs. of cinnabar annually to Rome in the time of Pliny. Protochloride of mercury (Mercurial Horn Ore or Corneous Mercury) is another of the ores of mercury. Traces of this metal have also been met with in common salt, during its distillation with sulphuric acid, by Rouelle, Proust, Westrumb, and Wuzur.

PREPARATION.—The extraction of quicksilver is very simple. In some places (as in the Palatinate and the duchy of Deux-Ponts) the native cinnabar is mixed with caustic lime, and distilled in iron retorts. In this process the lime abstracts the sulphur (forming sulphuret of calcium), and the disengaged mercury distils over. At Almaden the ore is roasted, by which the sulphur is converted into sulphurous acid, and the mercury volatilized. At Idria a modification of this process is followed.

COMMERCE.—Quicksilver is imported in cylindrical, wrought-iron bottles (holding from 60 lbs. to 1 cwt.), the mouth of each being closed by an iron screw; and also in goat-skins, two or three times doubled. The quantities imported in the years 1827, 1830, and 1840, and the
places from which the metal was brought in the two first years thus stated in the Parliamentary Papers:

<table>
<thead>
<tr>
<th>Year</th>
<th>Spain and the Balearic Islands</th>
<th>Gibraltar</th>
<th>Italy and the Italian Islands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1827</td>
<td>653,374 lbs.</td>
<td>121,320</td>
<td>109,567</td>
</tr>
<tr>
<td>1830</td>
<td>1,676,652 lbs.</td>
<td></td>
<td>331,416</td>
</tr>
<tr>
<td>1840</td>
<td></td>
<td></td>
<td>328,536 lbs.</td>
</tr>
</tbody>
</table>

Properties.—At ordinary temperatures quicksilver is an odourless, tasteless, liquid metal, having a whitish colour, like silver or tin. Its sp. gr. is 13.5 or 13.6. When intimately mixed with pulverized fatty bodies, it loses its liquid character, and it is then said to be killed, extinguished, or mortified. When cooled down to —38°c, it freezes, and crystallizes in needles and regular octahedrons. In this state it is ductile, malleable, and tenacious. At 662° F. it boils and produces an invisible elastic vapour, whose sp. gr. is 6:976.

Faraday has shown that at common temperatures, and even when the air is present, mercury is always surrounded by a mercurial atmosphere; and, according to Stromeyer, at from 140° F. to 160° F. mercury, when mixed with water, is volatilized in considerable quantities. Chemists are not agreed as to the equivalent, or atomic weight, of this metal. Thus Dr. Thomson assumes 100; Gmelin, 101; Zelius and Graham, 101:43; Brande, 200; Turner and Phillips, 185. I shall adopt the latter.

Characteristics.—In its metallic or reguline state, mercury is distinguished by its liquidity at common temperatures, and by its volatility. When invisible to the naked eye, and in a finely divided state, it may be readily detected by the white stain (called by women quickening) communicated to gold and silver. Mercurial vapour may be detected by exposing gold or silver to its influence. If mercury be in combination with other metals, and the tests now mentioned be not applicable, we may dissolve the suspected substance in nitric acid, and proceed as for the mercurial salts. The mercury compounds, when heated with potash or soda, or their carbonates, yield globules of metallic mercury, which may be recognised by properties already described. Solutions of the mercurial salts, placed for some time in contact with a piece of bright copper, and after being rubbed off with paper, leave a silvery stain behind, which disappears when the copper is heated to redness. Those compounds which of themselves insoluble in water may be dissolved by digesting them with nitric acid; and the copper test may then be applied. In this way the mercury contained in calomel, vermillion, sulphate and iodide of mercury, may be readily recognised. Sulphuretted hydrogen produces, with mercurial solutions, a black precipitate (sulphuret of mercury).

Solutions of the protosalts of mercury yield, with caustic potash or soda, a grey or black precipitate (oxide of mercury); and, with iodide of potassium, a greenish or yellow precipitate (iodide of mercury).

* Statement of the Imports and Exports for 1827 and 1839; and Trade List for 1840.
* Quarterly Journal of Science, x. 56a.
Solutions of the \textit{persalts of mercury} yield, with caustic potash or soda, a yellow or reddish precipitate (\textit{binoxide of mercury}); and with iodide of potassium, a scarlet one (\textit{biniodide of mercury}).

\textbf{Purity.---} The purity of this metal is ascertained by its brilliancy and great mobility. Mechanical impurities—such as adhering dirt or dust—are instantly detected, and may be separated by straining through flannel, or by filtering through a small hole in the apex of an inverted cone of paper. The presence of lead, tin, zinc, or bismuth, may be suspected by the rapidity with which the metal tarnishes in the air, and by its small parts \textit{falling}, instead of preserving a spherical form. These impurities may be got rid of by distillation in an earthen retort.

Totally dissipated in vapour by heat. Dissolved by diluted nitric acid, when boiled in hydrochloric acid, the acid, when cold, is not coloured, nor is any thing precipitated from it by hydrosulphuric acid. Its specific gravity is 35. \textit{Ph. Lond.}

"Entirely sublimed by heat: a globule moved along a sheet of paper leaves a trail: pure sulphuric acid agitated with it evaporates when heated, without leaving any residuum." \textit{Ph. Ed.}

\textbf{Physiological Effects.} 1. Of Metallic Mercury. \textit{a. On Vegetables.---} Mercurial vapours are fatal to plants.3

\textit{b. On Animals.---} From the experiments of Moulin4, Haighton5, Ciborg6, and Gaspard7, it appears that when \textit{injected into the veins}, mercury collects in the small vessels of the neighbouring organs, and acts as a mechanical irritant. Thus, if thrown into the jugular vein, scirrhous pneumonia is excited; and, on examination after death, little diseasses and tubercles have been found in the lungs, in each of which was a globule of quicksilver as the nucleus.

\textit{γ. On Man.---} Some difference of opinion exists as to the effects of \textit{liquid mercury when swallowed}; one party asserting that it is poisonous, another that it is innocuous. The truth I believe to be this: so long as it retains the metallic state it is inert; but it sometimes combines with oxygen in the alimentary canal, and in this way acquires activity. Avicenna, Fallopius, and Brasavola, declared it harmless; Sué8 states that a patient took for a long time two pounds daily without injury; and I could refer to the experience of many others who have seen it employed in obstructions of the bowels, without proving noxious; but the fact is so generally known and admitted, as to require no further notice. In some instances, however, it has acted powerfully, more especially where it has been retained in the bowels for a considerable time; no doubt from becoming oxidized. Thus, Zwinger states that four ounces brought on profuse salivation four days after swallowing it. Laborde9 also tells us, that a man

\begin{footnotes}
\item De Candolle, \textit{Phys. Vég.} 1332.
\item Philosophical Transactions for 1691, No. 192.
\item Beilzwe, \textit{On Pulmonary Consumption}. 1729.
\item Quoted by Wibmer, \textit{Wirkung d. Arzneien}. iii. 83.
\item Magendie, \textit{Journ. de Physiol.} 1.
\item Miscell. \textit{Carusen Decr.}, 2nd. Ann. 6, 1658.
\item \textit{Journ. de Méd.} 1. 3.
\end{footnotes}
who retained seven ounces in his body for fourteen days, was attacked
with profuse salivation, ulceration of the mouth, and paralysis of the
extremities; and other cases of a similar kind might be quoted.

Dr. Christison considers the question set at rest by the Berlin Col-
lege of Physicians, and that the metal is innocuous.

Applied externally, liquid mercury has sometimes produced bad
effects. Dr. Scheel has related a fatal case, attended with salivation,
brought on from wearing at the breast during six years a leathern
bag, containing a few drachms of liquid mercury, as a prophylactic
for itch and vermin.

The injurious effects of mercurial vapours, when inhaled or other-
wise applied to the body, have been long known. They are observed
in water-gilders, looking-glass silversmiths, barometer-makers, workmen
employed in quicksilver mines, and in others exposed to mercurial
emanations. In most instances an affection of the nervous system is
brought on, and which is indicated by the shaking palsy or tremen-
doumercudial(tremor mercurialis), which is sometimes attended with
stammering (psellismus metallicus), vertigo, loss of memory, and other
cerebral disorders, which frequently terminate fatally. The first
symptom of shaking palsy is unsteadiness of the arm, succeeded by
a kind of quivering of the muscles, which increases until the move-
ments become of a convulsive character. In all the cases (about five
or six in number) which have fallen under my notice, the shaking
ceased during sleep. I have not seen the least benefit obtained by
remedial means, although various modes of treatment were tried.
This is not in accordance with the experience of Dr. Christison, who
says the tremors “are cured easily though slowly.” If the individual
continue his business, other more dangerous symptoms come on, such
as delirium or epilepsy, or apoplexy (apoplexiamercurialis); and ulte-
rimately death takes place.

In some instances salivation, ulceration of the mouth, and haemop-
ytis, are produced by the vapour of mercury. The following re-
markable case is an instance in point. In 1810, the Triumph man-
of-war, and Phipps schooner, received on board several tons of quick-
silver, saved from the wreck of a vessel near Cadiz. In consequence
of the rotting of the bags the mercury escaped, and the whole of the
crews became more or less affected. In the space of three weeks
200 men were salivated, two died, and all the animals, cats, dogs,
sheep, fowls, a canary bird,—nay, even the rats, mice, and cock-
roaches, were destroyed.

As metallic mercury in the liquid state is not active, it has been
thought that mercurial vapour must also be inactive. Thus, Dr.
Christison thinks that the activity of the emanations arises from the
oxidation of the metal before it is inhaled. I believe, however, with
Buchner, Orfila, and others, that metallic mercury, in the finely
divided state in which it must exist as vapour, is itself poisonous.

1 Toxicologie.
2 Toxicol. Gca.
Of Mercury Compounds.—Probably all the mercurial compounds are more or less noxious. The only doubtful exception to this statement is in the case of the sulphures of this metal, which, according to Orfila, are inert.

a. Local effects.—For the most part, the local action of the mercurial compounds may be regarded as alterative, and more or less irritant. Many of the preparations (as the bichloride, the nitrates, &c.) are energetic caustics. The protoxide and protochloride (calomel) are very slightly irritant only: indeed, Mr. Annesley asserts, from his experiments on dogs, and his experience with it in the human subject, that the latter substance is the reverse of an irritant; in other words, that when applied to the gastro-intestinal membrane it diminishes its vascularity. But I suspect some error of observation here.

b. Remote effects.—In small and repeated doses, the first obvious effect of mercurials is an increased activity in the secreting and exuding apparatus. This is particularly observed in the digestive organs; the quantity of intestinal mucus, of bile, of saliva, of mucus of the mouth, and probably of pancreatic liquid, being augmented. The salivary discharges become more liquid, and contain a larger proportion of bile. The operation of the medicine does not stop here: the pulmonary, urino-genital, and conjunctival membranes become moister; the urine is increased in quantity, the catamenial discharge is sometimes brought on, the skin becomes damper, and at the same time warmer; so that mercury seems to promote the excretions generally. The absorvent or lymphatic system seems also to be stimulated to increased activity; for we frequently observe that accumulations of fluids in the shut sacs (as the pleura, the peritoneum, the arachnoid, and synovial membranes) diminish in quantity, and in some cases rapidly disappear, under the use of mercury. At the same time, also, glandular swellings, enlargements, and indurations of various kinds, dispersed. (For some other observations respecting the liquefacient action of mercury see p. 195.)

When our object is to obtain the sialogogue operation of mercurials, we give them in somewhat larger doses. To a certain extent the effects are the same as those already mentioned, but more intense. All the secretions, none are so uniformly and remarkably augmented as those of the mucous follicles of the mouth and the salivary glands; and the increased secretion is accompanied with more or less tenderness and inflammation of these parts, the whole constituting what is termed salivation or ptyalism (salivatio, ptyalismus, sialismus). The first symptoms of this affection are slight tenderness and tumefaction of the gums, which acquire a pale rose colour, except at the edges surrounding the teeth, where they are deep red. Gradually the mouth becomes exceedingly sore, and the tongue much swollen; coppery taste is perceived, and the breath acquires a remarkable taint. The salivary glands soon become tender and swollen; the tongue and mucus of the mouth flow abundantly, sometimes to the extent of several pints in the twenty-four hours. During this state,
the fat is rapidly absorbed, and the patient becomes exceedingly emaciated. The blood when drawn from a vein puts on the appearance as it does in inflammatory diseases.

The quantity of saliva and buccal mucus discharged by persons under the influence of mercury, varies according to the quantity of the medicine employed, the susceptibility of the patient, &c. Formerly salivation was carried to a much greater extent than it is at present day. Thus Boerhaave considered a patient should have three or four pounds in twenty-four hours; and Turner says four to three quarts are "a good and sufficient discharge." Modern experience has shown that all the good effects of mercurial treatment are gained by a very slight affection of the mouth. Several accidents have been made of saliva from patients under the influence of mercury. Fourcroy, Thomson, Bostock, and Devéry, failed to detect the least trace of mercury in it. But some other persons have been more successful, as will be hereafter mentioned. The following are the constituents of saliva during mercurial ptalysis, according to Dr. Thomson:

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulated Albumen</td>
<td>0.237</td>
</tr>
<tr>
<td>Mucus, with a little Albumen</td>
<td>0.167</td>
</tr>
<tr>
<td>Chloride of Sodium</td>
<td>0.106</td>
</tr>
<tr>
<td>Water</td>
<td>99.286</td>
</tr>
<tr>
<td>Total</td>
<td>100.000</td>
</tr>
</tbody>
</table>

It was an opal fluid, having a sp. gr. of 1.0038, and, by standing, it deposited flakes of coagulated albumen. The nitrates of lead and mercury produced copious precipitates with it; but the ferrocyanide of potassium and the infusion of galls had no effect on it. Bostock found the saliva discharged under the influence of mercury to differ from that of the healthy state, in being less viscid, and containing a substance analogous to coagulated albumen. This substance exists in the serum of the blood; and that it would seem the salivary action alters the secretion of the salivary glands, and makes it more analogous to the exhaled fluids of the serous membranes.

I have tested the urine of several patients in a profuse state of salivation without having detected a trace of albumen in it.

The effects of mercury hitherto described are such as are frequently produced for the cure of diseases; but occasionally phenomena present themselves in individuals who have been subjected to the influence of this metal, and which have been considered as constituting a peculiar malady, to which the name of mercurial disease (morbus mercurialis, hydrargyriasis seu hydrargyrosis, &c.) has been given. The pseudo-syphilis or ectopic syphiloid nature of some writers, is supposed to be syphilis, more or less modified by the mercurial disease. The following are the ill

have been ascribed to this metal, and which Dieterich regards as forms of the mercurial disease:

Mercurial Fever (*Febris mercurialis*, Dieter.)—Under this name Dieterich described two febrile states. One of these (*Febris erethica*; *f. salivosa*) comes on rapidly after the use of large doses of mercury, and is characterized by lassitude, dryness of the mouth, headache, loss of appetite, nausea, hot skin, quick pulse, red gums, swollen tongue, &c.; it usually terminates in delirium (as profuse salivation, purging, or sweating), or an eruption appearance. The affection which Mr. Pearson denominated *merhizion (erethismus mercurialis)*, is regarded by Dieterich as an adynamic fever (*febris adynamioa*). It is characterized by great depression of a sense of anxiety about the precordia, frequent sighing, trembling, universal, a small quick pulse, sometimes vomiting, a pale contracted face, a sense of coldness; but the tongue is seldom furred, nor are the natural functions much disordered. When these symptoms are present and violent exertion of the animal power will occasionally prove

Excessive Salivation (*Ptyalismus stomachalis mercurialis*, Dieter. *Stomatitis*), already noticed mercurial salivation as far as it is ever purposely in the cure of diseases. But it sometimes happens, either from the ingression of mercury, or from some peculiarity in the constitution of it, that the mouth becomes violently affected; the gums are tumefied; the tongue is swollen to such an extent, that it hangs out of the mouth and in the case of the patient from either eating or speaking; the salivary glands are enlarged, most painful, and inflamed (*porrhitis mercurialis*), and the gums are everted from the mouth. In one instance sixteen pounds are used during twenty-four hours. In some cases the gums slough, loosen and drop out, and occasionally necrosis of the alveolar process. During this time the patient becomes extremely debilitated and weak; and, if no intermission be given to the use of mercury, involuntary muscular system come on, and the patient ultimately dies of exhaustion.

I have repeatedly seen inflammation and ulceration of the mouth, due to salivation, induced by a few grains of calomel or some other

frequent consequence of excessive mercurial salivation, and the attention and sloughing, is contraction of the mucous membrane in the hood of the anterior arches of the palate, whereby the patient is precluded from opening the mouth, except to a very slight extent. I have met with such cases. In one (that of a female) it followed the use of a few grains of calomel administered for fever complaint. The patient remains unable to open the mouth wider than half an inch. Several operations have been performed by surgeons, and the contracted parts freely divided, but the relief was only temporary.

In another instance (that of a child, four years of age) it was protracted over a few grains of calomel. Though several years have elapsed since the child was discharged, the obliged to suck his food through the spaces left between the jaws by the alveolar process.

Mercurial Salivation.—Salivation is occasionally induced by other medicinal poisons (see p. 237), iodide of potassium, nitric acid (see p. 281), hydrochloric (see p. 437), arsenious acid (see p. 638), emetic tartar, the prepara-gold (see p. 683), and of copper, foxglove, even opium, and castor oil. Salivation sometimes arises spontaneously. Of this I have seen more than ten cases, mostly females. The greater number of them had not (at their own account) taken medicine of any kind for several months, the cases of it are referred to by Dr. Christison and by Dr. Watson. Lately the cause of it is obvious: thus pregnancy, decayed teeth, sore gums and wool in the ears, &c.; but in many instances it cannot be

sometimes a matter of considerable importance to distinguish the mer-
curial from the non-mercurial pyaemia. The essential symptoms of salivation from mercury are numbness, tenderness, and inflammation of the salivary glands; sponging, swelling, and inflammation of the gums; copious secretion and excretion of saliva; remarkable fetor of the breath (usually termed mercurial fætus); brassy or coppery taste, and tongue generally swollen. These symptoms may be followed by ulceration and sloughing. But all the same phenomena may exist without any mercury having been taken. Even the so-called mercurial fætus of the breath is not a peculiar effect of this metal.

But the disease which is most likely to be mistaken for the effects of mercury is gangrene of the mouth, commonly called Cancrum Oris. This usually, but not invariably, occurs in children. It consists of ulceration, followed by gangrene, of the inside of the cheek or lips, and is attended with a copious secretion of offensive saliva. Mercurial pyaemia may sometimes be distinguished from cancram oris by the peculiar odour of the breath and the salivation preceding the ulceration and sloughing; and by the gums, salivary glands, and tongue, being tumefied and inflamed. But these symptoms are by no means to be relied on, as they may also attend cancram oris; and it must be added, therefore, that the two affections resemble each other. The following is a remarkable case of gangrene of the mouth occurring in the adult, and simulating the effects of mercury:

A man affected with rheumatism, sent to a surgeon for advice, who, without seeing him, prescribed some pills, one of which was to be taken thrice daily. At the end of the week, his rheumatism not being relieved, he sent his wife again to the surgeon, who ordered the pills to be repeated. Another week elapsed, when the patient requested Mr. W. H. Coward, surgeon, of the New North Road, Hoxton, to see him, to whom I am indebted for part of the particulars of the case. Mr. Coward found his patient with the following symptoms: fever, general prostration of strength, sore throat, rheumatic pains in the wrists, profuse phlegm, more than a pint of saliva being discharged per hour, with the breath having the “mercurial” odour; and on the inner surface of the right cheek a small ulcer. He ascribed his present condition to the pills, as he had no soreness until after taking them. On cutting one of the pills, it was observed to have a light brown colour, and the odour of opium: hence it was supposed they were composed of calomel and opium. Purgatives, tonics, and gargles of the chloride of soda, were used without avail, and, after some days, Mr. Coward requested to see the patient. I found him in the following condition: right side of the face swollen and slightly red, gums swollen, red, and ulcerated, breath horrid, offensive, its odour not distinguishable from that called mercurial; on the inner side of the cheek, near the orifice of the parotid duct, there was a slough about the size of a sixpenny piece; salivation most profuse; in fact the saliva flowed a continued stream from his mouth; over the body were observed a few petechial Coupling this man’s condition with what I may call the “moral” circumstances of the case, I inclined to the opinion that the use of mercury was the cause of the malady. Notwithstanding the means employed, the man became worse, the sloughing gradually increased until the whole of the right cheek became involved, and in a week from my first visiting him he died.

A day or two before his death, I called upon the surgeon who had prescribed the pills, to tell him of the dangerous condition of the patient, arising, as I thought, from the use of mercury. He assured me that the pills contained Dover’s powder only, and not an atom of any mercurial preparation. Thus he kept ready prepared, as he was in the habit of prescribing them frequently. To prove the correctness of his statement, he called his assistant, who had dispensed the pills, and shewed me his day-book, in which was contained the patient’s prescription. Furthermore, on comparing the pills which were prepared with those taken by the patient, they were found to be identical.

3. Mercurial purging (Diarrhoea mercurialis).—Violent purging is a frequent consequence of the use of mercury. It is frequently attended

* See an excellent account of this disease, by Dr. H. Green, in Costello’s Cyclopedia of Surgery, vol. 1.

† In the London Medical Gazette, Aug. 25, 1849, is the report of an inquest held on the body of a child who died of cancram oris, not whose death was alleged to have been caused by mercury.
dipping, and sometimes with sanguineous evacuations. In some cases there is
disorder of the left hypochondrium, burning pain and tenderness of the region of
the pancreas, and the evacuations are frothy, whitish, tough, and often greenish,
least in the commencement, from the intermixed bile. These symptoms may
arise be referred to an affection of the pancreas, analogous to that of the salivary
lands. Dieterich ter terms it phlyaeum pancreaticum mercurialis (diarrhoea salivae-
riae, sialorrhoea aulica, phlyaeum abdominalis).

4. URINARIA MERCURIALIS.—Excessive secretion of urine, from the use of
mercury, is very rare. Two cases are recorded by Schlichting.

5. HIDROSIS MERCURIALIS.—Profuse sweating is another occasional effect
of mercury.

6. SKIN DISEASES.—Several forms of skin diseases, both acute and chronic,
have been regarded as part of the ill effects of mercury.

a. Eczema mercuriale, Pearson; (Erythema mercuriale, Spens and Mullins;
aphra mercurialis, Stokes and Moriarty; Hydrargyria, Alley, Rayer; Erysipelas
mercurialis, Cullerier, Lagneau; Spilosis mercurialis, Schmalz).—This disease
appears occasionally during the progress of a mercurial course. Some writers have
similarly seen it; thus, Alley saw forty-three cases in ten years, and of
his number eight terminated fatally. Rayer confesses, that in twenty years he
had seen but three instances of it. I have seen only two cases of it. The
disease consists of innumerable, minute, and pellucid vesicles, which have
been mistaken for papules. These give the appearance of a diffused redness to the
skin, and a sensation of roughness to the touch. Sometimes it is preceded and
followed by feverish disorder. In two or three days the vesicles attain the size of
pin’s head, and the included serum becomes opaque and milky. It soon extends
to the body, and is accompanied by tumefaction, tenderness, and itching. It
usually terminates by desquamation; but in some cases a copious discharge takes
place from the excoriated and tender surface; and when this ceases, the epidermis
comes off in large flakes; in some instances the hair and nails fall off, and
the eyes and eyebrows become entirely denuded. There is usually some affection
of the respiratory organs, indicated by dry cough and tightness of the precordia.

b. Miliaria mercurialis.—A miliary eruption has been observed by both Peter
Rrank and Dieterich, apparently as a consequence of the use of mercury.

7. CHRONIC SKIN DISEASES (Herpes, Psoriasis, and Impetigo).—These are doubtful
consequences of the use of mercury. They have occurred after the employment
of this metal; but considerable doubt exists, as to whether they ought to be
regarded as the effect of the remedy, or of the disease for which they have been exhi-
ited, or of some other condition of system. Herpes preputialis has been ascribed
by Mr. Pearson, to the previous use of mercury, and his opinion has been adopted
by Dieterich; but it certainly now and then occurs, when no mercury has been
administered. The Psoriasis mercurialis and Impetigo mercurialis of Dieterich are
less more doubtful effects of mercury.

8. INFLAMMATION OR CONGESTION OF THE EYE, FAUCES, AND PERIOSTEUM, have
been ascribed by some writers to the use of mercury; but by others the power
of this agent to produce these diseases is denied. That they have followed
the use of mercury cannot be doubted, but post hoc is non propter hoc.
Dieterich regards the maladies referred to as states of congestion, not of inflam-
ation; and, therefore, calls them Symphories (from συμφορής, an accumula-
tion).

The inflammation of the conjunctiva (conjunctivitis mercurialis; symphories con-
jecturae oculi mercurialis, Dieterich), ascribed by Von Ammon to the use of mer-
cury, should probably be referred to some other cause. He says it is characterized
by a lilac tint around the cornea; that it sometimes precedes salivation, dis-
ppearing when this is established, and is commonly regarded as a catarhal
tump.

: mercural iritis (iritis mercurialis; symphories iricæ mercurialis, Dieter. ;

re. on the Hydrargyria, 1830.
man, Pract. Synopsis of Cutaneous Diseases, 6th ed.

r. s" Magazin, 1830.
irritis rheumatico-mercurialis, Jaeger), described by Mr. Travers\(^1\), was, probably, an iritis arising from some other cause than mercury\(^2\).

The so-called mercurial retinitis (symphorositis retinae oculi mercurialis) may be explained in the same way.

An inflammation of the fauces sometimes occurs after the use of mercurium; orina mercuria; symphorositis faucium mercurialis, Dieter.) It may commence within six days after the use of mercury, and assume an acute form, with a tendency to slough; or it may appear after the employment of mercury for several weeks, and take on a chronic form; or it has been given for the cure of a venereal affection, to which, in fact, with more propriety to be referred.

8. HYPERTROPHIES (Hypertrophiae, Dieter.) — Enlargement of the axillary, and mesenteric glands (adenophylym inquainale mercurialem; ad merce; ad mercuriacum merc. Dieter.), as well as of some of the secretory organs, viz. the parotid glands, the pancreas, the testicles, and liver (adenophylym inquainale merc.; ad. pancreaticum mer.; ad testiculi merc.; hepatophylym inquainale); condyloma and ganglion (condyloma et ganglion mercuriale, Dieter.) have been described by some to the use of mercury, but, as I believe, insufficiently.

9. Ulceration and Sloughing. — Ulceration of the mouth is a well-known effect of mercury. Ulceration of the throat is likewise a consequence of this mineral (mercurial ulcerated throat, Mathias; mercurial sore throat). Sloughing of the same parts may also be induced. It is well known that sore eyes (especially those of phagedenic character) is assumed at times assume a slough position, in consequence of the improper use of mercury. Ulceration of the fibrous membranes (ulcus membranae fibrosae mercuriale) and abscesses (ulcus glandularum mercuriale) have been ascribed to the use of mercury.

10. NEUROSES MERCIURIALES. — Various symptoms, indicating a disordered condition of the nervous system, are met with in persons who have been exposed to the baneful influence of mercury: such as wandering pains (neuralgia mercurialis), a tremulous condition of the muscular system (tremor mercurialis), some of which is accompanied with stammering (pselismus metallicus), and occasionally terminating in paralysis (paralysia mercurialis), epilepsy or apoplexy (apoplexia mercurialis). To these Dieterich\(^3\) adds asthma (asthma mercurialis), of which he unites, amaurosis (amaurosis mercurialis), and hypochondriasis (hypochondria mercurialis).

Of these, the best known is the shaking palsy (tremor mercurialis; tremor mercuriali), a remarkable affection which occurs among workmen exposed to the vapour of mercury, such as miners, gilders, barometers, looking-glass silverers, &c. The first symptom of it is unsteadiness of gait succeeded by a kind of quivering of the muscles, which increases until movements become of a convulsive character. In all the cases which I have observed, movements were suspended during sleep.

11. CACHEXIA (Cachexia mercurialis). — This condition is characterized by an order of the digestive organs, loss of appetite, wasting, incapacity to exertion, with increased secretion from all the organs, especially from the glands.\(^4\)

\(^1\) Surgical Essays, i. 59.
\(^2\) Mackenzie, On Diseases of the Eye, 3d ed. p. 496.
\(^3\) Colles, Prat. Observ. on the Venereal Disease, p. 45.
\(^4\) Dieterich, op. cit. 327.
\(^5\) Mr. Lawrence, Lect. on Sur. in Med. Gaz. v. 905; Colles, op. cit. p. 189.
\(^6\) Mathias, op. cit.; and Dieterich, op. cit.
\(^7\) Med. Gaz. iii. 312.
\(^8\) Sir A. Cooper, Lectures on Surgery, in Lancet, iv. 42; Carmichael, On Venereal Disease, 2d ed.
\(^9\) Dieterich, op. cit. p. 376.
\(^11\) Mr. Travers (Further Inquiry concerning Constitutional Irregularity p. 87) says mercury is characterized by irritability of circulation, extreme palor and emaciation, cachexia, and an almost invariable termination in phthisis.
The foregoing are the most important of the ill effects ascribed to the use of mercury. As I have already stated, some of them ought probably to be referred to other causes, and not to the use of this mineral; but as doubt must necessarily be entertained on this point, I have thought it more advisable to mention them. The student will find some pertinent observations concerning them, in a paper by Dr. Musgrave, and in Dr. Currie's pamphlet.

In excessive doses: acute poisoning.—When large doses of some of the soluble salts of mercury have been swallowed, *gastro-enteritis* is produced. The patient complains of an acrid styptic taste in the mouth, and a feeling of burning and tightness in the throat; the face is usually flushed and sometimes swelled, violent vomiting and purging (frequently of bloody matters) soon come on, the vomiting being increased by every thing taken into the stomach: oftentimes there is irritation of the urinary passages, and sometimes even suppression of the urine; the pulse is small, frequent, and contracted; the respiration difficult; the extremities cold. In some cases *salivation* is produced: this seldom comes on during the first 24 hours; and is seldom delayed beyond the fourth day. Towards the termination of the case, some indications of *disorder of the cerebro-spinal system* come on, such as slight drowsiness or stupor, or even coma; tremors and twitchings of the muscles, and sometimes even violent convulsions; in some cases paraplegia. These symptoms terminate in death. Post-mortem examination discovers inflammation (and its consequences) of the gastrointestinal membrane.

Theory of the Action of Mercury.—There are many disputed points connected with the action of mercurials, which it will be convenient to examine under this head.

1. *Absorption of mercury.*—By the external or internal use of mercury, this metal becomes absorbed (in what state has not been ascertained), and is subsequently either deposited in some of the solids of the body, or thrown out of the system by some of the excretories.

The accuracy of this statement is proved by the following facts:

- **a. Mercury has been detected in the blood** by Zeller, Buchner, Schubarth, Collson, and Dieterich. It appears to be in such intimate combination with this vital fluid that it cannot be recognised by the ordinary tests. Destructive distillation is, in most cases, necessary for its detection.

- **b. Mercury has been found in the secretions,** viz., in the perspiration, the saliva, the gastro-intestinal secretion, the bile, the urine, and the fluid of ulcers. The blackening of the skin, mentioned both by Harrold* and Rigby, as having occurred in consequence of the use of mercury subsequent to the employment of sulphur, establishes the existence of mercury in the cutaneous transpiration. The sulphur and the mercury were thrown out of the system by the skin, and immediately they were out of the sphere of the vital powers, they entered into

+—* Examination of the Prejudice commonly entertained against Mercury.
— Arch. Gén. xii, 68.
— Christian, Collson, and Dieterich, *op. cit.*
— Merkel's Archiv, iii. 532.
union and formed the black sulphuret of mercury, which was deposited in the integument in a pulverulent form.

7. Mercury has been found in the reguline state in the organic solids, viz., bones, brain, synovial capsules, the pleura, the humour of the eye, the eardrum, the lungs, &c.* In what part of the system reduction is effected, has not been made out.

2. The constitutional effects of mercury are consequences of its absorption. For, in the first place, mercurials affect the general system, whatever part of the body they be applied, whether to the mucous membranes, the cutaneous system, or the cellular tissue, or into the veins. Secondly, the action of mercurials on the system is assisted by the use of blood-letting and emetics;—agents which promote absorption. Thirdly, when mercurials are administered to the stomach, and excite purging, they rarely affect the general system apparently in consequence of the function of absorption being suspended.

3. After absorption, mercury effects changes in the qualities of the blood, and in the action of the whole organism, but especially the paratus of organic life.—Soon after salivation has been established, the blood exhibits an inflammatory crust. At a later period its colour deepens, and its coagulability is diminished: the proportion of albumen and mucus, says Dieterich†, "sinks to that of serum; the whole organic formation of the patient is less consistent and adhesive." The same authority also tells us, that under the influence of mercury the electrical condition of the blood changes from a negative (healthy) state to that of positive. According to Dr. F., it diminishes the number of red globules of the blood. The excretions from all the secreting and exhalating organs, especially from the mucous follicles and salivary glands, is much increased. The action of biliary is also promoted. Dr. Wilson Philip‡ says, "mercury has a specific operation on the liver,—a power not merely of exciting its functions, but of correcting the various derangements of function in a way which it does not possess with respect to any organ, and which no other medicine possesses with respect to the liver." I confess I am not acquainted with any facts warranting a broad assertion. The purgative effects of mercury arise partly from increased secretion of bile, and partly from the stimulus given to the mucous lining of the alimentary tube; more particularly to the tubular apparatus. The nervous system appears also to be specifically affected by mercurials. This is to be inferred partly from the effects produced in those who are subjected to the vapours of this metal, as the shaking palsy, &c. and partly from the effects of the soluble form when given in enormous doses. The heart and lungs are, in some

* Christison, op. cit.; Wibmer, Wirkzun d. Arzneim. iii. 80; Colson and Dieterich, op. cit.
‡ Ferguson's Essays on the Diseases of Women, part i. p. 216.—"A full pellagraic woman, with a purple-red complexion, consulted me," says Dr. Faro, "for hemorrhage from the stomach, being on engorgement, without organic disease. I gave her mercury, and in six weeks blood as white as a lily."
§ On the Influence of Minute Doses of Mercury, p. 34.
ably affected. This was particularly observed by Sir Benjamin
in his experiments on animals with corrosive sublimate; as
Smith, Orfila, and Gaspard. The affection of the urinary
poisoning by corrosive sublimate is also not to be over-

The nature of the influence exercised by mercury over the or
has been a fertile source of discussion. One class of writers
arded it as mechanical, a second as chemical, a third as a

Chymical hypothesis.—Astruc and Barry fancied that mercury acted by
its divisibility, and its mobility; and thus getting into the blood,
its globules, rendered it more fluid and fit for secretion, made the lymph
and overcame any existing obstructions.

Chymical hypotheses.—Some have advocated the chemical operation of mer-
and have endeavoured to explain their curative powers in the venereal
by reference to their chemical properties, but without success. Thus
essavin and Swedins, assumed that mercury acted chemically on
the poison, as acids and alkalis do on each other; while Girtanner
that the efficacy of mercurials depended on the oxygen they contain.
theses the same objection applies: if they were true, the larger the
of mercury used, the more effectually would the venereal disease be
now this is not found to be the case. Dr. Cullen endeavoured to
or the action of mercury on the salivary glands, in preference to other
assuming that it has a particular disposition to unite with ammonial
in which it passes off by the various excretions; and as the saliva was
to contain more of these salts than other secretions, he thus accounted
for the quantity of mercury which passed off by these glands, and which,
this way applied to the excretoires, occasioned salivation. But the
thesis fails to the ground when it is known that mercury has no
position to unite with the ammonical salts; and that, even if it
secretions are as abundantly supplied with these salts as the saliva.
Murray substituted another hypothesis, but equally objectionable:
ays he, cannot pass off by the urine, because of the phosphoric acid
in this fluid, and which would form, with the mercury, an insoluble
. It must, therefore, be thrown out of the system by other secretions,
by the saliva, which facilitates this transmission by the affinity
the muriatic acid, the soda, and the ammonia of the secretion, have for
of mercury, and by which a compound soluble in water is formed.
ner to this hypothesis is, that mercury is thrown out of the system by
and probably in larger quantity than by the saliva; secondly, the
contains phosphatic salts, according to Tiedemann and Gmelin.

Chymical hypotheses.—Some writers have principally directed their atten-
cule quality of the effects induced by mercury, and have termed this mi-
mulant, sedative, both stimulant and sedative, tonic or alterative. Those
mercury to be a stimulant or excitant are not agreed as to whether one
parts or the whole system are stimulated, and if particular parts, what these
Hecker fixes on the lymphatic system, Schone on the arterial capillary
reil on the nerves. The simple answer to all of them is, that other
s are not capable of producing the same effects on the constitution as

* Phil. Trans. for 1812.
* De Morb. Ven. ii. 149.
* Medical Transactions, i. 25.
* Quoted by Richter, ausführ. Arzneim. iv. 205.
* Practical Observations on Venereal Complaints.
* Treat. of the Nat. Med. ii. 446.
* Richter, op. cit. v. 306.
mercury; nay, are frequently hurtful in the very cases in which this metal is beneficial.

On the other hand, Conradi, Bertele, and Horn¹, considered it to be a strengthening agent or sedative. Hence those who adopt this hypothesis must assume that the diseases in which mercury is beneficial are of a phlogistic or hypersecretive character; and that syphilis, therefore, is of this kind,—an explanation not at all satisfactory, nor consistent with facts. Of late years the sedative operation of some of the mercurial preparations (calomel and mercurial ointment) has been assumed (particularly by our countrymen practising in the East), from the circumstance that these agents allay vomiting and diarrhoea in yellow fever, cholera, and other dangerous diseases. But even admitting that mercurials do produce these effects, this is hardly a sufficient ground for denominating them sedatives.

Some think that mercurials, in small or moderate doses, are stimulants, but in excessive doses, sedatives; and that this sedative operation is common to all substances when employed in large quantities. This is the opinion of Dr. Wilson Philip.²

Dr. Murray³ calls mercury a tonic; Vogt⁴ terms it an alterative resolved. Sundelin⁵ places it among the resolvent alterations, under the designation liquefacient (verflüssigende). Mr. Hunter⁶ accounts for its beneficial effect in syphilis, by saying it produces an irritation of a different kind to that caused by the venereal disease, and that it counteracts the latter by destroying the disorder action of the living parts.

USES. 1. Of Metallic Mercury.—Liquid mercury has been used as a chemical agent, to dissolve silver coins which may have been swallowed; and as a mechanical agent, to remove obstructions of the bowels: for example, intus-susception, or intestinal invagination. But neither theory nor experience seem favourable to its use; for in the greater number of cases the intus-susception is progressive—that is, the superior portion of the gut is invaginated into the lower portion, and, therefore, the pressure of the metal on the sides of the intestine cannot give relief; and even in cases of retrograde intus-susception,—that is, where the lower portion of the bowels passes into the upper, mercury, instead of pressing the intus-suspected portion back, might push it farther on, by getting into the angle of reflection between the containing and inverted gut. Lastly, water, which had been boiled with mercury (aqua mercurialis cocta), was at one time used as an anthelmintic; but if the metal be pure, the water takes up no appreciable quantity of it. Moreover, it would appear that mercury has no particular anthelmintic power; for persons who were salivated have not been freed from their worms and Scopoli very frequently found ascarides in the workers of the quicksilver mines of Idris.⁷

ADMINISTRATION.—When taken internally, it has been administered in various doses, from an ounce to a pound or more.

2. Of the Preparations of Mercury.—As errhines or emetics, merc-

¹ Quoted by Richter, op. cit. v. 307.
³ Syst. of Mat. Med.
⁴ Pharmacodynamik.
⁵ Heilmethoden.
⁶ Treatment on the Venereal Disease.
⁷ Hunter, Transactions of a Society for the Improvement of Medical and Chirurgical Knowledge i. 163.
⁸ Breuer, Sur les Vers Intest. 428.
never resorted to now, though formerly the sub sulphate was
for these purposes.

Alteratives, they are given in small doses in various chronic
s; such, for example, as dyspepsia, gout, chronic skin diseases,
&c. Calomel is said to be less beneficial as an alterative
pill, on account of its more irritating action on the bowels.
Dragyrum cum cretâ is an excellent alterative, especially for

in preparations of mercury (as blue pill, calomel, and the hy-
rum cum cretâ) are employed as purgatives. They promote secre-
the mucous follicles of the intestines, from the liver, and
creas. They are rarely, however, used alone; being, in
, either combined with, or followed by, other cathartics (as
senna, colocynth, or the saline purgatives). Thus it is a
practice to exhibit a blue pill or calomel at night, and an
ought the following morning, the object being to allow the
emain as long as possible in the bowels, in order that it may
re effectually act on the liver. Mercurial purgatives are ad-
for various purposes; sometimes as anthelmintics, some-
do assist in evacuating the contents of the alimentary canal;
are commonly with the view of promoting the secretions, part-
of the liver, or of producing counter irritation, and thereby
ing affections of other organs, as the skin or head.
great value of mercurials is experienced when they are given as
ues. Formerly it was supposed that the beneficial effects of
were proportionate to the degree of ptalysis, and thus to eradi-
ticular affections, it was thought necessary to cause the evacu-
a given quantity of saliva. "I have heard," says Dr. Wilson
, "the late Dr. Monro, of Edinburgh, state, the quantity of saliva
must be discharged daily to eradicate particular affections." "
experience has proved the incorrectness of this notion; and
rarely find it necessary to excite a high degree of salivation;
frequently it would be prejudicial, but we sometimes find it
keeps up this effect for several weeks, particularly in

duction of sore mouth and salivation.—One of the most efficacious methods
the system under the influence of mercury is friction with the unguentum
; but the troublesome and unpleasant nature of the process is a strong
it in practice, more especially in venereal diseases, in which patients
ire secrecy. Full directions for its employment will be given hereafter
y, Hydrargyri). In the year 1779, Mr. Clare proposed a new method of
alivation by friction, and which consists in rubbing two or three grains of
or of the protoside of mercury, on the inner surface of the cheeks and gums,
that the metal quickly becomes absorbed, and causes salivation, and if
ken not to swallow the saliva, diarrhoea does not occur. Notwithstanding
Hunter, Cruikshank, and others, have tried this plan, and reported
of it, and that it is free from the objections made to the use of merce-
ment, it has never been a popular remedy. Fumigation, as a means of

p. 19.

on the Care of Abceces by Cautie; also, a New method of introducing Mercury into the
1779.
affecting the general system, is an old method of treating venereal diseases. Turner* employed for this purpose cinnabar; Lalouette† calomel; and the late Mr. Abernethy‡ the protoxide. Mr. Colles* has frequently seen fumigation fail in exciting salivation. He says, an easy mode of fumigating any part is by using mercurial candles (composed of cinnabar or oxide of mercury mixed with melted wax, with a wick, and burnt under a curved glass funnel.) Baumé used mercurial pediluvia to excite salivation, composed of half a grain of corrosive sublimate dissolved in a pint of distilled water, and in a solution of this strength the patient immersed his feet for the space of two hours; several objections, however, exist to the practice, which has been rarely followed. Upon the whole, the most convenient method of producing salivation is by the internal use of mercurials, particularly of those preparations which are mild in their local action, as blue pill, calomel, and the hydrargyrum cum cretā.

3. Treatment before and during salivation.—Formerly the use of mercurials was preceded by antiphlogistic measures, such as blood-letting, purging, warm bathing, and low diet, but they are now rarely resorted to, though useful, by facilitating absorption. Mr. Colles* thinks that these preparatory measures have been improperly omitted, and that the want of them has, of late years, contributed to bring this valuable remedy into much disrepute—in which opinion I am disposed to join him. Occasionally great difficulty is experienced in affecting the mouth, a circumstance which may arise from the irritable condition of the bowels: and when this is the case, inunction should be resorted to, or opium or vegetable astringents conjoned. Sometimes, however, the system appears insusceptible to the influence of mercury, and this may arise from idiosyncrasy, or from the presence of some disease, particularly fever. Emetics and blood-letting are useful in these cases, as they promote absorption; and as the influence of the former depends on the state of nausea produced, tartar emetic will be the best vomit, since it is the most powerful nauseant. Varying the mode of administering the mercury will also sometimes facilitate its operation on the system: thus, if it has been employed internally, inunction should be tried, and vice versa.

During the time that the patient's mouth is sore, he should, if possible, confine himself to the house, use warm clothing, avoid exposure to cold, take light but nourishing food, and regulate the state of his stomach and bowels. Mr. Hunter thought that during a mercurial course the manner of living need not be altered; but Mr. Colles* has properly, I think, objected to this. If the discharge becomes excessive, or ulceration of the gums take place, the further use of mercury is of course to be stopped; and, in order to moderate the effect already produced, the patient should be freely exposed to a cold but dry air, use purges and opium, and wash his mouth with some astringent and stimulating liquid. I have generally employed, as a gargle, a solution of the chloride of soda or of lime; but in the absence of these, a solution of alum, or of sulphate of copper, may be used. Dr. Watson* observes that "when the flow of saliva, and the soreness of the gums, form the chief part of the grievance, I have found nothing so generally useful as a gargle made of brandy and water; in the proportion of one part of brandy to four or five of water." With regard to internal remedies, I have confidence in any as having a specific power of stopping salivation, though iodine, sulphur, nitre, and other substances, have been strongly recommended. Sometimes sulphate of quina is administered with advantage.

γ. Accidents during salivation.—Occasionally, during salivation, certain effects result from mercury, which are in no way necessary or useful in a therapeutical point of view: on the contrary, some of them are highly prejudicial. These sometimes, excessive salivation, with ulceration of the gums, takes place, as already noticed: not unfrequently gastro-intestinal irritation (or actual inflammation) comes on, and which may require the suspension of the use of mercury, or in

* On the Venereal Disease.
† Nouvelle Méthode de traiter les Malad. Vénér. 1776.
‡ Surgical and Physiological Essays.
∥ Practical Observations on the Venereal Disease, p. 28.
¶ Op. cit. p. 34.
employment by way of injection, or its combination with opium or vegetable astringents. I have already noticed fever, eczema mercuriale, mercurial erethism of Pearson, &c. as other occasional effects. In feeble and irritable habits, mercury sometimes disposes sores to slough. Occasionally a kind of metastasis of the mercurial irritation is observed: thus, swallowing a large quantity of cold water, or exposing the body to cold and moisture, has caused a temporary cessation of salivation, attended with violent pains or convulsions, or great irritability of stomach.

3. Curative action of salivation.—Though no surgeon ascribes the curative action of mercury to the salivation, yet, without this effect, the curative influence is not usually observed. Hence, though the one cannot be considered to stand to the other in the relation of cause and effect, yet the two are usually contemporaneous: so that when we fail to induce some affection of the mouth, we do not observe the beneficial effects of mercury.4

Having offered these general remarks on salivation as a remedial agent, I proceed to notice its use in particular diseases.5

a. Fever.—It has been said that salivation diminishes the susceptibility to the contagion of fever, whether common or specific; but that it is not an absolute preventive is shown by the fact, that patients under the full influence of mercury have caught fever and died of it, as will be found noticed by my friend, Dr. Clutterbuck, in his Inquiry into the Seat and Nature of Fever. I have several times used mercurials as sialogogues in fever; I believe, for the most part, with advantage. I have only used them when there was some marked local determination or inflammatory condition. I have seen several fatal cases of fever in which mercurials were used profusely, without having any effect on the mouth; but in other instances, in which the mouth became affected, recovery took place. My experience, therefore, agrees with that of Dr. Copland6, namely, that death, after salivation has been established, is very rare. Whether the recovery was the consequence of the mercurial action, or the salivation the

4 On this subject consult Colles, op. cit. p. 31.
5 The following are Dr. Parke's rules for the exhibition of mercury (Ferguson, op. supra cit. page 220).

1 "I. Never to give mercury when there is an idiosyncrasy against it." The following case is illustrative of the danger of neglecting this advice:—
2 A patient of Mr. G. 5 of the Borough, desired him never to give her any mercury, as that drug was a poison to her whole family, to which he, without arguing the point, at once assented. In Mr. G. 5's absence, the late Mr. C. was consulted as to some trifling disorder of the bowels, and, not knowing the peculiarity of his patient's constitution, prescribed two grains of colomel. The next morning the lady showed the prescription to Mr. C., saying that she was sure she had taken mercury, as she felt it in her mouth. In a few hours pyridium ensued; in consequence of which she lost her teeth, the jaw exfoliated, and she ultimately, after a succession of ailments, died, in about two years."
3 "2. Mercury should be used in all active congestions—pyrexia, phlegma, phlegmon, ophthalmia, phthisis, phlyctæ, larynx, pharynx, tracheitis, pneumonia, and in all inflammatory diseases. It is the adhesive stages of dysentery, in the phlegmasia, where there is inflammation with power, in phlegma, hemiplegia, paraplegia, neuralgia, in their stages of acute congestion.
4 "3. Mercury is hurtful, or doubtful—in the malignant or acute forms of pyrexia, where there is fever delirium; but in phrenitis, and in that peculiar form of it, the coup de soleil, it is most effectual.
5 "5. It is hurtful in tetanus from punctured wound, and in all cases of irritable disease.
6 "6. In idiopathic crisis, it is as effectual as bark in ague; but in the traumatic it is injurious, as it interferes with the closing of the vessels by adhesive inflammation: hence in all hemorrhage, where the orifices of vessels require to be closed, it is hurtful.
7 "7. In the hemiplegia of lesion, in athermic paraplegia, in the neuralgia of irritation, it is bad. Poor Fomberton was three times salivated for tic douloureux, and three times the worse for it.
8 "8. It is hurtful in the invertebrate forms of scrofulous ophthalmia, though useful in the early stage. It is bad in the amnaciæs of depletion.
9 "9. It is useful in puerperal peritonitis, and hurtful in the typhoid form of it; as also in the ulcerative stage of dysentery.
10 "10. In general, it is doubtful in the suppurative stages of inflammation, and in all crysipelatous and erythematous inflammations, or those tending to gangrene. It is hurtful in all cases of pure asthma from deficiency of blood."
result of the mitigation of the disorder, as Dr. Bancrofta and Dr. Gravesb assert, cannot be positively proved, though I think the first more probable. Dr. Gravesa declares the use of mercury in fever to be both injudicious and unnecessary, unless inflammation of some organ be set up. In this opinion I cannot agree with him. Dr. Macartneyf, on the other hand, says, "In no single instance have I known it [mercury] fail in arresting the progress of the disease, provided the fever be not combined with visceral affections, or characterized from the beginning with unusual prostration of strength." The great indisposition of the system, in fever, to take on the mercurial action, is frequently a most annoying circumstance. It may sometimes be overcome by the employment of mercurials both internally and externally. Mr. Lempriereg, who practised in Jamaica, finding that calomel was often exhibited in immense quantities, without exciting any apparent action, was induced to employ corrosive sublimate in doses of the eighth part of a grain, with the addition of ten drops of laudanum, and this quantity was repeated every hour until some affection of the mouth was observed, or until the more alarming symptoms had considerably abated.

The beneficial influence of mercurials has been more particularly experienced in the fevers of warm climates, especially those of the East Indiesb. It has been said by several writers, that in the yellow fever of the West Indies its beneficial effects are not equally evident.

3. Inflammation.—Of late years various forms of inflammation have been most successfully combated by the use of mercury. Hence this mineral is termed an antiphlogistic. We are principally indebted to Dr. Hamiltoni, Dr. Yeatsj, Dr. Wright, and Rambach, for its introduction into use in this form of disease. It is principally valuable in adhesive inflammation to stop, control, or prevent the effusion of coagulable lymph. On the other hand it may prove injurious in erythematous, scrofulous, malignant, and gangrenous inflammation, as well as in inflammation accompanied with debility or great irritability of the nervous system. Its curative power is not satisfactorily accounted for by the equalization of the circulation, the augmentation of the secretions, or the increased activity of the absorbents caused by mercury (see p. 196).

Mercury is not equally serviceable in all inflammations. The nature of the tissue, the structure of the organ affected, and the quality or kind of inflammation, are points of considerable importance as affecting its use.

a On Yellow Fever.

d Treatise on Inflammation, p. 162.

e Pract. Observ. on Diseases of the Army of Jamaica.

i Duncan's Ann. of Med. vol. vii.

k Disert. Usum Mercurii in Morb. Inflamm. 1791.
Thus it appears that inflammations of membranous tissues are those principally benefited by a mercurial plan of treatment; and more especially those in which there is a tendency to the exudation of ignuable lymph or of serous fluid—as meningitis, pleuritis, pericarditis, and peritonitis (particularly of puerperal women). In inflammation of the lining membrane of the air-tube, but more especially in up, or, as it is sometimes termed, plastic inflammation of the larynx, mercury is one of our most valuable remedies; and as this disease is which terminates rapidly, no time should be lost in getting a sufficient quantity of mercury into the system. Calomel is usually employed; but when the bowels are very irritable, the hydrargyrum a creta, or even mercurial injection, may be resorted to. In inflammation of the tunics of the eye, particularly iritis, mercury (next blood-letting) is the only remedy on which much confidence can be placed; and we use it not merely with a view of putting a stop to the inflammatory action, but also in order to cause the absorption of the effused lymph. In inflammation of the synovial membranes, mercury has been employed, and in some cases with manifest advantage. In dysentery, mercury has been extensively used, especially in warm climates. By some, calomel has been employed merely as a purgative (Jackson, Ballingall, Bampfield, and Ansley); by others, to produce its dialogogue effects (Johnson and Cunningham).

The structure of the organ influences the effect of mercury: as it is well known that this mineral is more beneficial in inflammation of certain organs (especially those of a glandular structure, the liver) than of others; and we refer it to some peculiarity in the structure of the part affected. In hepatitis of either temperate or tropical climates (particularly of the latter), mercury is advantageously employed. Blood-letting, however, should be premised, particularly in the disease as usually met with in this country. In pneumonia, more especially when hepatisation has taken place, the best effects have sometimes resulted from its use; of course after employment of blood-letting. When hepatisation has taken place, Dr. Davies recommends the use of blue pill and opium. In inflammation of the substance of the brain, also, mercury may be advantageously resorted to, after the usual deplectives.

The nature or quality of the inflammation also influences the effects, and thereby the uses, of mercury. Thus, in syphilitic inflammation, mercurials are of the greatest utility; less so in rheumatic inflammation; still less in scrofulous; and most decidedly of no advantage in cancerous or scrobutic diseases. The treatment of consumption by calomel and opium was proposed by Dr. Hamilton; he has found many supporters; and, undoubtedly, when the febrile
action does not run too high, or when the pericardium becomes affected, calomel and opium, preceded by blood-letting, will be found serviceable. It appears to be best adapted to the fibrous or diffuse form of the disease, and to fail in the synovial. The serpulous habit is, for the most part, unfavourable to the use of mercury given as a sialogogue, but there are cases in which it is not only admissible but serviceable—as serpulous ophthalmia, when of an acute kind. In all maladies of a malignant character (as cancers, fungoid disease, &c.) mercurials are highly objectionable.

γ. Venereal diseases.—It was formerly the opinion of surgeons that the symptoms of the venereal diseases were progressive, and never disappeared until mercury was administered; but it has, of late years, been clearly proved that this notion is erroneous; and we are indebted to some of our army surgeons—namely, to Messrs. Ferguson, Rose, Guthrie, Hennen, and Bacot, and to Dr. Thomson—for showing that the venereal disease, in all its forms, may be cured without an atom of mercury. Moreover, it is fully established by the experience of almost every surgeon, that while in some instances mercury exercises a beneficial influence hardly to be observed with respect to any other disease or any other remedy, yet, that in some cases it acts most injuriously; and it is generally supposed that many of the bad venereal cases formerly met with arose, in great part, from the improper use of mercury. It is a point, therefore, of considerable importance, to determine what cases are best adapted for a mercurial, and what for a non-mercurial, method of treatment; for in admitting the possibility of a cure without this agent, it is not to be inferred that the method is either eligible or expedient; nay, the very persons who have proved the possibility, admit that in some cases this mineral, given so as to excite moderate salivation, is advisable. One fact is, I think, tolerably well established—viz. that the cure of venereal diseases without the aid of mercury is much slower and less secure against relapses than by a mercurial treatment. It is not easy to lay down rules to guide us in the selection of the one or the other of these methods of treatment. Mr. Carmichael relies principally on the eruption, and, next to this, on the appearance of the primary ulcer; and of the four forms of the venereal disease which he has described, namely, the papular, the pustular, the phagedenous, and the scaly, full courses of mercury are required, he says, in not only—namely, the scaly; in which the primary sore is the Hunterian chancre or callous ulcer, and the eruption partakes of the characters of lepra or psoriasis. But it has been satisfactorily proved by experiments made in the military hospitals, that even this scaly form of the disease may get well without mercury; and, on the other hand, in the pustular and papular forms, mercury is often

* Military Surgery.
+ On Sphilita, 1821.
1 Vida Colles, Practical Observations on the Venereal Disease, p. 318.
2 On Venereal Disease, 2d ed. 1825.
a most valuable agent. Hennen, Rose, Guthrie, and Thomson, advise the employment of moderate quantities of mercury whenever the disease does not readily subside under the use of ordinary methods of treatment. But unless some special circumstances contra-indicate the use of mercury, it is, I think, advisable to affect the mouth slightly in most forms of the disease.

The circumstances which deserve attention, as affecting the use of mercury, are numerous. The following are the principal:

82. Scrofula.—Some of the worst and most intractable forms of venereal disease occur in scrofulous subjects; and in such, mercury is in general prejudicial. I have seen numerous instances of its injurious effects. One case which fell under my notice was that of a medical student, who, after three years' suffering, died; having been made much worse on two occasions by what I conceived to be the improper use of mercury, once by his own act, and a second time by the advice of the surgeon of his family. Mr. Colles, however, denies the baneful influence of mercury in scrofula, and advises its use for the cure of syphilis in scrofulous subjects; but he admits that the profession generally entertain a contrary opinion.

83. Condition of the primary ulcer.—Another point deserving attention in deciding on the use of mercury, is the condition of the primary sore: if it be much inflamed, or of an irritable nature—if it be of the kind called phagedenic, or at all disposed to slough—mercury must be most carefully avoided, as it increases the disposition to sloughing. In one case that fell under my notice, a gentleman lost his penis by the improper use of mercury, under the circumstances just mentioned.

87. Extreme debility with hectic fever.—This condition is usually believed to contra-indicate the employment of mercury. But Mr. Colles asserts, "that a patient affected with secondary symptoms, even though extremely attenuated, and, as it were, melting away under the effects of hectic, can with perfect safety and advantage at once commence a course of mercury; by which not only shall its venereal symptoms be removed, but at the same time his general health be re-established."

89. Cholera.—Writers on the spasmodic cholera, both of this country and of India, speak for the most part favourably of the effects of mercury, especially in the form of calomel. I may refer to the works of Drs. Johnson, Venables, and Hamett, and of Messrs. Annesley, Urton, and Searle, in proof. I have met with no writers who attribute ill effects to it. Unfortunately those who advocate its use are not agreed as to the dose, or frequency of repetition; some advising it as a purgative; some as a sedative, in combination with opium; others, lastly, using it as a sialogogue. It is deserving of especial notice, that when salivation takes place, the patient in general recovers. Dr. Griffin, however, has shewn that this is not invariably the case. (For further information on the use of mercurials in cholera, vide Hydrargyri Chloridum.)

91. Dropsey.—In this disease, mercurials may do either good or harm. Thus when the dropiscal effusion depends on inflammation, they may be employed with the best effects, as when hydrocephalus arises from meningitis, or hydrothorax from pleuritis. When ascites is occasioned by an enlarged liver, which compresses the vena portae,
and thereby gives rise to effusion, mercurials are sometimes beneficial. On the contrary, when dropsy occurs in old subjects, and when it depends on, or is accompanied by, general debility, salivation is almost always hurtful. In granular degeneration of the kidney, characterised by an albuminous condition of the urine, its use is highly objectionable. It is of no service to the primary disorder, while its effect on the mouth is often very violent and uncontrollable. When the effusion arises from mechanical causes not removable by mercury, as obliteration of any of the venous trunks, or pressure of malignant tumors, salivation is injurious. Occasionally dropsical effusion takes place without any appreciable cause, and then, of course, if mercury be employed, it must be in part on speculation. In such cases calcis is not unfrequently employed in combination with squills or foxglove.

2. In chronic diseases of the viscera, especially those arising from or connected with inflammation, mercury is frequently serviceable. Thus, in enlargement or induration of the liver, in hepatization of the lungs, &c. In those diseases commonly termed malignant, as cancer and fungus haematodes, and also in diseases of a non-malignant character, but occurring in debilitated subjects, mercurials, given so as to excite salivation, are objectionable.

7. In chronic diseases of the nervous system.—Mercury has been recommended in paralysia, and on some occasions has proved exceedingly efficacious. I have seen hemiplegia, with impaired vision and hearing, headache, and cramps of the extremities, recover under the use of mercury, after blood-letting, purgatives, &c. had failed. The patient (a young man) was kept under the influence of the medicine for two months. Mr. Colles* has likewise found it most efficacious in paralysis. In tetanus, mania, epilepsy, hysteria, tic douloureux, and other affections of the nervous system, mercury has been used with occasional benefit.

The foregoing are some of the most important diseases against which mercurials have been successfully administered as alogogues.

HYDARGYRUM PURIFICATUM, D. ; Purified Mercury. (Take Mercury, six parts. Let four parts slowly distil.)—The character of pure mercury have been already stated (p. 703). As found in commerce, mercury is usually very pure, and, therefore, the process of purification directed by the Dublin College is unnecessary. In means of a common fire, mercury may be readily distilled in an earthen retort, to which a curved earthen tube, dipping into water, is adapted. A wash-hand basin containing water answers as a receiver. The whole of the mercury may be drawn over. The object of the process is to separate this metal from lead, tin, zinc, and other metals with which it may be contaminated.

2. HYDRAE'GYRUM CUM CRE'TA, L. E D.—MERCURY WITH CHALK.

HISTORY.—This compound (called also Mercurius alcalisatus, or Ethios absorbens) is first mentioned, I believe, by Burton, in 1738.

PREPARATION.—All the British Colleges give directions for its preparation.

The London College directs us to take of Mercury, 3iij.; Prepared Chalk, 3v. Rub them together until globules are no longer visible. The directions of the Edinburgh College are similar.

The Dublin College orders it to be prepared like Hydrargyrum cum Magnesia, except that precipitated carbonate of lime is to be employed in the place of carbonate of magnesia.

If this powder be digested in acetic acid, the lime of the chalk is dissolved, and the carbonic acid escapes; but the greater part, if not the whole of the mercury, is insoluble in the acid, and hence it is not in the state of protoxide. If examined by a lens, the residuum is found to consist of minute separate globules, which readily whiten silver and gold, showing they are in the metallic state. Hence it is probable that the quicksilver is mechanically divided only.

PROPERTIES AND CHARACTERISTICS.—It is a greyish powder, which effervesces on the addition of acetic acid, yielding a solution of lime, which may be distinguished by the tests for the calcareous salts already mentioned. By digestion in nitric acid, we obtain a solution known to contain mercury by the characters already detailed for the mercurial preparations generally. By heat the mercury is volatilized, leaving the chalk.

Part is evaporated by heat; what remains is colourless, and totally soluble in acetic acid with effervescence: this solution is not coloured by hydrosulphuric acid. These substances can scarcely be so diligently triturated as that no globules shall be visible. Ph. Lond.

COMPOSITION.—It consists of three parts of Mercury and five of Chalk.

PHYSIOLOGICAL EFFECTS.—It is an exceedingly mild but valuable mercurial. In full doses it acts as a gentle laxative, promoting the secretion of bile and intestinal mucus, but sometimes creating a little sickness. The chalk renders it antacid. By repeated use it occasions the constitutional effects of mercury already described.

USES.—It is a valuable remedy in syphilis infantum. It is frequently employed to promote and improve the secretions of the liver, pancreas, and bowels, in various disordered conditions of the digestive organs, accompanied by clay-coloured stools or purging. In strumous affections of children (especially enlarged mesenteric glands), and other chronic maladies, it is administered with great advantage as an alterative.

ADMINISTRATION.—To adults it is given in doses of from five grains to a scruple, or half a drachm. It should be given in the form of powder. Pills made of it, and allowed to become hard, present internally large globules of mercury. This arises from the contraction
of the substance used to form the pill mass, by which the minute
globules are squeezed out and coalesce. For children the dose is two
or three grains. Rhubarb, carbonate of soda, or, in some cases, Dover's
powder, may be conjoined with it.

2. HYDRAŘ'GYRUM CUM MAGNE'SIA, D.—MERCURY WITH
MAGNESIA.

The Dublin Pharmacopoeia gives the following directions for the
preparation of this compound:

Take of purified Mercury; Manna, of each, two parts; Carbonate of Magnesia,
one part. Rub the Mercury with the Manna in an earthenware mortar, adding
a few drops of water, that the mixture may have the consistency of a syrup, and
that the metallic globules, by continued triturating, may disappear; then add,
still triturating, an eighth part of Carbonate of Magnesia. To the whole,
thoroughly mixed, add of warm water sixteen parts, and let the mixture be
stirred; then let it rest, and, as soon as the sediment has subsided, let the liquor
be decanted; repeat the washing again, and a third time, that the manna may
be completely washed off; then mix with the sediment, whilst moist, the re-
mainder of the Carbonate of Magnesia. Lastly, let the powder be dried on
bibulous paper.

The manna is employed to effect the minute division of the mercury.
By the water subsequently employed the manna is got rid of. The effects, uses, and doses of this preparation, are similar to those of
Hydrargyrum cum Cretá.

3. PIL'ULÆ HYDRAŘ'GYRI, L. E. D.—PILLS OF MERCURY.

HISTORY.—The oldest formula for mercurial pills is that of
Barbarossa (at one time admiral of the Turkish fleet, and afterward
governor or king of Algiers), and which was communicated by him to
Francis the First, king of Franconia, who made it public. The com-
mon name for this preparation is Blue Pill, or Pilula Cerulea.

PREPARATION.—The following are the directions of the British
Colleges for the preparation of these pills:

Take of Mercury, 5 j. [two parts, E.]; Confection of Red Roses, 8 j. [two
parts, E.]; Liquorice Root, powdered [Extract of Liquorice, reduced to fine
powder, D.], 5 j. [one part, E.]. Rub the mercury with the confection and
globules can no longer be seen; then, the liquorice being added, beat the whole
together until incorporated. [Divide the mass into five-grain pills, E.].

The friction is usually effected by steam power. By triturating the
metal is reduced to a finely-divided state, and becomes intimately
mixed with the confection and liquorice powder.

PROPERTIES.—It is a soft mass, of a convenient consistence
making into pills, and has a dark blue colour. When rubbed
paper or glass, it ought to present no globules; but applied to it it
communicates a silvery stain.

COMPOSITION.—Three grains of this pill contain one grain of
mercury.
OINTMENT OF MERCURY.

IMPURITY.—If any sulphuric acid should have been added to the confection to brighten its colour, some subsulphate of mercury will be formed—a compound which possesses very energetic properties.

PHYSIOLOGICAL EFFECTS.—In full doses (as from five to fifteen grains) it frequently acts as a purgative. In small doses it is alterative, and, by repetition, produces the before-mentioned constitutional effects of mercurials.

USES.—The practice of giving a blue pill at night, and a senna draught the following morning, has become somewhat popular, in consequence of its being recommended by the late Mr. Abernethy, in various disorders of the chylopoietic viscera. As an alterative, in doses of two or three grains, blue pill is frequently resorted to. Lastly, it is one of the best internal agents for exciting salivation, in the various diseases for which mercury is adapted.

ADMINISTRATION.—The usual mode of exhibiting it is in the form of pill, in the doses already mentioned; but it may also be administered when suspended in a thick mucilaginous liquid. If the object be to excite salivation, we may give five grains in the morning, and from five to ten in the evening; and to prevent purging, opium may be conjoined.

4. UNGUENTUM HYDRAE'GYRI, E. D.—OINTMENT OF MERCURY.

(Unguentum Hydrargyri fortius, L.)

HISTORY.—Mercurial ointment was known to, and employed by, the ancient Arabian physicians—for example, Abhenguefith, Rhazes, and Avicenma: so that it has been in use certainly 1000 years. However, Gilbertus Anglicus, who lived about the commencement of the thirteenth century, was the first who gave a detailed account of the method of extinguishing mercury by fatty matters. Besides its more common appellation of Mercurial Ointment, it was formerly termed Blue or Neapolitan Ointment.

PREPARATION.—The following are the directions for preparing it:—

Take of Mercury, lb. iij. ; Lard, 3xxij.; Suet, 3j. First rub the mercury with the Suet and a little of the Lard until globules can no longer be seen; then add that which is left of the Lard, and mix. L. E.—The Dublin College uses equal parts of Purified Mercury and Prepared Hog's Lard.—The Edinburgh College observes that “This ointment is not well prepared so long as metallic globules may be seen in it with a magnifier of four powers.

To promote the extinction of the mercury, the metal should be previously triturated with some old mercurial ointment. Rancid lard also assists the extinction of the globules.

The mercury is in a finely-divided metallic state. Guibourt states, that by digesting ether on mercurial ointment, the fatty matter may be dissolved, and liquid mercury obtained in equal height to that used in making the ointment. Mr. Donovan, however, thinks that part of the mercury attracts oxygen, and that the oxide thus formed unites with the fatty matter. I have seen no

Pharm. Raissonée, i. 140.
satisfactory explanation of the efficacy of old mercurial ointment in extinguishing the mercury; Guibourt offers the following:—By trituration, both lard and mercury assume oppositely electrical states, the lard becoming negative, the mercury positive; these states, he supposes, determine a more intimate mixture of the particles, and a greater division of the mercury. Now rancid lard and old mercurial ointment, having attracted oxygen from the air, more readily take on the negative condition, and hence their efficacy in promoting the extinction of the mercurial globules. Guibourt also asserts, that mortars of marble or wood are better adapted for making this ointment than those of metal, on account of their power of conducting electricity being less.

Properties.—It is an unctuous fatty body of a bluish grey colour, and if properly prepared, gives no traces of globules when rubbed on paper, and examined by a magnifier of four powers; but when rubbed on gold, it quickens it. Moreover, if examined by a powerful microscope, innumerable globules are observed. I found the sp. gr. of a sample, obtained from Apothecaries’ Hall, to be 1·7818 at 60°F. Two other samples, procured from two respectable houses, had respectively a sp. gr. of 1·6602 and 1·7603. Mr. Hennell informs me that mercurial ointment should be kept in a moderately warm situation during the winter season, for that when exposed to great cold the mercury separates in a liquid form, by the crystallization, I presume, of the fatty matter.

Composition.—This compound contains half its weight of mercury.

Strength and Purity.—Mercurial ointment is frequently prepared with a smaller proportion of mercury than that directed to be used in the pharmacopoeias; and in order to communicate to it the requisite shade of colour, sesquisulphuret of antimony, indigo, or Prussian blue, is sometimes intermixed.

In order to ascertain the strength and purity of a given sample, it is desirable to obtain a standard by way of comparison. I have always used, for this purpose, the ointment prepared at Apothecaries’ Hall, London.

The qualities which should be attended to, in order to judge of a suspected sample, are its colour, and its appearance under a magnifier of four powers, as well as under a powerful microscope. By the latter we judge of the size of the globules, their number, and the presence of foreign particles. Its sp. gr. should then be observed. The fatty matter should afterwards be separated from the mercury, and the latter carefully weighed. This is to be effected by means of ether or turpentine. To separate completely the fatty matter, Mr. C. Watt* gives the following directions:—Having first melted the fatty matter with boiling water, and allowed it to stand till the greater par

* The specific gravity of mercurial ointment may be ascertained by weighing a lump of it in the globular form, and suspended by a horse-hair from the bottom of a scale-pan, first in air and then in water. Divide its weight in air by the loss experienced by weighing it in water, and the product will be its sp. gr. Thus suppose the weight in air to be 120 grs., and the weight in water, 112·28 grs. Then divide 120 by 0·75, and the product is 1·75, the sp. gr.

† The Chemical, No. xiv., Feb. 1840.
OINTMENT OF MERCURY

The ointment of mercury is prepared by melting the metal in a double boiler with a small amount of fat, such as beef or pork fat. Once the metal is melted, it is allowed to cool slightly before being placed in a vessel. Fresh water is added to the vessel, and the mixture is then placed over a gentle heat to allow the water to evaporate. As the water evaporates, the metal will naturally float on the surface, and can be removed for further processing. The ointment is then placed in a vessel, where it is allowed to cool and solidify.

PHYSIOLOGICAL EFFECTS.—Mercurial ointment possesses very little power of irritating the parts to which it is applied; but when either dropped or rubbed into the integuments, readily produces the constitutional effects of mercury. Thus Cullerier says, that three or four drachms, containing each two grains of this ointment, and taken successively, have often sufficed to excite violent salivation. He also tells of the only object be to produce pturalism in a very short space of time, we may effect it by giving half a drachm of the ointment in the course of twenty-four hours.

When rubbed on the skin it is capable of producing the before-mentioned constitutional effects of mercurials; and if the part which contains be not rancid, no obvious local effect is usually produced. On dried ulcerated surfaces, mercurial ointment is a stimulant, and phthisic sores is oftentimes a very useful and beneficial application. It is rarely or never administered internally in this country, has been much used on the continent, and with great success. Certainly well deserves a trial where the system appears insusceptible to the influence of mercury; for Cullerier says, the difficulty has been rather to check than to excite salivation by it. Applied externally, it is employed either as a local or constitutional remedy. Thus, as a local agent it is used as a dressing to syphilitic ulcers, and is rubbed into tumours of various kinds (not those of a malignant nature, as cancer and fungus haematodes), with the view of causing their resolution. Sometimes, also, it is employed to destroy parasitic animals on the skin. As a means of affecting the system we use mercurial inunctions in syphilis, in inflammatory cases, and, in fact, in all the cases (already noticed) in which our object is to set up the mercurial action in the system, more especially the irritable condition of the digestive organs offers an objection to the internal employment of mercurials. It may be laid down as a general rule, that mercury may be used with more safety by the skin than by the stomach; but reasons of convenience, which I have already alluded to, frequently lead us to prefer its internal use.

ADMINISTRATION.—Internally, it is given in doses of from two to three grains, made into pills, with either soap or some mild powder, as rice. Externally, when the object is to excite very speedy salivation, half a drachm may be rubbed into the skin every hour, washing the part each time, and varying the seat of application. If, however, not desirable or necessary to produce such a speedy effect, half a drachm, rubbed in night and morning, will be sufficient. For the whole course of inunction the patient should wear the drawers night and day.

When the friction is performed by a second person, the hand be enveloped with soft oiled pig’s bladder, turned inside out, and urial frictions ought not to be violent, but long continued, and

Colles, op. cit. p. 42.
had better be carried on near a fire, in order to promote the liquefaction and absorption of the ointment. In syphilis, and other diseases in which our sole object is the constitutional affection, it matters little to what part of the body the ointment is applied, provided the cuticle be thin (for this inorganic layer offers an impediment to absorption in proportion to its thickness). The internal parts of the thighs are usually, therefore, selected. However, in liver complaints, the injections are made in the region of the organ affected. The occasional use of the warm bath promotes absorption when the ointment is applied to the skin.

1. **Unguentum Hydrargyri Mitius, L. D. Milder Mercurial Ointment.** (Stronger Mercurial Ointment, lbij.; Lard, lbij. Mix. L.—The Dublin College orders it to be made with double the weight of Lard.—The Edinburgh College merely observes, that "the mercurial ointment, with the proportions here directed [see p. 725], may be diluted at pleasure with twice or thrice its weight of axunge").—This preparation is applied as a dressing to ulcers and cutaneous diseases.

2. **Ceratum Hydrargyri Compositum, L. Compound Cerate of Mercury.** (Stronger Ointment of Mercury; Soap Cerate, each ½v.; Camphor, ½. Rub them together until they are incorporated.—Employed as a resolvent application to enlarged joints and indolent tumors. This preparation was introduced into the pharmacopeia on the recommendation of Mr. Scott.葫芦.

3. **Linimentum Hydrargyri Compositum, L. Compound Liniment of Mercury.** (Stronger Ointment of Mercury; Lard, each ½v.; Camphor, ½v.; Rectified Spirit, fijv.; Solution of Ammonia, f±iv. Rub the Camphor first with the Spirit, then with the Lard and Ointment of Mercury; lastly, the Solution of Ammonia being gradually poured in, mix them all.)—It is used (by way of friction) in chronic tumors, chronic affections of the joints, &c., where the object is to excite the action of the lymphatic vessels. It is said to cause salvation more readily than the common mercurial ointment, owing to the camphor and ammonia.

5. **Emplastrum Hydrargyri, E.—Plaster of Mercury.**

Both the London and Edinburgh Colleges give formula for the preparation of this plaster.

The **London College** orders of Mercury, 3ij.; Plaster of Lead, lbij.; Olive Oil, f±ij.; Sulphur, grs. viij. To the heated Oil add the Sulphur gradually, stirring constantly with a spatula until they incorporate; afterwards rub the Mercury with them until globules are no longer visible; then gradually add the Plaster of Lead, melted with a slow fire, and mix them all.

In this process the sulphur of the sulphurated oil (see p. 463) unites with part of the mercury. The remainder of the metal becomes mechanically divided.

The **Edinburgh College** orders of Mercury, 3ij.; Olive Oil, f±ix.; Resin, ½.

Surgical Observations on the Treatment of Chronic Inflammation in various Structures, particularly as exemplified in Diseases of the Joints. Lond., 1848.
large Plaster, \(3\frac{3}{4}\). Liquefy together the oil and resins, let them cool, add the
cury, and triturate till its globules disappear; then add to the mixture the
other previously liquefied; and mix the whole thoroughly.

It is supposed to stimulate the lymphatic vessels of the parts to
which it is applied, and is used as a discutient in glandular enlarge-
ments and other swellings, whether venereal or otherwise, and also to
region of the liver in hepatic complaints. Dr. Wilson Philip\(^6\)
seen it induce salivation.

**EMPLASTRUM AMMONIACI CUM HYDRARGYRO, L. D. Emplastrum
ammoniaci et Hydrargyri, E. Plaster of Ammoniacum with Mer-
cury.** (Ammoniacum, \(\frac{1}{2}\)ij.; Mercury, \(\frac{3}{4}\)ij.; Olive Oil, \(\frac{1}{3}\)ij.; Sulphur,
\(\frac{1}{3}\)ij.) To the heated Oil gradually add the Sulphur, stirring con-
tinuously with a spatula until they incorporate; then rub the Mercury
in them until globules are no longer visible; lastly, gradually add
Ammoniacum, melted, and mix them all. L. E.—The Dublin
college orders purified mercury; and, instead of the olive oil and
phur, directs two drachms of Common Turpentine to be used.)—It
is a more powerful compound than the preceding, and is employed in
some cases, especially to disperse venereal buboes.

6. HYDRA'GYRI OXYDUM, L.—OXIDE OF MERCURY.

(Hydrargyri Oxydatum nigrum, D.)

History.—The mode of preparing this compound was taught by
Sesat, in 1797. This oxide is sometimes termed the Protooxide,
boxide, Ash, Grey, or Black Oxide (Hydrargyri Oxydatum cinereum,
Oxidum nigrum).

Preparation.—The following are the directions of the London and
Dublin Colleges for its preparation:—

The London College orders Chloride of Mercury, \(3\frac{3}{4}\). Lime Water, Conq. j.
and frequently shake them. Set by, and when the oxide has subsided,
off the liquor. Lastly, wash it in distilled Water until nothing alkaline
be perceived, and dry it, wrapped in bibulous paper, in the air.

In this process double decomposition takes place: chloride of cal-
ium is formed in solution, while oxide of mercury precipitates.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloro Merc + 28</td>
<td>eq. Chlorine(\times 96)</td>
</tr>
<tr>
<td>1 eq. Mercury(\times 202)</td>
<td></td>
</tr>
<tr>
<td>Lime (\times 26) + 1 eq. Calcium (\times 20)</td>
<td>1 eq. Oxide of Mercury (\times 210)</td>
</tr>
<tr>
<td>266 (\times 8)</td>
<td>266</td>
</tr>
</tbody>
</table>

The following is the process of the Dublin College:—

Take of Sublimed Calomel, one part; Water of Caustie Potash, made warm,
parts. Let them be triturated together until an oxide of a black colour is
ained, and let this be frequently washed with water: lastly, let the oxide
dried with a medium heat on bibulous paper.

In this process the reactions are similar to those of the preceding
one; but as potash is used instead of lime, the products are chloride of potassium in solution, and oxide of mercury precipitated.

Properties.—Pure oxide of mercury is black, or nearly so. The present preparation, however, is frequently greyish, owing to the presence of some undecomposed calomel. It is readily decomposed by light (especially by the solar rays), becomes olive-coloured, and is resolved into metallic mercury and the binoxide. It is odourless, tasteless, insoluble in water and the alkalies, but is soluble in nitric and acetic acids. By the action of hydrochloric acid it forms water and calomel. When heated it is first decomposed, and then completely dissipated.

Characteristics.—Heated in a glass tube it evolves oxygen, while metallic globules are sublimed. Dissolved in diluted nitric acid it forms a protomercural salt, known by the before-mentioned characters for these substances.

Composition.—The composition of this oxide is as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Sefidin.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>1</td>
<td>202</td>
<td>96-19</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>8</td>
<td>9-81</td>
</tr>
<tr>
<td>Oxide of Mercury</td>
<td>1</td>
<td>210</td>
<td>100-00</td>
</tr>
</tbody>
</table>

Purity.—Digested, for a short time, in dilute hydrochloric acid, the solution, when filtered, should form no precipitate with either potash or oxalate of ammonia. If any binoxide had been dissolved, the potash would throw it down as a reddish or yellowish hyate. If any carbonate of lime had been precipitated, the oxalate would recognise it.

Digested for a short time with diluted hydrochloric acid and strained, neither solution of potash nor oxalate of ammonia throws down any thing. It is totally soluble in acetic acid. By heat it is entirely dissipated. Ph. Lond.

Physiological Effects.—Pure oxide of mercury is one of the least irritating of the mercurial preparations, and, therefore, when swallowed, does not produce much disorder of the alimentary canal. In small doses it acts as an alterative and purgative. When taken in repeated doses, its constitutional effects are similar to those of other mercurials.

Uses.—Mr. Abernethy employed it as a fumigating agent. To follow are his directions for using it:—Place the patient in a vapour bath, in a complete suit of under garments, with a cloth around his chin. Two drachms of the oxide are then to be put on a heated iron within the machine in which the patient is sitting. After continuing in the bath for about fifteen or twenty minutes, the body is found to be covered with a whitish powder. The patient should be placed in bed, and lie in the same clothes till morning, and then into a tepid bath. By this mode of proceeding, Mr. Abernethy says, he has known salivation induced in forty-eight hours.

Oxide of mercury is rarely employed as an internal remedy; indeed its varying composition is a strong objection to its use. As an external application it has been used in the form of Ointment (composed of one part of oxide and three parts of lard), and also suspended
in a weak solution of chloride of calcium, under the name of Black Wash.

Administration.—For internal use the dose is from half a grain to two or three grains.

Lotio nigra (Black Wash; Aqua Mercurialis nigra; Aqua Phagedaenica mitis).—This is prepared by adding calomel to lime-water. The proportions of the ingredients may be varied, but in general one drachm of calomel is used to a pint of lime-water. Oxide of mercury precipitates, and calcium remains in solution. As the efficacy of the wash depends on the oxide, the bottle must be well shaken every time of using it. This compound is a favourite application to venereal sores of almost all kinds,—in most being serviceable, in few or none being hurtful.

(Hydrargyrum Oxydum rubrum, D.)

History.—This is the Peroxide or Red Oxide of Mercury of some writers. Geber describes the method of making that variety of it which is prepared by calcination, and which was formerly called Red Precipitate per se (Mercurius Precipitatus ruber per se) or Calcined Mercury (Hydrargyrum calcinatum). He calls it Congelated Mercury.

Preparation.—This compound may be prepared either by precipitation or by calcination.

The London College directs it to be prepared by precipitation; and orders of Bichloride of Mercury xiv.; Solution of Potash fxxxvii.; Distilled Water Ovi. Dissolve the Bichloride of Mercury in the Water; strain, and add the Solution of Potash. The liquor being poured off, wash, in distilled water, the powder thrown down, until nothing alkaline can be perceived, and dry it with a gentle heat.

In this process one equivalent or 274 parts of bichloride of mercury are decomposed by two equivalents or 96 parts of potash, and yield one equivalent or 218 parts of binoxide of mercury, and two equivalents or 152 parts of chloride of potassium.

\[
\begin{align*}
\text{MATERIALS.} & & \text{PRODUCTS.} \\
\text{eq. Bichlorid Mercury...} & 274 & 2 \text{ eq. Chlorine...} & 72 \\
& & & 2 \text{ eq. Chloride Potassium...} & 152 \\
\text{eq. Potash.........} & 96 & 2 \text{ eq. Potassium...} & 80 \\
& & & 2 \text{ eq. Oxygen...} & 16 \\
\hline
\text{sum...} & 370 & \text{eq. Binoxide of Mercury...} & 218 \\
\end{align*}
\]

The Dublin College orders it to be prepared by calcination as follows:—Take of purified mercury any required quantity, passed into a glass vessel with a narrow mouth and broad bottom; let it be exposed to a heat of about 600° F. until it is converted into red scales.

The heat vapourizes the mercury, which in this state attracts oxygen

\[1\] Sum of Perfection, book i, part iv. ch. 16.
from the air, and forms this red or binoxide. The long neck of the vessel prevents the escape of the vapours or newly-formed oxide.

The process is a very tedious one, occupying several weeks; so that Geber’s remark was correct, that “it is a most difficult and laborious work, even with the profoundness of clear-sighted industry.” The apparatus which Mr. Boyle contrived for the manufacture of it, was long termed “Boyle’s Hell,” from a notion that the mercury was tortured in it.

Properties.—When prepared by precipitation it is in the form of an orange-red powder: but when made by calcination, occurs in small brilliant scales of a ruby red colour. Both varieties agree in the following properties:—They are odourless, have an acrid metallic taste, are very slightly soluble in water, but readily soluble in both nitric and hydrochloric acids. They are decomposed and reduced by heat and solar light: the precipitated variety is more readily acted on by solar light than the variety made by calcination.

Characteristics.—When heated in a glass tube by a spirit lamp, it is decomposed into oxygen and mercury: the first may be recognised by a glowing match, the second condenses in small globules. It dissolves completely in hydrochloric acid: the solution contains bichloride of mercury, which may be known by the tests hereafter to be mentioned for this substance (vide Hydargyri Bichloridum).

Composition.—The composition of this substance is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>1</td>
<td>202</td>
<td>92.86</td>
<td>92.73</td>
<td>1</td>
</tr>
<tr>
<td>Oxygen</td>
<td>2</td>
<td>16</td>
<td>7.14</td>
<td>7.27</td>
<td>1</td>
</tr>
<tr>
<td>Binoxide of Mercury</td>
<td>1</td>
<td>218</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Binoxide of mercury prepared by precipitation usually contains some water.

Purity.—Binoxide of mercury should be completely dissipated by heat, and be insoluble in water. Its solution in nitric acid should be unaffected by nitrate of silver, by which the absence of any chloride is shown. If an insufficient quantity of potash be employed in the preparation of the precipitated variety, the product is brownish or brick-dust coloured, and contains oxychloride of mercury (composed, according to Souberain, of 1 eq. bichloride of mercury, and 3 eq. binoxide).^{1}

On the application of heat it yields oxygen, and the mercury either runs in globules, or is totally dissipated. It is entirely soluble in hydrochloric acid.

Physiological Effects.—Binoxide of mercury is a powerful irritant, and when taken internally, even in small doses, readily excites vomiting and purging: large doses excite gastro-enteritis. Orfila^{1} found that binoxide, obtained by precipitation from four grains of bichloride, killed a dog in eighteen minutes. The con-
stitutional effects of this preparation are the same as those of mercurials generally.

Uses.—Binoxide of mercury is rarely employed as a medicine. It has been applied as an escharotic, either in the form of powder or ointment. Internally it was formerly exhibited to excite salivation in venereal diseases, but is objectionable, especially where the bowels are morbidly irritable. It is rarely or never used now.

In pharmacy it is employed in the preparation of bicyanide of mercury (vide *Hydrargyri Bicyanidum*).

Administration.—The dose of it is from a quarter of a grain to a grain, given in the form of pill, in combination with opium.

Lotio Flava: *Lotio* (seu *Aqua*) *Phagedenica*; *Yellow* or *Phagedenic Wash.*—This compound, which was formerly in frequent use, is prepared by adding bichloride of mercury to lime-water. The proportions vary in different formulae. The quantity of bichloride should not, I think, exceed two grains to an ounce of lime-water: the usual proportions are thirty grains of bichloride to sixteen ounces of lime-water. The preparation, then, consists of the yellow hydrated binoxide of mercury (which precipitates), chloride of calcium, and caustic lime; the two latter being in solution. But if the quantity of bichloride exceed 3/10 grains to an ounce of lime-water, the precipitate is brown or brick dust coloured, and contains oxychloride of mercury, while the clear liquor holds in solution some hydrargyro-chloride of calcium; that is, a saline combination, in which chloride of calcium is the base, and bichloride of mercury the acid. Yellow or phagedenic wash is applied, by means of lint, to venereal and scrofulous ulcers. Dr. Hintze used it with advantage in chronic ulcers which succeed to burns. It should be well shaken, and used in the turbid state.

S. Hydrazgium Nitrato-Oxymum, L.—Nitric Oxide of Mercury.

(Hydrazgium Oxidum rubrum, E.—Hydrargyri Oxydum nitricum, D.)

History.—This preparation was known to Raymond Lully in the latter part of the thirteenth century. It is commonly termed *Red Precipitated Mercury* (*Mercurius Precipitatus ruber*), or, for brevity, *Red Precipitate.*

Preparation.—All the British Colleges give directions for the preparation of this oxide.

The London College orders of Mercury, ibid.: *Nitrice Acid, lbiss.*; Distilled Water, Oij. Mix them in a proper vessel, and apply a gentle heat until the mercury is dissolved. Boil down the liquor, and rub what remains to powder. Put this into another very shallow vessel; then apply a slow fire, and gradually increase it until red vapour ceases to arise.

Guibourt, Journ. Chim. Méd. iii. 377; also Pharm. Raisonnée, i. 563; and Souberain, Nouv.

Jouxt de Pharm. ii. 230.

The Edinburgh College directs of Mercurius, 3viij.; Diluted Nitric Acid (D. 183) f 3vi. Dissolve half of the mercury in the acid, with the aid of moderate heat; and continue the heat till a dry salt is formed. Triturate the rest of the mercury with the salt till a fine uniform powder be obtained; heat the powder in a porcelain vessel, and constantly stir it till acid fumes cease to be discharged.

The Dublin College orders of purified Mercury, two parts; Diluted Nitric Acid, three parts. Let the mercury be dissolved, and let heat be applied until the dried mass passes into red scales.

This compound is best prepared on the large scale, for it cannot be so well procured of the bright orange-red colour, and crystalline or scaly appearance, usually considered desirable, when only small quantities of materials are employed. Some advise a larger quantity of nitric acid to be employed than is directed in the London Pharmacopoeia. The reduction of the nitrate to powder is objectionable, as it diminishes the crystalline appearance of the oxide. Mr. Brande says, "the nitrate requires to be constantly stirred during the process, which is usually performed in a cast-iron pot." But in general a shallow earthen dish is employed, with a second one inverted over it, and care is taken not to disturb the nitrate during the operation. The heat of the sand-bath is employed. Indeed, some have asserted, that the finest product is obtained when the calcination is performed in the same vessel in which the nitrate was formed, and without stirring, as directed in the Dublin Pharmacopoeia.

When quicksilver and the diluted nitric acid are digested together, the metal is oxidized at the expense of part of the acid, while bin oxide of nitrogen escapes, and, combining with oxygen of the air, becomes nitrous acid. The oxidized metal unites to some undecomposed nitric acid to form a nitrate. The following diagram explains the formation of the protonitrate:

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Nitric Acid</td>
<td>54 1 eq. Bin. of Nit.</td>
</tr>
<tr>
<td>2 eq. Oxygen</td>
<td>30 1 eq. Bin. Oxide Nit.</td>
</tr>
<tr>
<td>3 eq. Mercury</td>
<td>102 3 eq. Oxide Merc.</td>
</tr>
<tr>
<td>3 eq. Nitric Acid</td>
<td>162 3 eq. Protonit. Merc.</td>
</tr>
</tbody>
</table>

822

When nitrate of mercury is heated, decomposition takes place: the nitric acid yields oxygen to the protoxide of mercury, which thereby becomes bin oxide of mercury, while nitrous acid (or its elements) escapes.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Protonitrate Mercury</td>
<td>204 ({ \begin{align*} 1 \text{ eq. Nitric} & \ 1 \text{ eq. Nitrous Acid} \ 1 \text{ eq. Acid} & \ 54 \ \text{ eq. Oxygen} \end{align*})</td>
<td>204 (\begin{align*} 1 \text{ eq. Nitrous Acid} \ 1 \text{ eq. Bin. Merc.} \end{align*})</td>
</tr>
</tbody>
</table>

264

Some pernitrate of mercury usually remains undecomposed, but the quantity is small. Mr. Brande states, that 100 pounds of mercury and

* Manual of Chemistry.

† Dr. Bartlet, Observ. on the Dublin Pharmacopoeia.
of nitric acid (sp. gr. 1.48), yielded 112 pounds of nitric mercury. Hence three pounds of nitric acid must have been combined with the oxide.

Properties.—It occurs in bright tile-red, or scarlet, crystalline or scales. Dr. Barker found that 1000 parts of water took of this oxide. The other properties and characteristics of this acid are the same as those of the last-mentioned preparation (Hydrargyri Binoxyludum).

v.—The presence of some undecomposed nitrate may be readily detected by heating the suspected nitric oxide of mercury, when vapours are evolved, and by boiling in water, when a solution is formed, from which lime-water and hydrosulphuric acid throw precipitates. The nitric oxide of mercury is completely dissolved in heat; hence the presence of non-volatile matters (as red lead) may be readily detected. Heated before the blow-pipe on the mercurial oxide is reduced and dissipated, but if red lead is present, globules of metallic lead will be left behind.

The application of heat no nitric vapour is emitted. Neither lime-water nor sulphuric acid throws down any thing from the water in which it has been dissolved. In other respects it resembles the preceding preparation. *Ph. Lond.*

y soluble in muriatic acid: heat decomposes and sublimes it entirely in globules, without any discharge of nitrous fumes. *Ph. Ed.*

Clinical Effects.—Its local action is that of a powerful (vide Hydrargyri Binoxyludum). But the presence of nitrate of mercury in the nitric oxide renders its topical action more energetic. Constitutional effects are the same as those of other mercurials. His Hildanus, Bartholinus, Langius, and Jacobs, have described in which the external use of this agent gave rise to salubrity and other constitutional effects of mercury. In the case mentioned above, death resulted from the application of it to a wart on the face.

Dr. Hoffman, Plouquet, Girtanner, and more recently Mr. have related instances of poisoning by its internal employment.

—Internally it has been administered in the form of pill in diseases, but the practice is highly objectionable.

As an external agent it is used in the form of powder (obtained by sieving the powder); the latter is officinal. As a caustic, it is employed in spongy excrescences, venereal warts, chancres, indolent ulcers, &c. Mixed with eight parts of finely-powdered white lead, it is blown into the eye with a quill in opacity of the cornea.

Unguentum Hydrargyri Nitrico-Oxydi, L.; *Unguentum Oxidi Hydrargyri Oxydi, E.*; *Unguentum Hydrargyri Oxydi Nitrici, D.* (Finely-powdered)

Ph. et al.

Gaz. xiii. 117. A case of poisoning with it is also recorded in the *Lancet* for 1856-37, 11.

By *On Diseases of the Eye, 2d edit. p. 284.*
powdered Nitric Oxide of Mercury, ʒij.; White Wax, ʒij.; Lard, ʒij.
Mix. L. D.—The Edinburgh College employs Nitric Oxide of
Mercury, ʒij.; Lard, ʒijij.)—This ointment undergoes decomposition by
keeping; its colour changing from red to grey, in consequence of the
partial deoxidation of the nitric oxide of mercury. Dr. Duncan
says the presence of resin quickly causes it to become black. It is a
valuable stimulant, and is frequently applied to indolent sores and
ulcers, when we require to increase the quantity, and improve the
quality, of the discharge: to inflamed eye-lids (ophthalmia turni);
chronic conjunctivitis, &c.

9. HYDRAI'GYRI CHLORIDUM, L.—CHLORIDE OF MERCURY OR
CALOMEL.

(Calomelas, E.—Calomelas sublimatum; and Calomelas precipitatum, D.)

HISTORY.—Beguin in 1608, and Oswald Croll in 1609, are the first
Europeans who mention this compound. Mr Hatchett x says it had
been long known to the natives of Thibet. Its discoverer is unknown.
It has had a great variety of names. The term Calomel (Calomela,
from καλὸς, good, and μελας, black) was first used by Sir Theoden
Turquet de Mayenne x (who died in 1655), in consequence, is
some say, of his having had a favourite black servant who prepared
it; or, according to others, because it was a good remedy for the
black bile. Dragu mitigatus, Aquila alba, Manna Metallorum, ad
Panchymagum minerale, are some of the appellations for it. Mer-
curius dulcis, Hydrargyrum muriaticum nitre, Submuriate of Mercury,
and Subchloride, Protochloride, or Dichloride of Mercury, are some
of the more modern synonyms of it.

NATURAL HISTORY.—Native Calomel or Corneous Mercury occurs
in crusts, and also crystallized in four-sided prisms terminated by
pyramids. It is found at Deux-Ponts, Carniola, and in Spain.

PREPARATION.—All the British Colleges give directions for the
preparation of this salt.

The London College orders of Mercury, ibiv.; Sulphuric Acid, ibij.; Chloro-
of Sodium, ibiss.; Distilled Water, as much as may be sufficient. Boil in
pounds of the Mercury with the Sulphuric Acid in a proper vessel, until the
Bipersulphate of Mercury remains dry; rub this when it is cold (the
remaining) two pounds of Mercury in an earthen mortar, that they may be
perfectly mixed. Afterwards add the Chloride of Soda, and rub them together
until globules are no longer visible; then sublime. Rub the sublimate very
fine powder, and wash it carefully with boiling distilled water, and dry it.

The Edinburgh College directs of Mercury, ʒijij.; Sulphuric Acid (commercial)
ʃĳjij, and ʃijij.; Pure Nitric Acid, ʃʃʃʃ, Muriate of Soda, ʒijij. Mix the salt
add four ounces of the mercury, and dissolve it with the aid of a moderate heat.
Raise the heat so as to attain a dry salt. Triturate this with the Muriate of
Soda and the rest of Mercury till the globules entirely disappear. Heat the

x Edinb. Dispensatory.
＊＊＊
* Brande’s Manual of Pharmacy, 3d ed. 388.
mixture by means of a sand-bath in a proper subliming apparatus. Reduce the sublimate to fine powder; wash the powder with boiling distilled water until the water ceases to precipitate with solution of iodide of potassium; and then dry it.

The Dublin College gives the following formula for the preparation of the bipersulphate of mercury (Hydrargyri Persulphas, D.):

Take of Purified Mercury; Sulphuric Acid, of each, six parts; Nitric Acid, one part. Let them be exposed to heat in a glass vessel, and let the fire be increased until the thoroughly dried residue shall have become white.

From this, bipersulphate of mercury, Sublimed Calomel (Calomel sublimatum, D.) is thus directed to be prepared:

Take of Persulphate of Mercury, twenty-five parts; Purified Mercury, seventeen parts; Dried Muriate of Soda, ten parts. Let the Persulphate of Mercury and purified Mercury be triturated together in an earthenware mortar, until the metallic globules shall have completely disappeared; then let the dried Muriate of Soda be added; let them be well mixed, and in a suitable vessel, with a heat gradually raised, let them be sublimed into a receiver; let the sublimed mass be reduced to powder and washed with water, so long as the decanted liquor, on addition of water of Caustic Potash, shall exhibit any deposition; lastly, let the sublimed calomel be dried.

In the first stage of this process one equivalent or 202 parts of mercury decompose two equivalents or 80 parts of dry sulphuric acid; and, abstracting two equivalents or 16 parts of oxygen, to form one equivalent or 218 parts of binoxide of mercury, disengage two equivalents or 64 parts of sulphurous acid. The binoxide combines with two equivalents or 80 parts of undecomposed sulphuric acid, and forms one equivalent or 298 parts of bipersulphate of mercury.

Materials.

<table>
<thead>
<tr>
<th>2 eq. dry Sulphur Acid = 80</th>
<th>2 eq. Sulphur Acid = 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 eq. Oxygen = 32</td>
<td></td>
</tr>
<tr>
<td>2 eq. Oxygen = 16</td>
<td></td>
</tr>
</tbody>
</table>

Products.

<table>
<thead>
<tr>
<th>1 eq. Binox. Mercury = 218</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Bipersulphate Merc. = 298</td>
</tr>
</tbody>
</table>

363

If one equivalent or 298 parts of bipersulphate, one equivalent or 202 parts of reguline mercury, and two equivalents or 120 parts of chloride of sodium, be intimately mixed and sublimed, reaction takes place, and we obtain two equivalents or 476 parts of chloride of mercury, and two equivalents or 144 parts of sulphate of soda.

Materials.

<table>
<thead>
<tr>
<th>2 eq. Chloride Soda = 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 eq. Chlorine = 72</td>
</tr>
<tr>
<td>2 eq. Sodium = 48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>202</th>
<th>3 eq. Mercury = 202</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Oxygen = 16</td>
<td></td>
</tr>
<tr>
<td>3 eq. Sulphuric Acid =</td>
<td>60</td>
</tr>
</tbody>
</table>

Products.

<table>
<thead>
<tr>
<th>2 eq. Chloride of Mercury = 476</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Soda = 64</td>
</tr>
</tbody>
</table>

630

At Apothecaries' Hall, 50 lbs. of mercury are boiled with 70 lbs. of sulphuric acid to dryness in a cast-iron vessel; 62 lbs. of the dry mass are triturated with 40½ lbs. of mercury, until the globules disappear, and 34 lbs. of common salt are then added. The mixture is
submitted to heat, and from 95 to 100 lbs. of sublimed calomel obtained. It is washed in large quantities of distilled water having been ground to a fine and impalpable powder.

The subliming apparatus varies in different manufacturers; some it consists of a large earthen retort, with short but wide opening into an earthen elliptical receiver, in the bottom of which is water. The retort is placed in sand, contained in an iron retort in a furnace.

"The form in which calomel sublimes," observes Mr. "depends much upon the dimensions and temperature of the subliming vessels. In small vessels it generally condenses in small lumps, the interior surface of which is often covered with quadrangular prismatic crystals, transparent, and of somewhat elastic or hoary: in this state it acquires, by the process of rubbing into powder, a decidedly yellow or buff colour, more or less deep, according to the degree of triturated which it has undergone. If, on the contrary, the calomel be sublimed into a very cold and cold receiver, it falls in a most impalpable and perfect powder, which requires only one elutriation to fit it for use, and then remains perfectly colourless. By a modification of this process it may be suffered, as it sublimes, to fall into water, according to Mr. Jewell's patent.

"The above circumstances, too, account for the various appearances under which calomel occasionally presents itself in commerce: it may be added, that the buff aspect of the sublimate is always exhibited in the absence of cold; the snow-white in its presence, and the yellow when heat is applied. When the calomel is not well sublimed, it always exhibits a yellowish tinge; it also loses its tint when it cools.

Mr. Jewell's apparatus for preparing calomel consists in keeping the receiver very hot, and allowing it to receive vapor with steam, so that the vaporous calomel is condensed in the receiver and becomes a fine powder, which is much finer than one obtained by conventional methods.

Fig. 119.

Henry's modification of Jewell's apparatus for preparing calomel by steam (Hydrosilicate of mercury).

a. Furnace, containing an earthen retort (having a wide and short neck), in which the ingredients for making calomel are placed.
b. An earthen receiver, having three tubulures: one communicating with the retort; a second dipping into water in an earthen jar, and a third connected to a steam-pipe.
c. Steam-boiler.

Brooke, Annals of Philosophy.
levigation and elutriation. This process has been improved
by Henry (fig. 119).
iblin College directs Precipitated Calomel (Calomelas præci-
d.) to be thus prepared:

purified Mercury, seventeen parts; diluted Nitric acid, fifteen parts. On
y passed into a glass vessel, pour the acid, and when the mixture shall
to effervesce, digest with a medium heat [between 100° and 200° F.]
hours, occasionally stirring it; then let the heat be increased, that the
boil for a short time, and let this be poured off from the residual mer-
quickly mixed with four hundred parts of boiling water containing
of muriste of soda in solution. Let the powder which falls down be
in warm water, so long as the decanted liquor, on addition of some
of caustic potash, shall form any deposit; lastly, let it be dried.
mutual reaction of mercury and diluted nitric acid, a sul-
the protoxide of mercury is formed; binoxide of nitrogen
evolved. Four equivalents of nitric acid and 3 eq. of mer-
2 equivalents of protonitrate of mercury and 1 equivalent
of nitrogen. When solutions of protonitrate of mercury
ide of sodium are mixed, double decomposition takes place;
soda is formed in solution, while chloride of mercury is pre-
One eq. of the protonitrate of mercury, and 1 eq. of chlo-
lum, yield 1 eq. of nitrate of soda and 1 eq. of chloride of
see p. 756).

THES. — The crystals of calomel are square prisms. The
appearance of the crystalline cake of sublimed
calomel has been already noticed. As met with
in the shops, it is in the form of a fine odourless and
tasteless powder, whose sp. gr. is 7.176 (7.2,
Brande). When prepared by Jewell's process it
is perfectly white, but when obtained in the ordi-
nary way has a light buff or ivory tint. It vola-
tilizes by heat, and, under pressure, fuses. It is
insoluble in cold water and alcohol. According
to Donovan and others, calomel suffers partial
decomposition by long boiling in water, and a so-
lution is obtained which contains mercury and
chlorine (bichloride of mercury?).
posure to light, calomel becomes dark coloured, in conse-
cquently to Dumas, of the transformation of a small por-
mercury and bichloride. Others have ascribed this change
olution of chlorine and combination of the metal with oxy-
theses are inconsistent with the statement of Vogel's,
blackened calomel is insoluble in nitric acid. Is it not pro-
the change depends on the formation of a subchloride, as
as shewn to be the case with chloride of silver? By diges-
t and concentrated hydrochloric acid, we obtain bichloride

xir. 322.
and d. Chemie, i. 1299; Georgi's Handb. d. Pharm. by Liebig, l. 561.
Chemie, iii. 605.
5. Ueber das Licht, 87.
of mercury and reguline mercury. Boiling sulphuric acid forms bis-
persulphate and bichloride of mercury, with the evolution of sulphu-
rous acid.

Characteristics.—Iodide of potassium produces at first a greyish,
afterwards a greenish-yellow precipitate (iodide of mercury). When
heated in nitric acid, calomel is converted into bichloride and biper-
nitrate of mercury; and on the application of the tests already men-
tioned (p. 702) for mercurial preparations generally, we readily obtain
evidence of the presence of mercury. Having thus shown it to be a
mercurial compound, we may easily prove it to be calomel by obser-
vling that it is insoluble in water, and that on the addition of lime-water
a blackish grey precipitate (protochloride of mercury) is obtained, while
the supernatant liquor yields, with nitrate of silver, a white precipi-
tate (chloride of silver) insoluble in nitric acid, but soluble in ammio-
nia. Protochloride of tin, added to calomel, abstracts the chlorine,
and becomes bichloride of tin, while globules of metallic mercury are
obtained.

Composition.—The following is the composition of calomel:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>1</td>
<td>202</td>
<td>84.87</td>
</tr>
<tr>
<td>Chlorine</td>
<td>1</td>
<td>35</td>
<td>15.12</td>
</tr>
<tr>
<td>Chloride of Mercury</td>
<td>1</td>
<td>238</td>
<td>99.99</td>
</tr>
</tbody>
</table>

Purity.—When pure, calomel is completely vaporized by heat.
Water or alcohol which has been digested on it, should occasion no
precipitate or change of colour on the addition of lime-water, caustic
potash, ammonia, nitrate of silver, or hydrosulphuric acid, by which
the absence of bichloride of mercury may be inferred. I have met
with calomel which, in consequence of being imperfectly washed,
contains bichloride. It had been given to several patients before its
purity was suspected, and had operated on them most violently.
When mixed with potash it became black, like pure calomel: the
quantity of bichloride being insufficient to produce any perceptible
alteration in the colour of the precipitate. But water which had been
digested on it, gave, with the above-mentioned tests, the character-
istic indications of bichloride of mercury.

A whitish powder, which, on the addition of potash, becomes black, and then
when heated, runs into globules of mercury. It is also totally vaporized by heat.
The distilled water with which it has been washed, or in which it has been
boiled, gives no precipitate with nitrate of silver, lime water, nor hydrosulphuric
acid. Ph. Loud.

Heat sublimes it without any residuum: sulphuric ether agitated with it, is
sterilized, and then evaporated to dryness, leaves no crystalline residuum, and the
residuum may be left is not turned yellow with aqua potassae. Ph. Ed.

Physiological Effects. a. On Animals. — Wepfer1, Viller,
Flormann2, Gaspard3, and Annesley4, have examined the effects

1 Hist. Civile d’Aquit.
3 Magendie, Journ. de Physiol.
4 Datases of India.
CHLORIDE OF MERCURY.

Chloride of mercury, on dogs, horses, and pigs, but without any remarkable results. One gave half an ounce, with six pounds of water, to a horse: the effects were cough, heaving of the flanks, quick pulse, enfeebled appetite, and in twenty-four hours loose stools. Annesley asserts, from experiments on dogs, that large doses of calomel diminish the irritability of the gastro-intestinal membrane.

On Man.—Calomel may be ranked among the mild preparations of mercury; for although, in its local action, it is somewhat more powerful than the oxide, or than those preparations which contain mercury in a finely divided state (as blue pill), yet it is much milder than any of the other salts of mercury. In small doses, as a few grains, occasionally excites no obvious effects, though more commonly it acts as a purgative; and in very susceptible persons, especially children, it sometimes produces nausea, griping, and great faintness. It appears from the experience of most practitioners that adults are more susceptible of the influence of calomel than children. The green stools (called calomel stools by Kraus) which sometimes follow administration of calomel to children, are usually supposed to arise from the action of this medicine on the liver; though Zeller (quoted by Kraus) thinks it depends on alterations produced in the condition of the blood; and Krauskp is disposed to refer it to operation of calomel on the milk contained in the alimentary canal. But the same coloured stools are frequently observed when mercury has been used. Like other mercurials, it increases the secretion of the secreting organs, and thus promotes the secretion of bile and mucus; and we also presume it has a similar influence on the secretion of the pancreatic fluid. Neumann states, that a child took two, then three, and subsequently four grains of calomel, for the space of two months, without inducing salivation; but three months afterwards he became affected with chronic vomiting, the consequence of a scirrhous pancreas, of which he died in four months. From the manner in which the case is related, it is clear that it is a disease of the pancreas to the use of mercurials; whether justly or not, however, is impossible to determine. It is repeated and continued use of calomel, in small doses, is attributed with the constitutional effects of mercurial preparations generally, before described.

Large doses, it has been regarded as an irritant poison; and, from the fatal effects ascribed to it by several writers, not

this statement exceptions are frequently observed. The following is an instance of the extreme violence of the action of calomel on children. The late Dr. Thomas Davies attended, with a friend of mine, a boy of four years of age, labouring under peritonitis. One grain of calomel was given to be administered three times a day; and an aperient dose of calomel and jalap was given. Fourth day its employment was stopped in consequence of its violent action. The cheeks were thus swollen, the gums sloughed, necrosis of the alveolar process of the lower jaw on each side, and portions of bone, with the teeth, came away. The child ultimately recovered in about four months; but the jaws cannot be separated, and the patient is now obliged to suck his food through the apertures left by the loss of bone.
without reason. Thus Hellweg⁸ has reported a case in which a few grains of calomel, taken as a laxative, caused death; Vagnitius⁹ saw fifteen grains prove fatal; and Ledelius⁴, half an ounce. Fr. Hoffmann has also related two fatal cases⁹.

"Whytt, Odier, Quin, Wilmer, Leib, and others," says Göll⁴, "gave calomel internally in far larger doses; as two, three, and more grains at a time; and continued its use many days in the same dose, without considering the many evacuations from the alimentary canal, or the violent colic pains; and they affirm that they have never remarked, from the effect of this agent given in these large doses, any bad consequences in the abdomen. Melancholy experience compels me to contradict them. Many times I saw, under those large and long-continued doses of calomel, the hydrocephalic symptoms suddenly vanish, and inflammation of the intestines arise, which terminated in death. Still oftener I observed this unfavourable accident from an incautious use of calomel in croup: viz. where all the frightful symptoms of this tracheal inflammation, which threatened suffocation, suddenly vanish, and enteritis develop itself, which passed rapidly into gangrene, and destroyed the patients."

In the *Times* newspaper of the 26th April, 1836, there is the report of a coroner’s inquest on the body of a Mrs. Corbyn, who was destroyed by swallowing 20 grains of calomel, she having previously taken a moderate dose without its exciting what she considered a sufficient effect; and in the *India Journal of Medical Science*⁵ is the case of a lad, aged 14, a native of Nepal, in whom six grains of calomel apparently produced inflammation and ulceration of the mouth, enormous swelling of the face, mercurial feter of the breath, mortification, and death. There was no ptyalism.

In Pierer’s *Annalen* for April 1827⁶, is the case of a lady, who mistake swallowed fourteen drachms of calomel at once. Acute pain in the abdomen came on, accompanied by frequent vomiting and purging. These symptoms were allayed by oleaginous demulcents; but on the second day salivation and ulceration of the mouth took place. In three weeks, however, she was perfectly recovered. Other violent effects are noticed by Wibmer, Gmelin, and others; but the instances adduced are sufficient to show that dangerous and even fatal effects may result from large doses, and therefore that Teichmeyer, Buchner, and others, are justified in ranking it among poisons.

Of late years, however, immense quantities of calomel have been administered medicinally, without giving rise to any symptoms of irritant poisoning,—nay, apparently with the opposite effect; for we have the concurrent testimony of many practitioners, that in yellow fever, cholera, and other dangerous diseases, calomel, in doses of

⁸ Wibmer, *op. cit.* iii. 71.
⁹ Ibid.
⁴ Ibid.
⁵ Ibid.
⁶ "Treatise on the Hydrocephalus Acutus, by Dr. Gooch.
⁸ Quoted by Wibmer, *op. cit.* 72.
Chloride of Mercury.

cruple and upwards, allays vomiting and purging; and on this account has been denominated a sedative. So that while in small doses (from two to five grains) calomel is almost universally admitted to be an irritant to the bowels, it is asserted that larger ones are actually sedative. These statements appear to me to be almost inconsistent, and yet they are fair deductions from the experience of numerous intelligent practitioners. We must, therefore, endeavour to accumulate more facts, in order to illustrate the effects of calomel, and for the present confess we have very imperfect information respecting the nature of its action.

In a case published by Mr. Roberts, an ounce of calomel was swallowed by mistake, and retained on the stomach for two hours before the error was discovered. The only effects were slight nausea and faintness. Subsequently, emetics, lime-water, and purgatives, were administered; calomel was vomited up, and the day but one afterwards the patient was quite well. Neither salivation nor the lightest affection of the gums occurred.

The largest quantity of calomel given as a medicinal agent, at one dose, is, I believe, three drachms; “and it was followed,” says Dr. Christison, from whom I quote the case, which occurred in America, “by only one copious evacuation, and that not till after the use of an aperient.” I have now before me reports of eighteen cases of spasmodic cholera, admitted in the year 1832 into the Cholera Hospital at Bethnal Green, in this metropolis, in which enormous quantities of calomel were employed by the house-surgeon, Mr. Charles Bennett (formerly one of my pupils), with very slight physiological effects. When a patient was brought into the hospital, two drachms of calomel were immediately given, and afterwards one drachm every one or two ours, until some effect was produced. In 17 out of 18 cases in which this plan was tried, the vomiting and purging diminished, and the patients recovered. Several of them took from 20 to 30 drachms without the subsequent ptialism being at all excessive. In one case a female, aged 36 years), 30½ drachms were administered within forty-eight hours; moderate ptialism took place, and recovery. In the unsuccessful case which I have alluded to, 53 drachms of calomel were administered within forty-two hours, without the least sensible effect.

Dr. Griffin also tells us, that in several cases of cholera he gave calomel hourly, “in scruple doses, to the amount of two or three drachms or upwards, without eventual salivation; and I recollect,” he adds, “one instance in particular, in which I gave two drachms within an hour and a half with perfect success, and without affecting the system.”

I do not pretend to reconcile these cases with those recorded by Bellweg, Vagnitius, Ledelius, Hoffman, and Gölls; in fact they appear to me irreconcilable. Dr. Christison, however, suggests that
hepatic derangement. For this purpose it is usually com-
bination with other alteratives, as in the well-known Plu-
which I shall presently notice.

It is very frequently employed as a purgative, though, on
the uncertainty of its cathartic effects, it is seldom given a
ally in combination with other drastic purgatives—such
scammony, compound extract of colocynth, &c. whose act
much promotes. We employ it for this purpose when we
of making a powerful impression on the alimentary canal,
of relieving affections of other organs, on the principle
irritation. Thus in threatened apoplexy, in mental dis-
dropsical affections, and in chronic diseases of the skin.
conditions of the bowels, where it is necessary to use
cathartics to produce alvine evacuations, as in paralytic a
is advantageously combined with other purgatives. Some
use it to promote the biliary secretion—as in jaundice and
ions of the liver, in chronic skin diseases, and in various
conditions of the alimentary canal not accompanied by in.
Moreover, in the various diseases of children requiring the
purgatives, it is generally considered to be very useful; and
devoid of taste is of course an advantage.

As a sedative it has been administered in yellow fever, sp.
malignant cholera, dysentery, and liver affections (vide p.
Griffin asserts that calomel proved a most successful chola
controlling or arresting its progress, in 84 cases when
administered while the pulse was perceptible at the
that, on the contrary, it proved detrimental when given
The practice was tested in 1448 cases. The dose was fi
two scruples every hour or half-hour.

As a sialogogue, it may be used in the cases in which I h
titis, enteritis, and other inflammatory diseases: in fever, chronic visceral diseases, &c.

is frequently combined with other medicines, to increase, as with squills, to produce diuresis, in dropsy; or with sarsaparilla, to promote diaphoresis.

Parasitic it is in frequent use, and forms one of the active ingredients of many of the nostrums sold for worms; though it does not have any specific influence over parasitic animals.

oral uses of calomel are numerous. In diseases of the eye, it is applied as a snuff. It is sometimes used to promote the secretion of tears, to remove spots on the cornea. Dr. Fricke has used it with great success in chronic cases of rheumatic, catarrhal, and ophthalmia; but in two instances had unfortunate results from its use. It is sometimes suspended in thick mucilage, as a gargle in venereal sores, or injected into the blennorrhoea. Now and then it is used as a substitute for emetic. As a local application, in the form of ointment, it is one of the most useful remedies we possess for the treatment of certain forms of chronic skin diseases.

Illustration.—When used as an alternative, it is given in doses of a grain to a grain, frequently combined with oxysulphuretury (as in Plummer's Pill) or antimonial powder, and repeated every other night; a mild saline laxative being given the morning. As a purgative, from two to five grains are given in combination with, or followed by, the use of other purgatives—jalap, senna, scammony, or colocynth. As a sialagogue, it is exhibited in doses of one to three or four grains, generally with opium or Dover's powder, twice or thrice a day. As a diuretic, it is employed in doses of a drachm, or more. Biett employed it as an eurhine, in syphilitic eruptions. It is with some inert powder, and given to the extent of from 8 to 10 grains daily. The use of acids with calomel frequently occasions calomel is most extensively employed in the diseases of children and may be given to them in as large or proportionally larger doses than to adults. Salivation is a rare occurrence in children. Dr. Colles asserts, that mercury never produces ptyalism, or ulceration of the gums, in infants; but this is an error.

LE HYDARGYRI CHLORIDI COMPOSITAE, L.; Pilulae Calomeloposite, E. D. Compound Calomel Pills. (Calomel; Oxy-
of-antimony, each 5ij.; Guaiacum, powdered, 3ss.; Treacle, the Calomel with the Oxysulphuret of Antimony, after

taking the Guaiacum and the Treacle, until incorporated, L.—

__Edinburgh College__ uses of Calomel, and Golden Sulphuret of

of each, one part; Guaiac, in fine powder, and Treacle, of

parts; the pill-mass is ordered to be divided into six-grain

* Ibid. viii. 540.
pills.—The *Dublin College* employs of Calomel, Brown Antimonial
Saltpur, of each, 5i.; Guaiac, in powder, 5ij.; Treacle, as much as
may be sufficient).—This compound is commonly known as *Plumier’s
Pill* (Pilulae Plumieri) having been admitted into the Edinburgh
Pharmacopoeia at his recommendation. These pills are frequently
employed as alteratives in chronic skin diseases, in the papular and
pustular forms of the venereal disease, in chronic liver affections, and
in various disordered conditions of the digestive organs. The dose is
from five to ten grains.

2. **Pilulae Calomelanos Et Ophi, E.; Calomel and Opium Pills.**
(Calomel, *three parts*; Opium, *one part*; Conserve of Red Roses, *a
sufficiency*. Beat them into a proper mass, which is to be divided
into pills, each containing two grains of calomel). Each pill contains
two-thirds of a grain of opium. It is a valuable compound in rheu-
matism and various other inflammatory diseases. Dose one or two
pills. If ptyalism be required, one pill may be repeated three time
daily.

3. **Unguentum Hydargyri Chloridi; Calomel Ointment.** (Calomel,
5i.; Lard, 5i.)—This is a most valuable application in porrigo faves,
impetigo, herpes, and the scaly diseases (psoriasis and lepra). Indeed,
if I were required to name a local agent pre-eminently useful in skin
diseases generally, I should fix on this. It is well deserving a place
in the Pharmacopoeia.

4. **Pilulae Cathartie Composite, Ph. of the United States;**
Compound Cathartic Pills. (Compound Extract of Colocynt, 3a;
Extract of Jalap, in powder; Calomel, of each, 5iij.; Gamboge, in
powder, 5ij. M. Divide into 180 pills). This pill is intended to
combine smallness of bulk with efficiency and comparative mildness
of purgative action, and a peculiar tendency to the biliary organs.
Each pill contains one grain of calomel. Three pills are a full des-

10. **Hydargyri Bichloridum, L.—Bichloride of Mercury.**

(Sublimatum corrosivum, E.—Hydargyri Muriae corrosivus, D.)

History.—We have no account of the discovery of this prepara-
tion. Geber described the method of preparing it; but it is sup-
posed to have been known long anterior to him. Like calomel, it has
had various synonyms, of which the principal are the following—
Chloride, Hydrochlorate, Muriate or Oxymuriate of Mercury (Hy-
drargyri Chloridum, Hydrochloras, Muriae vel Oxymurias), Corrosii
Sublimatum, Corrosive Muriate of Mercury (Hydargyri Muriae corrosi-
vens), and Acidum Chloro-hydargyricum.

Preparation.—All the British Colleges give directions for the
preparation of this salt.

United States Dispensatory.
Inc. of Ver. viii. 252.
Bichloride of Mercury.

London College orders of Mercury, Ibij; Sulphuric Acid, Ibij; Chloride of Sodium, Ibij. Boil down the Mercury with the Sulphuric Acid in a proper vessel until the Bipersulphate of Mercury remains dry; rub this when it is cold with Chloride of Sodium in an earthen mortar; then sublimate with a heated vessel raised.

Edinburgh College directs of Mercury, ivij; Sulphuric Acid (commercial) and fijij; Pure Nitrile Acid, fijij; Muriate of Soda, fijij. Mix the acids; add mercury; dissolve it with the aid of a moderate heat; and then raise it so as to obtain a dry salt. Triturate this thoroughly with the muriate; and sublimate in a proper apparatus.

Dublin College gives a separate formula for the preparation of the bipersulphate of mercury (Hydrargyri Persulphas, D.) It is as follows:—

1. Take of purified Mercury, Sulphuric Acid, of each, six parts. Nitric Acid, one part.
2. Let them be exposed to heat in a glass vessel, and let the fire be increased to thoroughly dried residue shall have become white. From this salt core-sulphate is prepared to be thus procured.

3. Take of Persulphate of Mercury, five parts; Dried Muriate of Soda, two parts.
4. Stir well rubbed together in an earthen-ware mortar, that a most subtle mixture may be formed; then, with a heat gradually raised, let the Corrosive Sublimate of Mercury be sublimed into a proper receiver.

Bipersulphate of mercury is usually prepared by submitting the Mercuric acid and mercury to heat in an iron pot, set in brickwork, over a proper fire, and under a hood or chimney to carry off the vapour of sulphurous acid (fig. 121 a). The mixture of bipersulphate and common salt is subjected to sublimation in an earthen alembic placed in sand contained in an iron pot; or in an iron pot lined with clay, and covered by an inverted earthen pan (as in fig. 121 b). The same pot, with a different head, may be used in the preparation of calomel.

The nature of the changes which occur in the manufacture of bipersulphate of mercury have been already explained (p. 737). When this salt is sublimed with chloride of sodium, the decomposition takes place, and we obtain bichloride of mercury and sulphate of soda.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride of Soda</td>
<td>120</td>
<td>1 eq. Bichloride of Mercury 274</td>
</tr>
<tr>
<td>2 eq. Chlorine</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>2 eq. Sodium</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2 eq. Sodium</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Sulphate of Mercury</td>
<td>286</td>
<td>4 eq. Sulphate of Soda 144</td>
</tr>
<tr>
<td>1 eq. Mercury</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>3 eq. Sulphuric Acid</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>418</td>
<td>418</td>
<td></td>
</tr>
</tbody>
</table>

Bichloride of mercury may also be procured by the direct union of the constituents, chloride and mercury. It may likewise be prepared by dissolving the red or binoxide of mercury in hydrochloric acid.
Properties.—As usually met with in commerce, bichloride of mercury is a semi-transparent crystalline mass, in which perfect crystals are rarely found. Occasionally, however, they are obtained either by slow sublimation, or from a solution of the salt. Their form is the right rhombic prism. Their sp. gr. is about 5·2 (5·14 to 5·42, Liebig). The taste of this salt is acrid, coppery, and persistent. When heated it fuses, boils, and volatilizes: the vapour is very acrid. It is soluble in about three times its weight of boiling, and in about eighteen or twenty times its weight of cold water: the acids (especially hydrochloric) and the alkaline chlorides increase its solubility. It is soluble in seven parts of cold or three and a half parts of boiling alcohol. Ether dissolves it more readily than alcohol, and will even separate it from its watery solution; and hence is sometimes employed to remove it from organic mixtures.

An aqueous solution of bichloride of mercury readily undergoes decomposition, especially when exposed to solar light; calomel is precipitated, and hydrochloric acid set free. This change is facilitated by the presence of organic substances,—as gum, extractive, or oil; whereas it is checked by the presence of alkaline chlorides.

Albumen forms a white precipitate with an aqueous solution of bichloride of mercury. This precipitate is slightly soluble in water, and consists, according to Lassaigne, of albumen, 93·45, and bichloride of mercury, 6·55; so that it is a hydrargyro-chloride of albumen. Fibrin forms a similar white compound with corrosive sublimate. When albuminous and fibrinous textures are immersed in a solution of this salt, combination takes place, the tissue contracts, increases in density, becomes whiter, and does not putrefy. Hence it is employed by the anatomist for hardening and preserving certain parts of the body,—as the brain.

A solution of bichloride of mercury possesses some of the characters of an acid. Thus its solution reddens litmus, and it unites with the chloro-bases (as chloride of sodium), forming the double salts called hydrargyro-chlorides. Litmus, which has been reddened by a solution of bichloride of mercury, has its blue colour restored by chloride of sodium.

Characteristics.—Bichloride of mercury is known to be a mercurial compound by the following characters:—

1. Heated in a tube by a spirit lamp, with caustic potash, an alkaline chloride is formed, oxygen gas is evolved, and metallic mercury is sublimed and condensed in the form of globules on the sides of the tube.
2. Linseed-water causes a lemon-yellow precipitate (hydrated binoxide of mercury). If the bichloride be in excess, the precipitate is brick-red (oxichloride of mercury), and the hydrargyro-chloride of calcium is found in solution.
3. Caustic ammonia, added to a solution of bichloride, causes hydrochloric ammonia to be formed in solution, while a white powder (hydrargyri ammonia-chloridum) is thrown down.

The alkaline carbonates throw down a brick-red precipitate; the bicarbonate, either none or a white one.

Oxide of potassium occasions a scarlet precipitate (biniodide of mercury); the precipitate frequently appears at first of a yellow colour, though it becomes scarlet. Dumas* thinks these yellow and red states of the oxide depend on some isomeric phenomena requiring farther examination. Excess of iodide of potassium be employed, the red precipitate disappears, to the formation of a soluble double salt, in which the biniodide of mercury acts the part of an acid, and the iodide of potassium that of a base. This salt is the hydrargyro-iode of potassium. Bichloride of mercury and the iodide of mercury also form a double salt; hence, if a great excess of the latter be employed, the red precipitate disappears, owing to the formation of a soluble double salt.

Protochloride of tin occasions, with bichloride of mercury, a white precipitate (pellicanomei), while perchloride of tin remains in solution. Very shortly this chloride of mercury is converted into reguleine mercury, which falls down appallingly divided state as a greyish powder.

Hydrosulphuric acid in excess, passed through a solution of bichloride of mercury, occasions a black precipitate (bisulphuret of mercury), while a solution of trochloric acid is formed. If the hydrosulphuric acid be not in excess, a precipitate (chloro-sulphuret of mercury) is obtained, composed of two atoms of mercury and one of the bichloride.

Ferrocyanide of potassium causes a white precipitate (ferrocyanide of mer-

urn) is another test for corrosive sublimate, though not one of much value, since it will produce the same white precipitates with many other substances.

Galvanism.—Drop the suspected solution on a piece of gold, as a sovereign, apply a key, so that it may touch, simultaneously, the gold and the solution; an electric current is immediately produced, the bichloride is decomposed, the mercury attaches itself to the negative electrode (or pole), namely the gold, while the chlorine unites with the iron of the positive electrode (or pole) to form chloride of iron. The relative position of the gold, the key, and the solution, will be evident from the fig. 123, and the arrows point out the direction of the electric current. The silver stain left on the gold is readily removed by heat. In Dr. Christison's work will be found other methods of applying galvanism; but the one just mentioned is perhaps the most useful, since it can always be readily made use of, whereas a complicated apparatus is found in the hands of a few persons only. Thus it can be applied at a moment's notice to detect corrosive sublimate in the matted hair of a patient.

The relative delicacy of some of these tests is thus stated by Devergie:—

<table>
<thead>
<tr>
<th>Degree of Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrocyanide of potassium</td>
</tr>
<tr>
<td>Lime water</td>
</tr>
<tr>
<td>Potash or its carbonate</td>
</tr>
<tr>
<td>Iodide of potassium</td>
</tr>
<tr>
<td>Ammonia</td>
</tr>
<tr>
<td>Hydrosulphuric acid, or hydrosulphate of ammonia</td>
</tr>
<tr>
<td>Protochloride of tin, or galvanic pile</td>
</tr>
</tbody>
</table>

The preceding tests have not determined the nature of corrosive sublimate, further than that it is a permercurial salt. To prove that a chloride, the simplest method of proceeding is to add to the precipitated solution, lime-water, or carbonate of soda; then filter,
PURITY.—Pure bichloride should be white, dry, totally by heat, and completely soluble in water, alcohol, or ether. It liquefies by heat, and sublimes. It is totally soluble in water and ether. Whatever is thrown down from water, either by solution of lime-water, is of a reddish colour; or, if a sufficient quantity be added. This yellow substance by heat emits oxygen, and runs into globules. Ph. Lond.

It sublimes entirely by heat; and its powder is entirely and easily sulphuric ether. Ph. Ed.

PHYSIOLOGICAL EFFECTS. a. On Vegetables.—The effects of bichloride of mercury on plants have been examined by Seguin, and subsequently by Marcet and Macaire, and experiments it appears, that when growing plants are immersed in a solution of this salt, part of the poison is absorbed, a yellowish colour takes place in the leaves and stems, and death is certain. Bichloride of mercury is equally poisonous to cryptogams. Hence vegetable tissues soaked in a solution of it are adapted for the development of the Merulius lachrymans fungus, and other fungi known under the name of the Dry-Rot. This is the principle adopted by Mr. Kyan for the preservation of wood, and which is now practised by the Anti Dry-Rot Company.

b. On Animals generally.—The effects of corrosive sublimate on animals have been examined by Ettmuller, Wepfer, Smith, Benjamin Brodie, Campbell, Lavort, Smith, Gaspard, Office, and Bostock. An abstract of these will be found in the works of Wibmer and Christison. Dogs, cats, horses, rabbits, and many other animals on which the experiments have been tried, and which sublimate has been found to exercise a poisonous
and the same kind of effect is presumed, from analogy, to be produced on all other animals. The results of these experiments have been so briefly yet clearly stated by Dr. Christison, that I cannot do better than quote his words:—"Corrosive sublimate causes, when swallowed, corrosion of the stomach; and in whatever way it obtains entrance into the body, irritation of that organ and of the rectum, inflammation of the lungs, depressed action, and perhaps also inflammation of the heart, oppression of the functions of the brain, and inflammation of the salivary glands." I may add, that mercurial fœtus and salivation have been observed in horses, dogs, and rabbits.

λ. On Man.—a a. In small or therapeutic doses, as from one-eighth to one-fourth of a grain, it frequently exerts a beneficial effect on diseases (syphilitic eruptions, for example), without producing any obvious alteration in the actions of the different organs. Occasionally, especially when the stomach and bowels are in an irritable condition, it gives rise to a sensation of warmth in the epigastrium, and causes nausea, griping, and purging. In such cases it is best to diminish the dose, and conjoin opium. By repetition we frequently observe that the pulse becomes somewhat excited, and if the skin be kept warm, perspiration is oftentimes brought on; at other times the quantity of urine is increased. Continued use of it causes salivation: but it is said, that corrosive sublimate has less tendency to occasion this effect than other preparations of mercury. Maximilian Locher, who, from the year 1754 to 1762, cured 4,880 patients affected with the venereal disease, at St. Mark's Hospital, Vienna, by the exhibition of this remedy, says, that no person died, or experienced the least painful or dangerous symptoms, in consequence of its use. He was, however, exceedingly cautious and careful in its employment, and always stopped its administration on the first appearance of salivation. Van Swieten says, "I am convinced, from repeated experience, that the menstrual evacuation is not disturbed by the use of this remedy."

ββ. Chronic poisoning. In somewhat larger doses, or by the long-continued use of the before-mentioned small doses, gastro-enteritis and all the usual constitutional effects of mercury are brought on. Thus heat and griping pain in the alimentary canal (particularly in the stomach and rectum), loss of appetite, nausea, vomiting, purging, and disordered digestion, are the gastro-enteritic symptoms. The pulmonary organs also not unfrequently become affected; the patient complains of dry cough, pain in the chest, disordered respiration, and bloody expectoration. Coupling these symptoms with the effects said to be produced on the lungs of animals by the use of corrosive sublimate, we have an important caution not to administer it to patients affected with pulmonary disorders,—a caution, indeed, which Van Swieten gives: "for those," says he, "who have a husky dry ast, are troubled with a cough, whose nervous system is ex-
cessively irritable, and are subject to a hemorrhage, bear not this remedy without detriment."

γγ. Acute poisoning.—In very large doses corrosive sublimate acts as a caustic poison, in virtue of its affinity for albumen, fibrin, and other constituents of the tissues. I shall follow Dr. Christison, and admit two varieties of poisoning by it; in one of which "the sole or leading symptoms are those of violent irritation of the alimentary canal. In another variety the symptoms are at first the same as in the former, but subsequently become conjoined with salivation and inflammation of the mouth, or some of the other disorders incident to mercurial erethism, as it is called."

First variety: Gastro-enteritis.—In this variety the symptoms are analogous to those of other corrosive poisons: namely, violent burning pain in the mouth, throat, esophagus, and stomach; difficulty of deglutition; sense of suffocation; nausea; violent vomiting (increased by every thing taken into the stomach) of mucous, bilious, or sanguineous matters. The pain soon extends from the stomach over the whole abdomen, which becomes acutely sensible to the slightest impression; violent purging, often of blood; inexpressible anxiety; flushed countenance; restlessness; pulse quick, small, and contracted; cold sweats; burning thirst; short and laborious respiration; urine frequently suppressed; and, lastly, various indications of a disordered condition of the nervous system, such as a tendency to stupor, or even actual coma; convulsive movements of the muscle of the face and extremities: sometimes diminished sensibility of one of the limbs, or of the whole body; or even paraplegia. Occasionally death appears to result from the powerful effect produced on the nervous system, or from exhaustion, or from mortification of the bowels.

Dr. Christison points out the following characters as serving to distinguish poisoning by bichloride of mercury from that by arsenious acid.:

1. The symptoms begin much sooner.
2. The taste is much more unequivocal and strong.
3. The acidity and irritation in the gut is much greater.
4. The countenance is flushed, and even swollen; whereas, in poisoning by arsenic, it is usually contracted and ghastly.
5. Blood is more frequently discharged by vomiting and purging.
6. Irritation of the urinary passages is more frequent.
7. Nervous affections are more apt to come on during the first inflammatory stage.
8. The effects are more curable than those of arsenic.
9. Deviations in the symptoms are more rare.

Second variety: Gastro-enteritis, accompanied with or followed by mercurial erethism.—I here use the term erethism in the sense in which it is employed by Dr. Christison, namely, to indicate all the secondary effects of mercury. In this variety, the symptoms first observed are those mentioned for the last variety, but they are followed, soon or later, by those of inflammation of the salivary glands, and of the mouth and its neighbouring parts; profuse salivation, ulceration of the mouth, great fetor of the breath, and other symptoms of the kind, already described.

Uses.—Internally it has been employed as a salogogue, alterative, and diaphoretic.

The celebrated Baron Van Swieten⁴ may be regarded as the principal introducer of corrosive sublimate into practice as a remedy for venereal diseases⁵. He seems to have been led to its employment from a suspicion that salivation was not requisite for curing this class of diseases; and hence he was desirous of obtaining some mercurial

⁵ See also several papers on the use of bichloride in syphilis, in the Medical Observations and Inquiries, vol. i. and ii.
that could be diluted at will, and so tried in a very small dose."

Now corrosive sublimate possessed these properties, and hence he

commenced his experiments with it, and, meeting with great success,

commended it to Maximilian Locher, whose results I have already

quoted.7 The balance of evidence is decidedly favourable to the

employment of this medicine as an internal remedy for venereal

diseases. By its partizans it has been asserted to be a safe and ef-

ficient mercurial, to remove venereal symptoms in a very short space

time, and without causing salivation, merely by exciting diapho-

sis. Its opponents8 state, on the other hand, that other mercurials

are quite as effectual and speedy; that the cure by corrosive sub-

late is not permanent; and, lastly, that its corrosive and irritant

properties render its employment objectionable. One of the latest

advocates for its use is Dzondi9, of Halle, who states, that the best

mode of using bichloride of mercury is in the form of pills made with

umb of bread; and he gives the following formula for their pre-

paration:—B. Hydr. Sublim. Corros. gr. xij., solve in Aq. Distill. q. s.,

de Mæs Panis Albi, Sacchari Albi, ââ. q. s. ut ft. pilulae numero

xL. Of these pills (each of which contains one-twentieth of a

ain of corrosive sublimate), four are to be administered daily, and

creased until thirty (containing one grain and a half) are taken at a

meal. The best time of exhibiting them is after dinner. In irritable

objects, and painful affections, a few drops of the tincture of opium

may be taken with each dose. During the time the patient is under

their influence he should adopt a sudorific regimen (as is also rec-

ommended by Van Swieten), and take decoction of sarsaparilla.

In acute diseases few have ventured to employ bichloride of mer-

cury; however, Schwartz gave it in hepatitis after the fever and pain

d subsided; Sauter employed it in an epidemic scarlet fever; and

erns administered it in asthenic malignant fevers. I have al-

ready noticed (p. 718) Mr. Lempprie's proposal to use it in fever as

malignogue.

In various chronic diseases it has been given as an alterative and

diaphoretic, with occasional success. Thus in rheumatism, diseases

of the bones, periodical pains, skin diseases, scrofulous affections,

orders of the nervous system, &c. In such it should be asso-

ciated with diaphoretics (as antimony, sarsaparilla, &c.), warm

thing, &c. Not unfrequently opiates should be combined with it.

As an external remedy it has been employed as a caustic in sub-

stance (either alone or combined with arsenic) to cancerous ulcers, to

bitten by rabid animals, to chancre, &c. used in this way, ever,

is mostly objectionable. In onychia maligna it is used with great advantage, mixed with an equal weight of sulphate of

and sprinkled thickly upon the surface of the ulcer, which is

7 For further historical details respecting its use, vide Pearson's Observations on the Effects of

8 Vide Pearson, op. cit.

then to be covered with a pledget of lint saturated with tincture of myrrh*. A solution has been employed for various purposes: thus by Baumé, as already mentioned (p. 716), for peliluvia, to produce salivation; as a lotion in chronic skin disease (as lepra, psoriasis, scabies, rosacea, &c.); as a wash to ulcers, particularly those of a venereal nature; as an injection in discharges from the urinary organs; as a collyrium in chronic diseases of the eye, especially those of a venereal nature; and as a gargle in ulcers of the tonsils. A solution is sometimes used as a preventive for the venereal disease.

Administration.—It may be used internally, in substance or solution. The dose of it in substance is from one-sixteenth to one-eighth of a grain. Some advise it to be given to the extent of one-fourth of a grain; but in this dose it is very apt to gripe and purge. Dzondi's formula, already given, may be employed when we wish to administer it in substance.

In solution it may be exhibited dissolved in water (vide liquor hydargyri bichloridi), alcohol, or ether.

For external use, a watery solution may be employed, containing from half a grain to two or three grains, dissolved in one ounce of water.

Antidotes.—Several substances which decompose corrosive sublimate have been employed as antidotes. These are, Albumen, Gluten of Wheat (as contained in wheaten flour), Milk, Iron Filings, and Meconic Acid.

I have already alluded to the decomposition of corrosive sublimate by Albumen. The compound which results from their mutual action appears to be inert, or nearly so. In Dr. Christison's Treatise on Poisons will be found several cases noticed, in which albumen has been most effectual: one of the most interesting of which is that of Baron Thenard, the celebrated chemist, who inadvertently swallowed a concentrated solution of corrosive sublimate, but by the immediate use of whites of eggs suffered no material harm. Peschier states that one egg is required for every four grains of the poison. Gluten of wheat has been recommended by Taddei, and may be employed when albumen is not procurable. Wheaten flour (which contains gluten) will probably answer as well as the pure gluten. Milk, in the absence of albumen or flour, may be used. Iron filings are stated to be useful, by reducing the corrosive sublimate to the metallic state. Meconic acid is also said to be an antidote, by forming an insoluble meconate of mercury. But a knowledge of the fact is of little practical value, since the acid is not generally procurable; and tincture of opium, which contains it, cannot be safely used in sufficient quantity; for Dr. Christison finds that five grains of corrosive sublimate require an infusion of 33 grains of opium to precipitate the whole of the mercury.

The other parts of the treatment for acute poisoning by corrosive sublimate are the same as for other irritant poisons, and consist of the usual antiphlogistic system—the use of warm baths, opiates, &c.

* United States Dispensatory.
LIQUOR HYDARGYRI BICHLORIDI, L. Solution of Bichloride of Mercury. (Take of Bichloride of Mercury; Hydrochlorate of Ammonia, each, grs. x.; Distilled Water, Ozj. Dissolve the bichloride of mercury and hydrochlorate of ammonia together in water.) Hydrochlorate of ammonia is used to increase the solvent power of the water. Each fluidounce contains half a grain of corrosive sublimate. The dose of this solution is from half a fluidrachm to two or three fluidrachms, taken in some bland liquid, as linseed tea.

11. HYDARGYRI AMMONIO-CHLORIDUM, L.—AMMONIO-CHLORIDE OF MERCURY.

(Hydargyrum precipitatum album, E.—Hydargyri subaurias ammoniatum, D.)

HISTORY.—This compound was discovered by Raymond Lully, in the thirteenth century. Lemery pointed out two modes of procuring it, and hence it is sometimes termed Lemery’s White Precipitate, to distinguish it from precipitated calomel, also called on the Continent white precipitate. It has had various other appellations, as Cosmetic Mercury (Mercurius Cosmeticus), White Precipitated Mercury; and, according to the view taken of its composition, it has been called Muriate of Ammonia and Mercury, Ammoniated Submuriate of Mercury, Ammoniated Mercury, Ammoniacal Oxychloruret of Mercury, and Chloramide or Chlo-amidide of Mercury. Its most familiar name is White Precipitate.

PREPARATION.—All the British Colleges give formulae for the preparation of this salt.

The London College orders of Bichloride of Mercury, 3vj.; Distilled Water, Ovj.; solution of Ammonia, f3vij. Dissolve the Bichloride of Mercury, with the application of heat, in the Water. To this when it is cold add the Solution of Ammonia, frequently stirring. Wash the powder thrown down until it is free from taste; lastly, dry it.

The Edinburgh College directs of Corrosive Sublimate, 3vj.; Distilled Water, Ovj.; Aqua Ammonia, f3vij. Dissolve the Corrosive Sublimate with the aid of heat in the Distilled Water; and when the solution is cold add the Aqua Ammonia; stir the whole well; collect the powder on a calico filter, and wash it thoroughly with cold water.

The explanation of the changes which occur in the above processes will vary according to the view taken of the constitution of white precipitate. If, with Mr. Phillips, we regard it as a compound of chloricdride and binoxide of mercury with ammonia, its formation may be thus accounted for: 4 eqs. of ammonia, 2 eqs. of water, and 2 eqs. of bichloride of mercury, react on each other and yield 2 eqs. of sal ammoniac (hydrochlorate of ammonia), and 1 eq. of white precipitate.

\[
\begin{align*}
\text{Water} & \quad \text{18} \quad \text{2 eq. Hydr.} \quad \text{2 eq. HydroA.} \quad \text{74} \\
\text{Ammonia} & \quad \text{68} \quad \text{2 eq. Oxyg.} \quad \text{16} \quad \text{2 eq. Ammonia} \quad \text{34} \\
\text{Bichloride} & \quad \text{2 eq. Chlor.} \quad \text{72} \quad \text{2 eq. Ammonia} \quad \text{34} \\
\text{Chloride} & \quad \text{274} \quad \text{1 eq. Merc.} \quad \text{202} \quad \text{1 eq. Binox. Merc. 218} \\
\text{Mercure} & \quad \text{274} \\
\text{634} \quad \text{1 eq. Amm. Chloride Mercury 595} \\
\text{634}
\end{align*}
\]
Dr. Kane's, however, states that white precipitate contains neither ammonia nor oxygen, but, instead of these, the elements of amido-

gen (N H₃). He, therefore, regards it as a compound of bichloride and binamidide of mercury (Hg Chl² + Hg Ad²) or as a chloro-amidide of mercury. It is formed by the mutual reaction of two equivalents of bichloride of mercury (2 Hg Chl²) and four equivalents of ammonia (4 eqs. amidide of hydrogen = 4 HAd): the products being one equivalent of white precipitate (Hg Chl² + Hg Ad²) and two equivalents of sal ammoniac (2 eqs. of chloro-amidide of hydrogen = 2 [H Chl + H Ad]).

The Dublin College gives the following directions for its preparation.—Add to the liquor poured off from precipitated Calomel as much water of Caustic Ammonia as may be sufficient completely to throw down the metallic salt; which is to be washed with cold water and dried on bulibulous paper.

Owing to the presence of some nitrate of mercury in the proto-
nitrate from which calomel is precipitated on the addition of chloride of sodium (see p. 789), there is some bichloride of mercury formed in the liquor. This is, therefore, directed to be used by the Dublin College in the preparation of white precipitate.

Properties.—It occurs in commerce in masses or in powder. It is white, inodorous, has a taste at first earthy, afterwards metallic. It is decomposed and dissipated by heat, giving out ammonia, nitrogen, calomel, and water. It is insoluble in alcohol. By boiling in water we obtain a solution of hydrochlorate of ammonia, and a yellow powder (white precipitated mercury and binoxide of mercury, Kane). It is soluble in sulphuric, nitric, and hydrochloric acids.

Characteristics.—When heated with caustic potash, it gives off ammonia, and forms a yellow powder (white precipitated mercury and binoxide of mercury, Kane). The solution contains chloride of potassium, and with nitrate of silver yields a white precipitate (chloride of silver), insoluble in nitric acid, but soluble in ammonia. Caustic ammonia does not alter white precipitate. By this it may, therefore, be distinguished from calomel, which yields a grey powder (protoxide of mercury) on the addition of ammonia. Protocline of tin decomposes white precipitated mercury, and separates metallic mercury. To these characters must be added the effect of heat, water, and acids, as above mentioned.

Composition.—The analyses of Mr. Hennel and Mitscherlich agree in showing the elements of white precipitate to be those of binoxide of mercury and hydrochlorate of ammonia, in the following proportions:

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Hennel</th>
<th>Mitscherlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binoxide of Mercury</td>
<td>1</td>
<td>218</td>
<td>80-14</td>
<td>80</td>
<td>82²</td>
</tr>
<tr>
<td>Hydrochloric Acid</td>
<td>1</td>
<td>37</td>
<td>13-03</td>
<td>13-03</td>
<td>74⁸</td>
</tr>
<tr>
<td>Ammonia</td>
<td>1</td>
<td>17</td>
<td>6-25</td>
<td>20</td>
<td>71</td>
</tr>
<tr>
<td>White Precipitate</td>
<td>1</td>
<td>272</td>
<td>99-99</td>
<td>100</td>
<td>104</td>
</tr>
</tbody>
</table>

This composition is adopted by Berzelius. But in explaining the
of the formation of the white precipitate, I have assumed, Mr. Phillips, a somewhat different view of the subject. Two valents of the white precipitate of Mr. Hemmel, minus two valents of water, are equal to one equivalent of the same compound, according to Mr. Phillips.

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bichloride of Mercury</td>
<td>1</td>
<td>274</td>
<td>52.00</td>
</tr>
<tr>
<td>Binaside of Mercury</td>
<td>1</td>
<td>214</td>
<td>41.44</td>
</tr>
<tr>
<td>Ammonia</td>
<td>2</td>
<td>34</td>
<td>6.46</td>
</tr>
</tbody>
</table>

White Precipitate (Phillips) 1 595 99.99

two more equivalents of water be abstracted, we have the common white precipitate, according to Dr. Kane.

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bichloride of Mercury</td>
<td>1</td>
<td>274</td>
<td>53.03</td>
</tr>
<tr>
<td>Binaside of Mercury</td>
<td>1</td>
<td>234</td>
<td>46.96</td>
</tr>
<tr>
<td>Chloro-amide of Mercury</td>
<td>1</td>
<td>508</td>
<td>99.99</td>
</tr>
</tbody>
</table>

urity.—This compound is largely adulterated with sulphate of lead. I have one sample containing one-third of its weight of this substance. Carbonate of lime and of lead are sometimes employed to saturate white precipitate. Pure white precipitate, thrown on a hot shovelful, is dissipated without any residuum; whereas the impurities remain. The carbonates are recognised by the vesication on the addition of hydrochloric acid. Sulphate of lime is detected by boiling the suspected substance in distilled water, applying the tests for sulphates and calcareous salts, as before stated (pp. 469 and 578).

totally evaporated by heat. When digested with acetic acid, iodide of potassium throws down nothing either yellow or blue. The powder rubbed with lime does not become black. It is totally dissolved by hydrochloric acid with effervescence. When heated with solution of potash it becomes yellow, and ammonia. Ph. Lond.

the iodide of potassium is employed to detect lead or starch in the solution. If lime-water occasion a black precipitate, it indicates the presence of a protosalt of mercury.

Physiological Effects.—Its action on the body is very imperfectly known, no modern experiments having been made with it. It is usually considered to be highly poisonous, and somewhat similar to a trace of bichloride of mercury. Palmarius and Naboeth reported fatal cases of its use.

It is employed as an external agent only; commonly in the form of an ointment. It is an efficacious application in various skin diseases—as porrigus, impetigo, herpes, and even scabies; also in scabies. Among the lower classes it is commonly used to remove pediculi.

7 Translation of the London Pharmacopoeia.
8 Wirmer, *Wirk. d. Arznei.* ii. 64.
9 Vide also Gmelin, *App. Medicam.* ii. 166.

HYDARGYRI IO'DIDUM, L.—IODIDE OF MERCURY.

HISTORY. — This compound is commonly called Protiodide of Mercury, to distinguish it from other iodides of this metal.

PREPARATION.—There are several methods of preparing this compound.

The London College orders of Mercury, 3; Iodine, 3v.; Alcohol, as may be sufficient. Rub the Mercury and Iodine together, adding the alcohol gradually, until globules are no longer visible. Dry the powder immediately with a gentle heat, without the access of light, and keep in a well-stoppered vessel.

In this process the mercury and iodine enter into combination. The alcohol facilitates the union by dissolving a portion of iodine, forming with the remainder a pasty mass. Some biniiodide is first formed, and is afterwards transformed into the protiodide uniting with mercury.

This process succeeds well when small quantities of iodide are to be prepared; but it is scarcely applicable to the preparation of larger quantities, owing to the great heat which is evolved, by which iodine is volatilized and some biniiodide formed. Soubeiran says that the mass sometimes inflames, and escapes from the mortar with a kind of explosion. To avoid these inconveniences small quantities only (7 or 8 ounces, for example) should be prepared at one time, and a larger quantity of alcohol should be augmented.

Another mode of preparing protiodide of mercury is by the addition of solution of iodide of potassium to a solution of protonitrate of mercury, acidified with a very small quantity of nitric acid, as long as a greenish precipitate is produced. There are, however, some difficulties in this mode of proceeding. A subnitrate of mercury is apt to precipitate with the protiodide, and if, to avoid this, we use excess of nitric acid, this decomposes the iodide of potassium and sets iodine free, which combines with the protiodide to form the biniiodide. The solution of protonitrate be added to that of the iodide of potassium, metallic mercury and biniiodide are apt to be formed: the latter is first dissolved, but is afterwards deposited with the protiodide.

PROPERTIES.—It is a greenish-yellow powder, whose sp. g. is 7·75. It is insoluble in water, alcohol, or an aqueous solution of chloride of sodium; but is soluble in ether, and slightly so in an aqueous solution of iodide of potassium. When heated quickly, fuses and sublimes in red crystals, which become yellow by cooling.

b Nouveau Traité de Pharmacie, t. ii. p. 513, 2nd ed.
Solar light decomposes it, and changes its colour. Heated with potash, it yields iodide of potassium and reguline mercury.

When recently prepared it is yellowish, and when heat is cautiously applied it sublimes in red crystals, which afterwards become yellow, and then by access of light they blacken. It is not soluble in chloride of sodium. *Ph. Lond.*

COMPOSITION.—It consists of

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>1</td>
<td>202</td>
<td>61.38</td>
</tr>
<tr>
<td>Iodine</td>
<td>1</td>
<td>126</td>
<td>38.61</td>
</tr>
<tr>
<td>Iodide of Mercury</td>
<td>1</td>
<td>328</td>
<td>99.99</td>
</tr>
</tbody>
</table>

Physiological Effects.—It is a powerfully irritant poison. A scruple killed a rabbit within twenty-four hours, and a drachm destroyed a pointer dog in five days.

In small but repeated doses, it appears to exercise a specific influence over the lymphatic and glandular system. Two grains taken daily caused salivation in two instances.

Uses.—It has been used in syphilis and scrofula, especially when they occur in the same individual. Lugol employed an ointment of it in those forms of external scrofulous disease which resemble syphilis. Ricord gave it internally with good effect in *syphilis infantum*. Biett has successfully employed it in syphilitic ulceration and venereal eruptions.

Administration.—The dose of it for adults is from one grain gradually increased to three or four. Ricord gave from one-sixth to one-half of a grain to children of six months old. Biett employed it internally, and also externally, in the form of ointment, to the extent of twelve or fourteen grains daily, by way of friction.

1. **PILULÆ HYDARGYRI IODIDI**, L. (Iodide of Mercury, 3j.; Confection of Dog-rose, 2ij.; Ginger, powdered, 3j. M.)—Five grains of these pills contain one grain of iodide. The dose, therefore, will be from five grains to a scruple.

2. **UNGUENTUM HYDARGYRI IODIDI**, L. (Iodide of Mercury, 3j.; White Wax, 5ij.; Lard, 3vj. M.)—This is used as a dressing for scrofulous ulcers, or for syphilitic ulcers in scrofulous subjects. It is also employed in tubercular skin diseases, as lupus, rosacea, and tæcosis.

3. **HYDARGYRI BINIO'DIDUM, L. E.**—BINIODIDE OF MERCURY.

History.—This compound is frequently called the *Deutiodide of Mercury*, or the *Red or Per-Iodide of Mercury.*

* *Essays on the Effects of Iodine in Scrofulous Disorders*, by Dr. O'Shaughnessy, p. 170.
* *Lancette Françoise*, 1830, No. 63.
* O'Shaughnessy's *Trans. of Lugol's Essays*, p. 201.
* Rayer, *Treat. on Skin Diseases.*
PREPARATION.—Both the London and Edinburgh Colleges give directions for the preparation of this compound.

The London College orders of Mercury, $\frac{3}{1}$; Iodine, $\frac{3}{x}$; Alcohol as much as may be sufficient; rub the mercury and iodine together, adding the alcohol gradually, until the globules are no longer visible. Dry the powder immediately, with a gentle heat, without the access of light, and keep in a well-stoppered vessel.

The Edinburgh College directs of Mercury, $\frac{3}{ij}$; Iodine, $\frac{3}{ij}ss$; Concentrated Solution of Muriate of Soda, a Gallon. Triturate the Mercury and iodine together, adding occasionally a little rectified spirit till a uniform red powder be obtained. Reduce the product to fine powder, and dissolve it in the solution of muriate of soda with the aid of brisk ebullition. Filter, if necessary, through calico, keeping the funnel hot; wash and dry the crystals which form on cooling.

In these processes the iodine and mercury combine, to form the biniodide. The alcohol facilitates the combination by dissolving part of the iodine, and forming a pasty mass with the remainder.

The solution of common salt employed by the Edinburgh College serves to separate the biniodide from any protiodide (which is insoluble in that liquid) as well as to obtain the biniodide in a crystalline form.

Considerable inconvenience is experienced in obtaining large quantities of the biniodide by the above process, on account of the great heat evolved when mercury and iodine are rubbed together (see p. 778).

Biniodide of mercury may be readily obtained by mixing solutions of bichloride of mercury and iodide of potassium. 1 eq. or $\frac{371}{2}$ parts of bichloride are required to decompose 2 eqs. or $\frac{332}{2}$ parts of iodide of potassium. These proportions are about eight of the first and ten of the second salt. In this process double decomposition takes place: 1 eq. or 454 parts of biniodide of mercury precipitate, and 2 eqs. or 152 parts of chloride of potassium remain in solution.

In order to obtain a fine-coloured biniodide, and to ensure the absence of bichloride of mercury in the product, a slight excess of iodide of potassium should be employed. This, indeed, holds a little biniodide of mercury in solution, but the quantity is inconsiderable. A large excess of iodide of potassium combines with the biniodide, and forms therewith a soluble double salt (hydrargyro-iodide of potassium) composed of iodide of potassium and biniodide of mercury. If the bichloride of mercury be slightly in excess, a pale-red precipitate (composed of biniodide of mercury with a little bichloride) is obtained. A great excess of bichloride of mercury keeps biniodide in solution.

PROPERTIES.—It is a scarlet red powder, whose sp. gr. is 6-32. It is insoluble in water, but soluble in alcohol, some acids, alkalies, and solutions of iodide of potassium, chloride of sodium, and of many of the mercurial salts. From its solution in boiling rectified spirit it is deposited, on cooling, in rhombic prisms. When heated it forms a ruby-red liquid, sublimes in crystals, which are at first yellow but afterwards become red, and furnish a scarlet-red powder. It combines with other alkaline iodides (as iodide of potassium) forming a class of double salts, called the hydrargyro-iodides.
Characteristics.—Heated with potash in a tube it yields metallic mercury, which is volatilized: the residue is iodide of potassium, recognizable by the tests before described (p. 490). From the protiode of mercury it is distinguished by its colour and its solubility in solution of chloride of sodium. The effects of heat on it, and its solubility in iodide of potassium, are other characters which serve to cognize it.

Composition.—Its composition is as follows:—

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq.Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>1</td>
<td>202</td>
<td>44·5</td>
</tr>
<tr>
<td>Iodine</td>
<td>2</td>
<td>250</td>
<td>55·5</td>
</tr>
<tr>
<td>Biniodide of Mercury</td>
<td>1</td>
<td>454</td>
<td>100·0</td>
</tr>
</tbody>
</table>

Purity.—The presence of bisulphuret of mercury in it may be recognized by fusion with caustic potash in a glass tube, by which a mixture of sulphuret and iodide of potassium is obtained: the existence of sulphur may be proved by the evolution of hydrosulphuric acid on the addition of a mineral acid.

By heat, cautiously applied, it is sublimed in scales, which soon become yellow, and afterwards, when they are cold, red. It is partially soluble in boiling rectified spirit, which affords crystals as it cools. It is alternately dissolved and precipitated by iodide of potassium and bichloride of mercury. It is totally soluble in chloroform of sodium. Ph. Lond.

"Entirely vaporizable: soluble entirely in 40 parts of a concentrated solution of nitrate of soda at 212°, and again deposited in fine red crystals on cooling."—Ph. Ed.

Physiological Effects. a. On Animals.—A scruple killed a rabbit in twenty-four hours; the stomach was found prematurely reddened. Ten grains, dissolved in a solution of iodide of potassium, and given to a dog, caused vomiting, pain, tenesmus, and depression: in four or five days the animal was well.

Maillert has also made some experiments with it.

β. On Man.—It is a powerful irritant and caustic. It is nearly as powerful as the bichloride of mercury; indeed, Rayet considers it more active than the latter. Applied to ulcers, in the form of ointment, I have known it cause excruciating pain. Left in contact with the skin for a while, it induces, says Rayet, a most intense erysipelatous inflammation. When administered internally, it must be done with great caution. Like other mercurial compounds, its repeated use causes salivation.

Uses.—It has been employed in the same cases (i.e., syphilis and croftula) as the protiode of mercury, than which it is much more meretricious. Breschet applied it, in the form of ointment, with great success in a case of obstinate ulceration (thought to have been carbunculous) of the angle of the eye. In the form of a dilute and thin ointment (composed of biniodide of mercury, gr. ii.; cerate, 9ii.; and

1 Cogswell, Essay on Iodine, p. 164.
2 Jours. de Clin. Med. iii. 543. 3re Serie.
3 Treatise on Skin Diseases, by Dr. Willis, p. 79.
4 O'Shaughnessy's Trans. of Lugal's Essays, p. 204.
almond oil, \(\exists i \), it has been used in opacity of the cornea. In obstinate ophthalmia tarsi, with thickening of the meibomian glands, it has also been successfully employed.

Administration.—It should be given in doses of one-sixteenth of a grain, gradually increased to one-fourth of a grain. It may be exhibited in the form of pills, or dissolved in alcohol or ether.

Unguentum Hydargyri Biniodidi, L. (Biniodide of Mercury, 3j.; White Wax, 5ij.; Lard, 3vj. M.) Used in the before-mentioned cases. For ordinary purposes it will require to be considerably diluted.

14. **Hydargyri Bisulphure'tum, L.—Bisulphuret of Mercury.**

(Cinnabaris, B.—Hydargyri Sulphuretum rubrum, D.)

History.—It is mentioned in the Old Testament. Theophrastus says that CinnaBar (κυνάρας) was accidentally discovered, by Callias, about ninety years before the magistracy of Praxibulus, of Athens—that is, 494 years before Christ. Geiger found it in the colouring matter of the old Egyptian tombs. It was formerly called Miminum. It is commonly termed Red Sulphuret of Mercury; and, when a powder, Vermilion.

Natural History.—The principal repositories of Native Cinnabar (Cinnabaris nativa) are Idria, in Carniola, and Almaden, in Spain. It occurs both massive and crystallized: the primary form of its crystals being the acute rhombohedron.

Preparation.—All the British Colleges give directions for the preparation of this compound.

The London College orders of Mercury, \(\text{lbij.} \); Sulphur, \(\text{3vj.} \). Melt the Sulphur, add the mercury, and continue the heat till the mixture begins to swell. Then remove the vessel, and cover it closely to prevent the mixture taking fire. When the material is cold, reduce it [the mass] to powder, and sublime it.

The process of the Edinburgh College is similar.

The Dublin College orders of Purified Mercury, *nineteen parts*; Sublimed Sulphur, *three parts*. Mix the mercury with the melted sulphur, and, if the mixture takes fire, extinguish the flame by covering the vessel. Reduce the product of this operation to powder, and sublime it.

In this process the heat enables the mercury and sulphur to combine and form a black sulphuret of mercury. When large quantities of sulphur and mercury are heated together, a slight explosion and flashes are produced. By sublimation the black sulphuret is converted into cinnabar or the red sulphuret.

Properties.—Artificial cinnabar has, in the mass, a dark reddish-brown crystalline appearance; but, when reduced to a fine powder,
is of a beautiful scarlet-red colour, and is then termed \textit{Vermilion}. It is tasteless, odourless, insoluble in water or alcohol, and unalterable in the air. It is fusible and volatile. It burns in the air with a blue flame, the sulphur uniting with oxygen to form sulphurous acid, while the mercury is dissipated in a vaporous form.

\textbf{Characteristics.}—Heated in a glass tube, with potash, it evolves mercurial vapour, which condenses into liquid globules of this metal. The residue, which is sulphuret of potassium, gives out hydrosulphuric acid on the addition of hydrochloric acid. The colour of cinnabar deepens under the influence of heat.

\textbf{Composition.}—Its composition is as follows:

\begin{tabular}{|l|c|c|c|c|}
\hline
 & Atoms & Eq. Wt. & Per Cent. & Guibourt. & Sefström. \\
\hline
Mercury & 1 & 303 & 86.32 & 87.21 & 86.29 \\
Sulphur & 2 & 92 & 13.07 & 13.79 & 13.71 \\
\hline
Bisulphuret of Mercury & 1 & 324 & 99.99 & 100.00 & 100.00 \\
\hline
\end{tabular}

\textbf{Purity.}—Pure cinnabar is totally evaporated by heat, and is insoluble in nitric or hydrochloric acid. If minium or red lead be intermixed, we may recognise it by boiling in acetic acid, by which acetate of lead is procured in solution: this forms a black precipitate with hydrosulphuric acid,—white with the sulphates,—and yellow with iodide of potassium. Realgar, or sulphuret of arsenic, may be detected by boiling the suspected cinnabar in solution of caustic potash, supersaturating with nitric acid, and passing a current of hydrosulphuric acid through it, by which a yellow precipitate (orpiment or sesquisulphuret of arsenic) is obtained. Earthy impurities are not volatile.

Totally evaporated by heat, and on potash being added to it, it runs into globules of mercury. It is not dissolved either by nitric or hydrochloric acid, but is so by a mixture of them. Rectified spirit, with which it has been boiled or washed, acquires no red colour. Digested with acetic acid it yields no yellow precipitate by iodide of potassium. \textit{Ph. Lond.}

"It is sublimed entirely by heat, and without any metallic globules being formed." \textit{Ph. Ed.}

\textbf{Physiological Effects.}—According to Orfila, pure cinnabar is inert: for he found no effects were produced on dogs, by half an ounce, when either applied to wounds, or taken into the stomach. These results being opposite to those obtained by Smith, it has been presumed that the latter must have employed an impure sulphuret.

The vapour obtained by heating cinnabar in the air is poisonous; but this is not in opposition to Orfila’s experiments, since this vapour is not bisulphuret of mercury, but a mixture of the vapour of mercury (either in the metallic or oxidized state) and of sulphurous acid. Schonlinus 11 has related the case of a young man who died from the use of this vapour; and Hill 12 saw cough, violent salivation, diarrhoea, \&c. produced by its inhalation.

\begin{footnotes}
\item[1] \textit{Archié, Gén. de Méd.} xix. 320.
\item[2] \textit{Christianon, Treat. on Poisons}, 3d ed. 305.
\item[3] \textit{Obierre,} t. vii.
\end{footnotes}
Uses.—Cinnabar is used merely as a fumigating agent, in venereal ulcerations of the nose and throat. The method of using it is this:—About half a drachm is placed on a heated iron, and the fumes inhaled as they arise. In the shops, a copper apparatus, with iron heater, is sold for the purpose. In the absence of this, the bisulphuret is to be placed on a hot iron shovel, and the vapour inhaled by the patient through a funnel. The irritating nature of the sulphurous vapour usually excites coughing, and is injurious in persons disposed to phthisis. Hence the oxide of mercury is to be preferred for fumigating.

Administration.—When employed internally, cinnabar has been given in doses of from ten grains to half a drachm. For the purpose of fumigation, half a drachm may be employed.

15.

HYDRAR'GYRI SULPHURE'TUM CUM SUL'PHURE, I.—BISUL-

PHURET OF MERCURY WITH SULPHUR.

(Hydrargyri Sulphuretum alburn, D.)

History.—It is stated that the Chinese used this remedy long before it was known to Europeans. Harris, in 1689, first taught the method of preparing it by triturations. Its most common name is Aethiops mineral.

Preparation.—The London and Dublin Colleges give directions for the preparation of this compound.

The London College orders Mercury; Sulphur, each, lb. Rub them together, until globules are no longer visible.

The directions of the Dublin College are similar, with the addition that a stone mortar should be used.

Properties.—It is a heavy, black, tasteless, odourless powder, insoluble in water. When heated it fuses, and is completely dissipated.

Characteristics.—By boiling in caustic potash liquor we obtain a solution of sulphuret of potassium. The residue is black, but possesses all the before-mentioned chemical characteristics of cinnabar (vide p. 763).

Composition.—If this compound be, as Mr. Brande* supposes, a mixture of bisulphuret of mercury and sulphur, the proportions must be—

<table>
<thead>
<tr>
<th></th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisulphuret of Mercury</td>
<td>58</td>
</tr>
<tr>
<td>Sulphur</td>
<td>42</td>
</tr>
<tr>
<td>Hydrargyri Sulphuretum cum Sulphure, Ph. Lond.</td>
<td>100</td>
</tr>
</tbody>
</table>

Purity.—Free mercury may be detected by its communicating a white stain to gold. Charcoal may be detected by its not volatilizing by heat. Animal charcoal, by this character, as well as by the presence of phosphate of lime in the residue (vide pp. 332 and 600). Sesquisulphuret of antimony may be recognised by boiling in hydro-

* Manual of Pharmacy, 3d ed. 320.
bicynide of mercury.

Totally evaporated by heat, no charcoal nor phosphate of lime being left.

Physiological Effects.—According to the experiments of Orfila, this preparation, like the last, possesses little or no activity. The late Dr. Duncan also tells us that he has given it in doses of several drachms, for a considerable length of time, with scarcely any effect. It is commonly regarded as alterative.

Uses.—It has been used in glandular diseases, especially of children; and also in cutaneous diseases.

Administration.—The dose for adults is from 5 to 30 grs.

(Hydrargyri Cyanuretum, D.)

History.—This salt was discovered by Scheele. Its real nature was first pointed out by Gay-Lussac in 1815. It has been known by various appellations, as Prussian Mercury (Hydrargyrum Borussicum), Prussiate, Hydrocyanate, Cyanuret, Cyanide or Cyanodide of Mercury (Hydrargyry Prussias, Hydrocyanas, Cyanuretum, Cyanidum seu Cyanodidum).

Preparation.—There are two methods of preparing this salt: one recommended by Proust, the other by Winckler. The London and Dublin Colleges adopt Proust’s process.

The London College orders, of Percyanide of Iron [Prussian Blue], 3viij.; Binoxide of Mercury, 3s.; Distilled Water, Oiv. Boil them together for half an hour and strain. Evaporate the liquor that crystals may be formed. Wash what remains frequently with boiling distilled Water, and again evaporate the mixed liquor that crystals may be formed.

The Dublin College employs of Prussian Blue, six parts; Natric Oxide of Mercury, five parts; Distilled Water, forty parts.

In this process the cyanogen of the Prussian blue combines with the mercury of the nitric oxide, while the iron unites with the oxygen of the oxide.

Materials.

| Binoxide of Mercury | 1411 | 4 eq. Oxyg. | 48 |
| 3 eq. Protocyan. Iron | 102 |

Composition.

3 eq. Cyan.	78
6 eq. Cyan.	150
4 eq. Iron	112
4 eq. Merc.	907
3 eq. Oxyg.	24
6 eq. Oxys.	48

Products.

| 4 eq. Cyan. | 1143 |
| 3 eq. Oxide Iron | 108 |

The awkwardness of the use of half an equivalent may be easily abated by doubling all the above numbers; but several reasons have induced me to retain it in the above diagram.

Pure bicyanide of mercury may be more economically prepared

* Edinburgh Dispensatory.
by Winckler's process. This consists in saturating hydrocyanic acid with binoxide of mercury.

The London College observes that bicyanide of mercury may be otherwise prepared by adding as much Binoxide of Mercury as will accurately saturate Hydrocyanic Acid, distilled from Ferrocyanide of Potassium with dilute phuric Acid.

The solution is to be filtered and allowed to crystallize.

In this process double decomposition takes place, the results being water and bicyanide of mercury.

Materials.

<table>
<thead>
<tr>
<th></th>
<th>Composition</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Hydrocyanic acid</td>
<td>2 eq. Hydrogen</td>
<td>2 eq. Water</td>
</tr>
<tr>
<td>1 eq. Binoxide Mercury</td>
<td>2 eq. Oxygen</td>
<td>1 eq. Mercury</td>
</tr>
<tr>
<td>272</td>
<td>54</td>
<td>289</td>
</tr>
</tbody>
</table>

Properties.— The crystals of this salt are square prisms.

Crystals with modified Plane.

![General form of Crystals of Bicyanide of Mercury.](image)

Crystals are heavy, white, colourless, transparent or opaque, inods and have a strong metallic taste. They are soluble in water, hot and cold, and very little, if at all so, in alcohol.

Characteristics.— Perfectly dry bicyanide of mercury when he yields metallic mercury and cyanogen gas. The latter is known the violet or bluish red colour of its flame. Heated with hydrog ric acid it evolves hydrocyanic acid. It is not decomposed by a acid or the alkalis. Its solution throws down a black precipi with hydroxysulphuric acid, and white pearly crystalline plates (hydr gyro-iodo-cyanide of potassium) with a concentrated solution of potassium (vide p. 434).

Composition.— Its composition is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>1</td>
<td>202</td>
<td>79-15</td>
</tr>
<tr>
<td>Cyanogen</td>
<td>2</td>
<td>23</td>
<td>30-47</td>
</tr>
<tr>
<td>Bicyanide of Mercury</td>
<td>3</td>
<td>254</td>
<td>90-99</td>
</tr>
</tbody>
</table>

Purity.— When prepared from ferrosesquicyanide of iron (Prazs
the crystals are usually yellowish, from the presence of some
of iron.

transparent and totally soluble in water. The solution, when hydrochloric
is added, emits hydrocyanic acid, which is known by its peculiar smell; and
is moistened with the solution of nitrate of silver and placed over it, gives
posit, which is dissolved by boiling nitric acid. By heat it emits cyanogen,
ruts into globules of mercury. Ph. Loid.

PHYSIOLOGICAL EFFECTS. a. On Vegetables.—It acts on plants
bichloride of mercury.

On Animals.—Coulon found that it acted on dogs, cats, spar-
s, frogs, snails, &c. like hydrocyanic acid. After death, inflam-
ation of the stomach was observed. Ollivier d'Angers tried its
acts on dogs. Seven grains, dissolved in water, killed a small dog
ten minutes, under attempts to vomit, general convulsions, and
jaundice, manifested alternately; respiration and circulation at
accelerated, afterwards diminished. Similar effects were pro-
uced by applying the salt to the cellular tissue, or injecting it into
veins. Tiedemann and Gmelin detected mercury in the blood
the splenic vein of a horse to whom the bicyanide had been
ministered.

On Man.—Taken in small doses, it very readily excites nausea
and vomiting. Parent says it does not produce the epigastric pain
ich the bichloride of mercury readily occasions. Continued use
uses salivation. In one case one-eighth of a grain twice a day
used ptalam in three days. Mendaga says it acts directly
the skin and bones, and hence it sometimes very speedily allays
pain of and disperses nodes.

In large doses, especially in very susceptible persons, it affects the
vous system, and causes fainting, anxiety, and cramps. Twenty-
e and a half grains in one instance caused death in nine days.
most remarkable symptoms were, obstinate vomiting; mercurial
eration of the mouth and abundant ptalam; contractions of the
art, which at first were very strong, but became successively slower
more feeble; the abdomen was yielding, and not tender, with-
the constant tenesmus; suppression of urine; semi-erection
the penis, and ecchymosis of this organ, as well as of the scrotum;
ultimately, convulsive movements.

Uses.—It has been employed as an antivenereal medicine, and was
used as such by Brera. Parent administered it as a substitute
the bichloride of mercury, over which it has several advantages.
as, being more soluble, it ought to be more readily absorbed; it
not give rise to epigastric pain; and, lastly, it is not so readily
decomposed; for alkalis, several salts, and many solutions of organic matters, which decompose corrosive sublimate, have no effect on it. It may be applied in the form of aqueous solution or ointment to venereal sores.

It has been employed in induration of the liver, in some chronic skin diseases, in obstinate headache, and in other maladies, as an antiphlogistic.

Its principal use in this country is as a source of hydrocyanic acid (vide p. 431) and of cyanogen gas.

ADMINISTRATION.—Internally it may be employed in doses of one-sixteenth of a grain gradually increased to one-half of a grain. It may be administered in the form of pills (made with crumb of bread) or alcoholic solution. It will be frequently advisable to conjoin opium, to prevent nausea or vomiting. When used as a gargle or wash, we may employ ten grains to a pint of water. An ointment may be prepared of ten or twelve grains to an ounce of lard.

ANTIDOTE.—I am unacquainted with any antidote for it. Albumen does not decompose it. Perhaps ammonia might be found serviceable, to diminish the effect on the nervous system. Opium relieves the vomiting. Our principal object must be remove the poison from the stomach, which is to be effected by the stomach-pump, emetics, tickling the throat, &c.

17. **UNGUENTUM HYDRAE'GYRI NITRATIS, L.—OINTMENT OF NITRATE OF MERCURY.**

(Unguentum Citrinum, E.—Unguentum Hydragyri Nitratis vel Unguentum Citrinum, B.)

HISTORY.—This ointment is commonly known as *Citrine* or Yellow Ointment. It has also been termed Mercurial Balsam.

PREPARATION.—All the British Colleges give directions for its preparation.

The *London College* orders of Mercury, 3j.; Nitric Acid, f3xii.; Lard, p[il]; Olive Oil, f3iv. First dissolve the Mercury in the Acid; then mix the solution while hot with the Lard and Oil melted together.

The *Edinburgh College* directs of Pure Nitric Acid, f3xiv. and f3vi.; Mercury, 3iv.; Axume, 3xv.; Olive Oil, f3xxxii. Dissolve the mercury in the acid with the aid of a gentle heat. Melt the axume in the oil with the aid of a moderate heat in a vessel capable of holding six times the quantity; and while the mixture is hot, add the solution of mercury, also hot, and mix them thoroughly. If the mixture do not froth up, increase the heat a little till this take place. Keep this ointment in earthenware vessels, or in glass-vessels, secluded from the light.

The *Dublin College* orders of Purified Mercury, by weight, 3j.; Nitric Acid, 3xiss.; Olive Oil, 0j. [some measure]; Prepared Hog’s Lard, 3iv. Dissolve the mercury in the acid; then, having melted the oil and lard together, mix them and make an ointment in the same manner as the ointment of nitric acid.

The *theory* of the process is as follows:—By the mutual action of mercury and strong nitric acid, a nitrate of the binoxide, as well as of the protoxide of mercury, is formed, while binoxide of nitrogen is generated.1 Part of the latter escapes, and, combining with

1 For the theory of the formation of Protonitrate of Mercury, see pp. 724, 729, and 738.
OINTMENT OF NITRATE OF MERCURY.

Osmic oxygen, forms nitrous acid; the remainder reacts on the nitric acid, and forms with it hyponitrous or nitrous acid. The or then is a mixture of nitric acid in excess, probably of nitrous l, of the nitrate and hyponitrite of the binoxide of mercury, and rate of the protoxide of mercury.

When this solution is added to the fatty matter (lard and olive oil), olein (oleate of glycerine) of the olive oil and of the lard is trans¬

ned into elaïdine 4 (elaïdate of glycerine) by the nitrous or hypo¬

nous acid of the solution. A red viscid oil is also simultaneously
cloped. Binoxide of nitrogen, and, according to Soubeiran 5,
sonic acid gases are evolved. By the action of the fatty bodies
nitr ate of mercury the latter is transformed into a yellow sub¬
state of the protoxide of mercury. A small portion of elaïdate of mercury is also formed. The continued deoxidaizing influence of the
on the mercurial salt ultimately effects the reduction of the mer¬
cury.

The grey colour which the ointment acquires by keeping is
up to the dissemination of minute globules of metallic mercury
ough the mass. If old citrine ointment be digested in ether, they matters are dissolved, and metallic mercury left behind.

By keeping, this ointment is apt to change its colour, and become
d, pulverizable, and thereby unfit for use. To prevent these
ervations various modifications of the officinal formula above given
ve been suggested. Dr. A. T. Thomson 1 declares that the propo¬
n of lard used is too large. This statement, however, is pro¬
ced by Dr. Wood 10 to be a mistake; and the hardening iscribed to the olive oil. In the United States Pharmacopoeia
's-foot oil is substituted for olive oil, and it is said with decided
antage.

One writer recommends rape oil 11. Mr. Lessey, of Manchester, in¬
s me, that when made with lard only, the ointment remained
f for six months. MM. Henry and Guibourt 12, and Mr. Duncan,
inburgh 13, employ a considerable excess of acid. The follow¬
are several formula for its preparation:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>32 parts.</td>
<td>30 parts.</td>
<td>3iv.</td>
<td>3iv.</td>
<td>3iv.</td>
</tr>
<tr>
<td>Acide Nitrom.</td>
<td>48 parts.</td>
<td>60 parts.</td>
<td>3xii.</td>
<td>3xii.</td>
<td>3xii.</td>
</tr>
<tr>
<td>(gr. 1'54)</td>
<td>(gr. 1'28)</td>
<td>(gr. 1'21)</td>
<td>(Nitrous acid)</td>
<td>3xv.</td>
<td>3xv.</td>
</tr>
<tr>
<td>And:</td>
<td>250 parts.</td>
<td>240 parts.</td>
<td>3xvii.</td>
<td>3xvii.</td>
<td>3xvii.</td>
</tr>
<tr>
<td>Acide Oil</td>
<td>250 parts.</td>
<td>240 parts.</td>
<td>3xxxvii.</td>
<td>3xxxvii.</td>
<td>3xxxvii</td>
</tr>
<tr>
<td>Pain's-foot Oil, gr. 3ix.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The citrine ointment may be procured by any of the above pro-

80 called by Boudet (Journ. de Chim. Méd. viii. 641) from δασις, δασος, an olive tree.
81 Nouve. Traité de Pharmacie, t. ii. p. 526. 2nd ed.
82 London Dispensatory.
83 United States Dispensatory.
84 Pharmaceutical Transactions, No. iv. p. 175.
85 Pharmacopée Belge, p. 448. 3rd ed.
86 Supplement of the Edinburgh Dispensatory, p. 190.
87 Pharmaceutical Transactions, No. iii. p. 182.

318
cesses; but, on the other hand, failure may attend all of them. may arise either from defective manipulation or from the emplot of acid of different strength to that ordered. The following are practical points to be attended to in conducting the process*:-

1. The due regulation of the heat employed.—“If the mix made at a low temperature, no effervescence takes place, and the ment so produced will become hard in a few days, of a grey white colour, and eventually of a consistence that may almost be powdered; but if the oil or fat is heated to a sufficient temperature or the quantity operated upon is large enough to generate the required, strong effervescence takes place, much gas is evolved and a perfect article is produced, of a fine golden colour, and the tenue of butter.” The greater success which attends the mixture of large than of small quantities of this ointment, may be referred to the higher temperature generated by the reaction of quantities of the materials.

2. The employment of a proper quantity of acid.—In the practice of the London College, by which, when it is strictly followed, a fine product is obtained, acid of a sp. gr. of 1·5 is directed used. But the sp. gr. of commercial nitric acid rarely exceeds 1·4. Hence, therefore, a larger quantity of commercial acid is acquired to be equivalent to the quantity of strong acid ordered by the Pharmacopoeia.

3. Stirring assists the evolution of gas, and is usually beneficial in the favour the formation of a fine product.—Mr. Alsop, however, says that a long-continued stirring is not required.

Properties.—When fresh prepared this ointment has a fine yellow colour, a butyricaceous consistence, and a remarkable odour. It is very apt to become grey when mixed with other ingredients, in consequence of their deoxidizing powers. It should be spread with wooden or ivory spatulas.

Composition.—When fresh prepared this compound contains the following substances:—

Blaidine.
Red oil.
Etalate of mercury (mercurial soap).
Nitrate of Mercury.

Blaidine is a white saponifiable fat, fusible at 97° F. [39·6° C. according to Meyer], very soluble in ether, but requiring 200 times its weight of alcohol to dissolve it. It consists of elaidic acid and glycerin.

Physiological Effects.—It is an irritant and slight analgesic. When it has undergone decomposition by keeping, it irritates exceedingly, and even excites slight erysipelas-like inflammation.

Uses.—We employ it as a stimulant and alternative in chronic cases of the skin, more particularly those affecting the hairy skin, and the different forms of porrigo, in which it is exceedingly efficacious. It is also used as a dressing to ulcers—to stimulate and cleanse them—as in foul syphilitic sores and phagedenic ulcers. Lastly, it

* See Mr. Alsop’s paper in the Pharmaceutical Transactions, No. iii. p. 100.

* Pharmaceutisches Central-Blatt für 1840, S. 700.
oyed in ophthalmic diseases—more particularly ophthalmia tarsi, or orophthalmia, in which it is applied (mixed with its own weight of monod oil) by means of a camel's-hair pencil to the lids, frequently th such advantage that some have regarded it as a specific in this implant.

18. HYDRA&'GYRI ACETAS, D.—ACETATE OF MERCURY.

History.—This compound was known to LeFebure in the 17th century.

Preparation.—In the Dublin Pharmacopoeia the directions for preparing it are the following:

Take of Purified Mercury, Acetate of Potash, of each nine parts; Diluted Nitric acid, eleven parts; Boiling Distilled Water, one hundred parts; Distilled Vinegar, as much as may be sufficient.

Let the Nitric Acid be added to the Mercury, and when the effervescence has ceased, let the mixture be digested that the metal may be dissolved: let the acetate of Potash be dissolved in water, and let the distilled vinegar be added till the acid shall predominate in the liquor; to this, whilst boiling, let the solution of the Mercury in the Nitric Acid be added, and let the mixture be filtered quickly as possible through a double linen cloth; let it cool that crystals may form, having washed these with cold distilled water, dry them on paper with a warm gentle heat. In every step of this process let glass vessels be employed.

By the mutual action of diluted nitric acid and mercury we obtain proteinate of mercury (vide p. 734). When this is mixed with acetate of potash double decomposition takes place: nitrate of potash and proteacetate of mercury being formed. To prevent precipitation the yellow withinate of mercury, excess of acetic acid should be employed: and by filtering, whilst hot, any which may be formed could be separated before the acetate has deposited.

Properties.—This salt occurs in white, micaceous, flexible scales, which are inodorous, but have an acrid taste. It blackens by light. When heated it is resolved into carbonic acid, acetic acid, and mercury. It is very slightly soluble in water, requiring 300 times its weight of this liquid to dissolve it, according to Dumas. It is insoluble in cold alcohol: boiling alcohol abstracts part of its acid.

Characteristics.—Its appearance, its slight solubility in water, and action of heat on it, are some of its characteristics. Heated with phosphoric acid the vapour of acetic acid is evolved. The fixed alkalies precipitate the black oxide of mercury. Chloride of sodium forms lonel with it.

Composition.—It has the following composition:

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Dumas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteinate of Mercury</td>
<td>1</td>
<td>210</td>
<td>80.46</td>
<td>80.66</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>1</td>
<td>31</td>
<td>19.24</td>
<td>19.34</td>
</tr>
<tr>
<td>Acetate of Mercury</td>
<td>1</td>
<td>251</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Physiological Effects.—It is one of the mild mercurial prepa-
tions. From the reports of Guarin, Colombier, and Vogler\(^1\), it appears to have acted in some cases with great violence, and to have occasioned violent vomiting, purging, abdominal pain, bloody catarrh, &c. These effects probably arose from the presence of some acetate of the binoxide of mercury.

Uses.—It was introduced into practice in consequence of being supposed to be the active ingredient of Keyser's antivenerial pill. But Robiquet has subsequently ascertained that Keyser employed the acetate of the binoxide\(^2\). It is occasionally used in syphilitic affections.

Administration.—The dose of it is from one to five grains. A solution composed of one grain of the acetate dissolved in an ounce of water, may be used as a wash. An ointment is prepared by dissolving two or three scruples in an ounce of olive oil.

19. HYDARGYRI SUBSULPHAS FLAVUS.—YELLOW SUBSULPHATE OF MERCURY.
(Hydrargyri Oxydum Sulphuricum, D.)

History.—This compound was known to Croll in the sixteenth century. It has been termed Trupeth (or Turvith) mineral (Turpethum minerale), from its resemblance in colour to the root of Ipomoea Turpethum.

Preparation.—The Dublin College directs it to be thus prepared:

Take of the Persulphate of Mercury one part, Warm Water twenty parts; Triturate them together in an earthenware mortar, and pour off the supernatant liquor; let the yellow powder be washed with distilled water, so long as the decanted fluid exhibits any deposit on the addition of some drops of the wash; and finally, let the sulphuric oxide of mercury be dried.

By the action of water there are obtained a soluble supersulphate and a difficulty soluble subsulphate of mercury.

Properties.—It is a heavy, lemon-yellow, inodorous powder having an acid taste. It requires 2000 parts of water at 60\(^\circ\) to 600 parts at 212\(^\circ\), to dissolve it.

Characteristics.—When heated in a tube, sulphurous acid is evolved, and globules of mercury sublimed. Boiled with caustic potash or soda, the red binoxide precipitates, and a solution of the sulphate of potash is obtained, known to be a sulphate by chlorides of barium (vide p. 469).

Composition.—Its composition is as follows:

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binoxide of Mercury</td>
<td>1</td>
<td>218</td>
<td>84.5</td>
</tr>
<tr>
<td>Sulphuric Acid</td>
<td>1</td>
<td>40</td>
<td>15.5</td>
</tr>
<tr>
<td>Subsulphate of Mercury</td>
<td>1</td>
<td>258</td>
<td>100.0</td>
</tr>
</tbody>
</table>

\(^1\) Wilmer, "Wirkung d. Arzneim. iii. 647.
\(^2\) Ximén, "Traité de Chimie," v. 178.
COPPER.

PHYSIOLOGICAL EFFECTS.—In small quantities it occasions nausea, vomiting, and ptialism. Taken into the nostrils it excites sneezing, and sometimes salivation. Stenzel mentions a fatal case from its internal use.

USES.—It is sometimes used as an emetic in cases of swelled testicle, to promote absorption by its nauseating and emetic action. It was formerly given at the commencement of a mercurial course. As an errhine it has been administered in chronic ophthalmia and affections of the brain; as incipient hydrocephalus. As an alterative it has been given in the scaly diseases (lepra and psoriasis).

ADMINISTRATION.—As an alterative, the dose should not exceed half a grain, or at most a grain. As an emetic, it is given to the extent of five grains; in which dose it causes violent vomiting. As an errhine, a grain should be mixed with four or five of some mild powder, as starch or liquorice powder. It is rarely given for any other purposes.

ORDER XXII. COPPER AND ITS COMPOUNDS.

1. CuPRUM.—COPPER.

HISTORY.—CuPrum, or Copper, received its name from KBold, from the island of Cyprus, where it was first discovered, or at least worked to any extent. It seems to have been known in the most remote ages of antiquity, for Moses speaks of brass (an alloy of copper and zinc). The alchemists called it Venus.

NATURAL HISTORY.—It is found in both kingdoms of nature.

a. In the Inorganised Kingdom.—Copper is found in the metallic or reguine state, combined with oxygen, with sulphur, with selenium, with chlorine, or with oxygen and an oxyacid (carbonic, arsenic, phosphoric, sulphuric, or silicic).

b. In the Organised Kingdom.—It has been discovered in the ashes of most plants, as of Stavesacre, Rhataxy, Flax, Nux-vomica, Hemlock, &c. Sarceau as detected it in the blood of animals.

PREPARATION.—The copper of commerce is usually prepared from copper pyrites (the double sulphuret of copper and iron). The greater part of the ore raised in Cornwall is of this kind. It is roasted and smelted, by which coarse metal is produced. This is calcined and again smelted, by which we obtain fine metal, or, when cast in, blue metal. By re-roasting and smelting, coarse copper is produced. These processes, of roasting and smelting, effect the expulsion of the sulphur and the oxidizement of the iron. The copper produced is melted and exposed to the air, to drive off any volatile matters by which blistered copper is obtained. It is refined or chined by melting it and stirring with a birchpole.

① Wibmer, Wirck. d. Arzneim. iii. 66.
② Onoew, on the Dublin Pharmacopoeia.
③ Job, ch. xcviii.
Properties.—It is a brilliant, red metal, crystallizable in octahedra and cubes, having a specific gravity of 8.96 to malleable and ductile; it has a nauseous, styptic taste, and a pungent and disagreeable smell. It fuses at 1996° F. (Daniell); at a lower temperature it may be volatilized. Its equivalent is 32. It is malleable, and is readily oxidized. Acid, alkaline, saline, and alkaline bodies, when placed in contact with it in the air, promote its oxidation with oxygen; and, by dissolving a portion of the newly-formed oxide, acquire poisonous properties.

Characteristics.—Copper is easily recognized by its colour, its communicating a green tinge to flame. It dissolves in nitric acid; the solution possesses the following properties: it is blue, or greenish-blue; with potash or soda it yields a blue tate (hydrated oxide of copper); a small quantity of ammonia produces with it a similar bluish-white precipitate, but an excess dissolves it, forming a deep blue liquid (cuprate of ammonia): nitrate of potassium occasions in it a reddish-brown precipitate (ferrocyanide of copper); the hydroxyates throw down a tate (sulphuret of copper); and, lastly, a polished iron plate, dipped into the liquid, becomes coated with metallic copper.

Physiological Effects.
a. Of Metallic Copper.—Metallic copper appears to produce no pernicious effects when taken internally as long as it retains its metallic state, as many cases are recorded where coins of this metal have been swallowed, and retained for a considerable time, without any ill effects arising; and Drouard* gives much as an ounce of finely-powdered copper to dogs of different ages and sizes, but none of them experienced any inconvenience therefrom.

Notwithstanding these facts, however, various effects have been attributed to it. Thus, Cothenius* says, copper filings open the stool, urine, and saliva; and the late Professor Barton* was able to relate an instance of a child, who, having swallowed a considerable quantity of copper, continued for some time to discharge several pints of saliva. Portal* mentions a case in which copper filings, incorporated in a crumb of bread, acted powerfully on the system. I have no doubt that the effects here mentioned arose from the oxidation of copper, metal by the acids of the alimentary canal.

β. Of the Cuprous Compounds.—Most, if not all, the preparations of copper are poisonous in large doses. The sulphuret and amide are doubtful exceptions to this statement. If the copper preparations be used in very small doses, they sometimes give rise to certain diseases (principally of the nervous system), or obviously disordering the functions; in other words, in the morbid condition. These are cases in which these preparations have been termed tonic, antispasmodic, or alterative, according to

* Voigtel, Arzneimitteltherapie.
* Chapman, Elem. of Therap. W. 437.
* Ortho, Twosteel, Gen.
ture of the disease; thus, in ague they have been termed tonic, in
depsy antispasmodic, in dropsy alterative. The beneficial opera-
tion is presumed to be owing to some influence exerted by the remedy
on the nervous system. The effects produced by the long-con-
sumed use of small doses of the preparations of copper have not
been satisfactorily determined; they are said to be various affections
of the nervous system (such as cramps or paralysis), alteration of the
liver, chronic inflammation of the respiratory and
gestive apparatus, slow fever, and wasting of the body. These
symptoms constitute what has been termed slow, or chronic poi-
ning by copper. The smelters and workers in copper do not suffer
from the vapour or emanation of this metal, as the workmen em-
ployed in the preparation of mercury, of arsenic, or of lead do,
from the vapours of these metals: this, indeed, might be expected,
then we consider how much more volatile the latter and their
preparations are, than copper and its compounds. In larger,
or medicinal doses, these remedies act as emetics, exciting
nausea vomiting, with less nausea than tartar emetic produces.
A still larger quantities, these bodies act as poisons, giving
rise to gastro-intestinal inflammation, and disordering the functions
of the nervous system (especially the cerebro-spinal portion), constit-
ting acute poisoning by copper. The usual symptoms are, a coppery
stomach, eructations, violent vomiting and purging, griping pains, cramps
on the legs and thighs, headache, giddiness, convulsions, and insensi-
bility; jaundice is occasionally observed. In some cases the cerebro-
spinal symptoms precede those which indicate inflammation of the
mentary canal. In experiments made on animals, it has been ob-
erved that death was sometimes produced without any marks of
nal irritation; the symptoms being those indicative of a disordered
action of the nervous system. By some toxicologists these pre-
parations are ranked among the irritant poisons, though Buchner,
writing from Reiter's experiments, terms them astringent.

Drouard, and others, were of opinion that the preparations of
copper did not become absorbed, but Lebkuchner has detected
copper in the blood of the carotid artery of a cat, into whose bron-
tial tubes he had injected four grains of the ammoniacal sulphate;
and Wibmer has found it in the liver of animals to whom he had
been the acetate for several weeks.

Post-mortem appearances.—In animals killed rapidly by these
toxins, no morbid appearances are found, in consequence of death
being produced by their action on the nervous system: but when
death was slow, marks of gastro-intestinal inflammation, and
eviscerally indications of inflammation of the brain, have been
served.

Uses. a. Of Metallic Copper.—Copper filings, in doses of three or
or grains, were formerly used in rheumatism, and also as an anti-
tiseptic against the effects of the bite of a mad dog.

* Toxicologie.
† Christison, Treatise on Poisons, 7th ed. 433.
‡ Würz, d. d. d. von. 244.
β. Of the Cupreous Compounds.—These preparations are used both as external and as internal remedies; externally as stimulants, astringents, styptics, and caustics; internally, as emetics, tonics or antisepsodic acids, and astringents. The particular cases will be noticed when treating of the individual preparations.

Antidotes.—The chemical antidote for the cupreous preparations is albumen; hence, the whites of eggs, and in the absence of these, milk, or even wheaten flour, should be employed. Iron filings have been proposed by Navier, Payen and Chevalier, and subsequently by Dumas and Milne Edwards. The iron decomposes the cupreous salt, and precipitates the copper in the metallic (and, therefore, in an inert) state. The ferrocyanide of potassium is also said to be a good antidote: a drachm or two of it may be taken with safety, for it is not so poisonous as was at one time imagined. Sugar was proposed by Marcelin Duval as an antidote; its efficacy, though denied by Orfila and Vogel, has been lately reasserted by Postel. The alkaline sulphurets formerly used are worse than useless, since they are acute poisons. The inflammatory symptoms are of course to be subdued by the usual means.

2. CU'PRI SUL'PHAS, L. E. D.—SULPHATE OF COPPER.

History.—This substance was probably employed by Hippocrates, under the name of χαλκητης ευριη (Chalcitis caerulea), to promote the healing of ulcers. Pliny also was doubtful of its curative properties, though seems to have confounded it with sulphate of iron. His Chalcanthen Cyprium was, perhaps, sulphate of copper. This salt has had various other names, such as Blue Vitriol (Vitriolum caelestium), Roman Vitriol, Blue Copperas, Blue Stone, Bisulphate of Copper.

Natural History.—It occurs in copper mines (as those of Cornwall, &c.) and is formed from sulphuret of copper by the joint agency of air and water. The cupreous solutions of copper mines are termed waters of cementation.

Preparation.—It may be prepared by evaporating the water found in, or issuing from, copper mines. It is also produced by roasting copper pyrites, lixiviating the residuum to dissolve the sulphate, and evaporating so as to obtain crystals. In this process both the sulphate and the copper of the pyrites abstract oxygen from the air, and become, the one sulphuric acid, the other oxide of copper: these by their union constitute the sulphate of copper.

Sulphate of copper is “occasionally prepared by dissolving in sulphuric acid an oxichloride of copper made for the purpose, by opposing sheet copper to the joint action of air and hydrochloric acid.” It is also obtained in large quantities in certain processes for refining

* For further details on this subject consult Christison’s ‘Treatise on Poisons.’
1 De ursibus.
2 Hist. Nat. XXXiv. 22.
and silver. For the following information respecting its product the Mint I am indebted to the kindness of Professor Brande:—

A large quantity of sulphate of copper is occasionally obtained here, as follows: When ingots of silver are found to contain a certain quantity of gold, they are dissolved, granulated, and boiled in sulphuric acid, by which sulphate of silver is decomposed, and the gold remains in a pulverulent form: the sulphate of silver is decomposed by the immersion of copper plates; the silver is precipitated in crystalline powder, washed, pressed into masses, and melted, and so affords silver, which is afterwards made standard by alloying it with copper, and for the coinage: the resulting sulphate of copper is then crystallized and

When gold ingots contain a certain quantity of silver, they undergo a similar process. Suppose a certain number of ingots of gold to contain 2 or 3 per cent. of silver, instead of leaving it as formerly, to constitute a part of the standard it pays to extract it, and substitute copper in its place. To get the silver from the said ingots they are melted with about 3 parts of silver, the resulting mass is granulated and boiled in sulphuric acid; the gold remains untouched, and the silver is dissolved and converted into sulphate, which is decomposed as before; so that here again sulphate of copper is obtained.

Properties.—This salt occurs in fine blue crystals, whose form is subly oblique prism. Its sp. gr. is 2.2. It has a styptic metallic and reacts on litmus as an acid. By exposure to the air it causes slight, and becomes covered with a greenish-white powdery coating. When heated it loses its water of crystallization, and becomes a powder (pulvis sympatheticus). By a very intense heat it is decomposed, sulphurous acid and oxygen are evolved, and oxide of copper is formed. It dissolves in about 4 parts of water at 60°, and 2 parts of boiling water. It is insoluble in alcohol.

Characteristics.—Its characteristics are those of the sulphates p. 469), and of the cuprous compounds (vide p. 774). Composition.—Its composition is as follows:

Oxide of Copper	40	32	32
Sulphuric Acid	40	32	32
Water	45	36	36

Crystallized Sulphate of Copper | 125 | 100 | 100 | 100

Purity.—The commercial sulphate of copper sometimes contains traces of sulphate of iron. It may be detected by excess of ammonia, which throws down the oxide of iron, but dissolves the sulphate of copper.

In water it becomes slightly pulverulent, and of a greenish colour. It is totally soluble in water. Whatever ammonia throws down from this solution an excess of ammonia dissolves.

Physiological Effects. a. On Vegetables.—It is poisonous to animals: hence its use in preventing dry rot (Merulius lachrymans), taking timber in it, according to Mr. Margary's patent; and in curing or preventing the Smut (Uredo segetum), or Bunt (U. caries), n., by immersing the grain in a weak solution of it: the solution made sufficiently strong to injure the seed.

On Animals.—This salt operates as a poison to animals. Six

1 De Candolle, Phys. Vég. 13.32.
grains killed a dog in half an hour, without producing any appearance of inflammation (Drouard). Applied to a wound it destroyed the animal in twenty-two hours, and the body was every where in a healthy state. Orfila also found that it proved fatal in a few hours when applied to wounds. The only symptoms mentioned are dizziness, loss of appetite, and sometimes purging. Inflammation of the mucous membrane of the stomach and rectum was found after death.

γ. On Man.—In very small doses it has no sensible operation on the body, though it occasionally ameliorates certain diseases, such as epilepsy and ague: in these cases it has been denominated an antispasmodic and tonic. The local action on the alimentary tube is that of an astringent. Dr. Elliotson has known a patient to take it for three years, for a particular kind of diarrhoea, without any constitutional effect. I have administered six grains thrice a day for several weeks, in an old dysentery, without any other obvious effect than slight nausea and amelioration of the disease for which it was given. In larger doses it is a safe and useful emetic, acting very speedily, and without exciting any great disorder of the general system. In excessive doses it becomes a poison, producing inflammation of the alimentary canal, and disordering the functions of the nervous system, as noticed when describing the action of the cuprous preparations generally. In a case mentioned by Dr. Percival, two drachms proved fatal; the patient was violently convulsed. In a more recent case there were vomiting and insensibility, but no convulsions or purging: the child died in four hours.

Its topical action is stimulant, astringent, styptic, and caustic. Its causticity depends on its union, either as a neutral or basic salt, with one or more of the constituents of the tissues. Thus it combines with albumen to form a pale bluish green compound, which produces with caustic potash a violet-coloured solution. According to Lassaigne the bluish white precipitate which sulphate of copper occasions in a solution of albumen, is composed of albumen 90-1, and sulphate of copper 9-9.

Uses.—Where speedy vomiting without much nausea is required, as in cases of narcotic poisoning, sulphate of copper is a tolerable sure and valuable emetic. It has also been used, with success, to provoke vomiting in croup, and thereby to promote the expulsion of the false membrane.

As an astringent it has been used with great benefit in chronic diarrhoea and dysentery. It often succeeds where the ordinary vegetable astringents fail. It should be given in doses of from half a grain to two or more grains twice or thrice a day, in combination with opium. I have employed it with most excellent effects in the
old diarrhoeas of infants, in doses of \(\frac{1}{2} \) of a grain. The largest dose
I have given to an adult is six grains, as above mentioned. It is
also used as an astringent to check excessive secretion from the
bronchial and urino-genital mucous membranes. Dr. Wright\(^7\) found
it serviceable in dropsy.

As a tonic or antispasmodic it has been given in intermittent dis-
cases, as the ague; and in some maladies of the nervous system
epilepsy and chorea). In epilepsy it has recently been strongly re-
commended by Dr. F. Hawkins\(^8\).

As a topical agent, it is often employed in substance as an appli-
cation to ulcers, either for the purpose of repressing excessive soft
and spongy granulations, commonly denominated "proud flesh," or
of hastening the process of cicatrization: and for either of these
purposes it is one of the best agents we can employ. Solutions of
it are frequently applied to mucous membranes, to diminish excessive
secretion: thus to the conjunctiva, in chronic ophthalmia, and to the
mucous lining of the vagina or urethra, in discharges from these
parts. In superficial ulcerations of the mucous membranes (espe-
cially of the mouth) one or two applications of the sulphate of
copper, in substance, are generally sufficient to heal them.

As a styptic a solution of this salt is sometimes used to repress
hemorrhages from a number of small vessels. Rademacher applied
with good effect brandy impregnated with sulphate of copper in a
case of alopecia, or baldness, which occurred in a young man; but it
failed in the hands of Dr. T. J. Todd\(^9\).

Administration.—The dose of it, as an emetic, is from three or
four grains to fifteen; as an astringent, or tonic, from a quarter of a
grain to one, two, or more grains, given so as not to occasion vomit-
ing. Solutions used for external purposes vary considerably in their
strength in different cases, but usually from one or two grains to eight
or twelve, dissolved in an ounce of water, are employed.

Antidotes.—Vide Cuprum.

8. AMMONIUM CUPRO-SULPHAS.—CUPRO-SULPHATE OF AMMONIA.

(Cupri Ammonio-Sulphas, L.—Cuprum Ammoniatum, E. D.)

History.—Boerhaave was acquainted with an ammoniacal solution
of copper. In 1757 Weissman gave imperfect directions for its pre-
paration. In 1790 Acoulth published a better process. Dr. Cullen
introduced this substance into practice in this country. It is usually
called Ammoniated Copper, or Ammoniuret of Copper (Cupri Ammo-
niciuretum).

Preparation.—All the British Colleges give directions for its pre-
paration.

The London College orders of Sulphate of Copper, \(\frac{3}{4} \); Sesquicarbonate of Am-
monia, \(\frac{3}{4} \)s. Rub them together until Carbonic Acid ceases to evolve; then dry
the Ammonio-sulphate of Copper, wrapped in bibulous paper, in the air.
The directions of the Edinburgh College are essentially similar; with the addition that the product is to be preserved "in closely-stoppered bottles."

The Dublin College employs of Sulphate of Copper, two parts; Carbonate of Ammonia, three parts.

The theory of the process is imperfectly understood. The proportions of ingredients employed are about two equivalents of sulphate and three and one-fifth equivalents of sesquisubcarbonate. When rubbed together, these salts give out part of their water of crystallization, by which the mass becomes moist; and, at the same time, a portion of carbonic acid of the sesquisubcarbonate escapes, producing the effervescence alluded to; and the compound becomes of a deep azure-blue colour. This colour is probably owing to cuprate of ammonia; for oxide of copper with caustic ammonia forms a similarly-coloured liquid. If this notion be correct, the decomposition may be thus explained:—Two equivalents or 118 parts of hydrated sesquisubcarbonate of ammonia react on one equivalent or 125 parts of crystallized sulphate of copper, and produce one equivalent or 57 parts of sulphate of ammonia, seven equivalents or 63 parts of water, and three equivalents or 66 parts of carbonic acid. The cuprate and sulphate of ammonia with one equivalent of water represent the crystallized cupro-sulphate of ammonia (Cuprum ammoniacale of some authors).

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. Hydrosesquisubcarbonate of Ammonia</td>
<td>86</td>
<td>2 eq. Water</td>
</tr>
<tr>
<td>1 eq. Ammonia</td>
<td>17</td>
<td>5 eq. Water</td>
</tr>
<tr>
<td>1 eq. Ammonia</td>
<td>17</td>
<td>45</td>
</tr>
<tr>
<td>2 eq. Sulphuric Acid</td>
<td>40</td>
<td>1 eq. Oxide Copper</td>
</tr>
<tr>
<td>1 eq. Oxide Copper</td>
<td>40</td>
<td>57</td>
</tr>
<tr>
<td>243</td>
<td>243</td>
<td>243</td>
</tr>
</tbody>
</table>

Properties.—It has a deep azure-blue colour, a styptic metallic taste, and an ammoniacal odour. It reacts on vegetable colours as an alkali: thus it reddens turmeric, and restores the blue colour of litmus, which has been reddened by an acid. By exposure to the air, ammonia is evolved, and a green powder is left, composed of sulphate of ammonia and carbonate of copper. To prevent this, therefore, it should be preserved in a well-stoppered bottle. It is soluble in water; but unless excess of sesquisubcarbonate of ammonia be present, the solution, when much diluted, lets fall a subsulphate of copper. Cupro-sulphate of ammonia crystallizes in large, right rhombic prisms, which Dr. Kane considers to be macles.

Characteristics.—Dissolved in water it forms a green precipitate (arsenite of copper) with a solution of arsenious acid. When heated, all its constituents are dissipated, save the oxide of copper. Boiled with caustic potash a solution of sulphate of potash is obtained, the hydrated oxide of copper is thrown down, and ammonia is disengaged. Sulphuric acid may be recognised in the solution by the barytic salts.

By heat it is converted into oxide of copper, evolving ammonia. Dissolved in water, it changes the colour of turmeric, and solution of arsenious acid renders it of a green colour. Ph. Lond.

CUPRO-SULPHATE OF AMMONIA.

POSITION.—The essential part of this compound is the cupro-
amine. This, in the crystalline state, has the following:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Berzelius</th>
<th>Brandes</th>
</tr>
</thead>
<tbody>
<tr>
<td>per...</td>
<td>1</td>
<td>40</td>
<td>32:32</td>
<td>34:00</td>
</tr>
<tr>
<td>rid...</td>
<td>1</td>
<td>40</td>
<td>32:32</td>
<td>32:25</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>7:33</td>
<td>7:33</td>
<td>7:30</td>
</tr>
</tbody>
</table>

Cuprous Sulphate of Ammonia... 1 123 100:00 100:00 99:333

ated Copper of the pharmacopoeias usually contains some undecom-
micarbonate (bicarbonate?) of ammonia, and probably some sulphate
of copper.

OLOGICAL EFFECTS.—Its action is, for the most part, similar
of copper. Wibner* examined its effects on horses and
orn grains dissolved in water, and injected into the veins.
. The respiration and circulation were quickened by it.
cases vomiting and purging were produced; weakness,
effects, and paralysis, indicated its action on the nervous system.
effects on man are like those of sulphate of copper, but it
not to be less disposed to occasion nausea and vomiting. An
e, however, readily acts as an emetic. Its action is probably
more stimulant to the general system than the sulphate.
ployed in medicine as a tonic and antispasmodic.
—Internally it has been principally employed in chronic
is affections; such as epilepsy, chorea, hysteria, spasmodic
nd cramp of the stomach. In epilepsy it has been much
and was found useful by Dr. Cullen**, and other accurate ob-
but, like all other remedies for this disease, it frequently fails,
so been used in aqve and dropsy. As a topical remedy, a so-
it has been employed as an injection in gonorrhea and leu-
and as a collyrium to remove opacity of the cornea.
ISTRATION.—It may be administered internally in doses of
if a grain gradually increased to five or more grains. It
is exhibited in the form of pill; rarely in that of solution.

ULE CUPRI AMMONIATI, E. Pills of Ammoniated Copper.
inated copper in fine powder, one part; Bread crumb, six
olution of Carbonate of Ammonia, a sufficientcy. Beat them
per mass; and divide it into pills, containing each half a
moniated copper). Dose from one to five or six pills in
entioned cases.

OR CUPRI AMMONIO-SULPHATIS, L.; Cupri Ammoniati So-
; Cupri Ammoniatis Aqua, D.; Solution of Ammoniated Copp-
na Saphirina. (Ammonio-sulphate of Copper, 3f; Distilled
j. Dissolve the Ammonio-sulphate of Copper in the water, in.
. E.—The Dublin College uses of Ammoniated Copper,
; Distilled Water, one hundred parts). This solution is ap-

* Wirk. d. Arzneim. ii. 256
** Treat. on Mat. Med.
plied to indolent ulcers as a stimulant and detergent; and, when diluted, to the eye, to remove slight specks of the cornea.

4. CU'PRI SUBACE'TAS, D.—SUBACETATE OF COPPER.

(De Acetis Capri impura, L.—Erugo; Commercial Diacetae of Copper, E.)

History.—Hippocrates employed Verdigris, which he terms χάλκειον ἰδίς, or Rust of Copper, in diseases of the eyes, and as an astringent in haemorrhoids. Theophrastus', Dioscorides', and Pliny', describe the method of procuring it. The Romans called it Erugo. It is frequently termed Diacetae of Copper; but this name is objectionable, since verdigris frequently occurs as a Subsesquiacetate mixed with the Trisacetate. I prefer the less precise, though more accurate term, Subacetate of Copper.

Preparation.—At Montpelier it is thus made:—The refuse of grapes is allowed to ferment with sour wine, and is then laid in alternate strata with plates of copper: acetous fermentation takes place, and the metal becomes oxidized by the combined influence of the air and acid. In about fifteen days the plates are covered with the acetate of copper, they are then wetted, and exposed for a month to the air: the acetate absorbs the water, and uniting with more oxide of copper, forms a subacetate, which is scraped off, and packed in leathern sacks for exportation. At Grenoble verdigris is obtained by sprinkling plates of copper with ready-made vinegar.

In this country it is prepared by exposing thin plates of copper to the action of acetic acid: the method now practised consists in alternating plates of copper with pieces of woollen cloth steeped in acetic acid; they gradually become corroded, and superficially coated with verdigris, which is from time to time removed, and the operation repeated, as long as the plate lasts. French verdigris is imported in sacks, weighing from 25 to 30 pounds.

Properties.—It occurs in masses or in powder. One variety is of a pale bluish green colour; another is blue. Its taste is astringent and metallic; its odour is somewhat similar to, though more disagreeable, than acetic acid. It is insoluble in alcohol. Water resolves it into a soluble acetate and an insoluble trisacetate.

Characteristics.—When digested with strong sulphuric acid, it evolves acetic acid, which is readily distinguished by its odour. Heated in a glass tube it gives out acetic acid: the residue contains metallic copper. If verdigris be boiled in distilled water a solution is obtained, which is known to contain copper by its colour, and by the before-mentioned tests for its cupreous compounds (vide p. 774).

Composition.—The blue verdigris is a hydrated diacetate of copper. Verdigris with a greenish tint consists of a subsesquiacetate and the trisacetate. The composition of these salts is as follows:

8 Opera, Ed. Fes, 635, 636, and 894.
9 De Lapidibus.
10 Lib. r. cap. xci.
12 Dumais, Traité de Chir., v. 159.
14 Berzelius, Traité de Chimie, iv. 347, and 348.
PURITY.—The following are the characters of its purity given by the London and Edinburgh Colleges:—

May be partly dissolved in water, and is almost entirely soluble either in ammonia, or with the assistance of heat, in diluted sulphuric acid. Ph. Lond.
It is dissolved in a great measure by muriatic acid, not above five per cent. of impurity being left. Ph. Edinb.

Chalk and sulphate of copper are employed to adulterate verdigris. The first effervesces with the mineral acids. The characteristics of the second have been before pointed out (p. 776).

Physiological Effects.—The action of verdigris on the system is very similar to that of the other preparations of copper: thus, taken in small and repeated doses, it acts on the nervous system, and is called tonic and antispasmodic; in larger doses it acts as an emetic; and, in excessive doses, is a powerful poison, producing both gastroenteritis (indicated by vomiting, purging, and pain), and an affection of the nervous system (marked by insensibility, convulsions, and even tetanus).

Uses.—Verdigris, when taken into the stomach, being variable and dangerous in its operation, is never administered internally. It was formerly employed in obstinate syphilis, when mercury has failed.

The powder is sometimes employed as an escharotic. It is sprinkled over foul and indolent ulcers, or, when mixed with savin, is applied to destroy venereal warts. When used for the latter purpose it rarely fails.

(Let the Subacetate of Copper be triturated into powder, and let the finest parts be separated by the mode directed for the preparation of chalk). The object of this process is to obtain a very fine powder. The water, however, effects a chemical change on the verdigris, and converts it into a soluble acetate and an insoluble trisacetate.

2. Linamentum Äeruginis, L. Oxymel Cupri Subacetatis, D. Mel Ägyptiacum; Unguentum Ägyptiacum; Oxymel Äeruginis. (Verdigris, powdered, 3ij.; Vinegar [distilled, Dubl.] f3vij.; Clarified Honey, 3xiv. Dissolve the verdigris in the vinegar, and strain the solution through linen; afterwards, the honey being added, boil down to a proper consistence).—Stimulant, deterrent, and slightly escharotic. It is applied by means of a camel’s-hair pencil to venereal ulcers of the throat, as well as to other indolent ulcers. Diluted with water it is employed as a gargle.

ulcers, in ophthalmia tarsi, as a cure for the obstinate forms of ringworm, and as an application to corns.

Antidotes.—Vide Cuprum.

5. Cu'pri ace'tas, D.—Acetate of Copper.

This salt is commonly, though very improperly, termed Distilled or Crystallized Verdigris, and is met with in the shops crystallized on sticks. It is usually prepared by dissolving common verdigris in acetic acid, and crystallizing. The crystals are oblique rhombic prisms. They consist of one equivalent of oxide of copper, one equivalent of acetic acid, and one equivalent of water. This salt is completely soluble in water, by which it is distinguished from common verdigris. In most other properties it agrees with the latter. It is included in the list of the materia medica of the Dublin Pharmacopoeia, but for what reason I cannot understand, since it is never used in medicine. The bluish white precipitate obtained by adding a solution of the neutral acetate of copper to a solution of albumen, consists of albumen 90°81, and deuto-acetate of copper 919. It is soluble in excess of solution of either acetate of copper or of albumen 1.

Order XXIII.—Bismuth and its Compounds.

History.—This metal is first mentioned by Agricola, in 1529. It has been termed Marcasita, Tectum Argenti, or, by the Germans, Wismuth. "The old miners called it Wismuth," says Mathesis, "because it blooms as a beautiful meadow (Wiesematte), on which variegated flowers of all kinds are glittering 2."

Natural History.—Bismuth occurs only in the mineral kingdom. It is found in Cornwall, Saxony, Bohemia, &c. It is met with in the metallic state nearly pure (Native Bismuth), and in combination with sulphur and with oxygen.

Preparation.—It is chiefly obtained from native bismuth by melting the metal out of its gangue.

Properties.—It is a reddish white metal, without taste or smell, composed of brilliant broad plates, and readily crystallizable in cubes or regular octahedrons. Its sp. gr. is 9°83 to 9°88. It is moderately hard, brittle, pulverizable, fusible at 476° F. When strongly heated in the air it takes fire, and burns with a faint blue flame, emitting a yellow smoke (the oxide). In close vessels it may be volatilized. Its equivalent is 72.

2 Schwartz, Pharm. Tabellen.
Characteristics.—It is distinguished by its brittleness (see p. 786), its ready fusibility, its solubility in nitric acid, and by the characters of the nitric solution, which throws down a white precipitate on the addition of water, and a black one when hydrosulphuric acid or the hydrosulphates are added to it.

Purity.—Copper may be detected by precipitating the nitric solution with ammonia; the supernatant liquor is blue if copper be present.

It is dissolved by diluted nitric acid; when subnitrate of bismuth is precipitated from this solution by ammonia, the liquor is free from colour. Its specific gravity is 9.8. *Ph. Lond.*

Its powder is entirely soluble in nitric acid with the aid of heat; and the solution is colourless or nearly so, and deposits a white powder when much diluted with cold water. *Ph. Ed.*

Physiological Effects and Uses.—In the metallic state, bismuth is inert. Its only use is in the preparation of the trisnitate.

2. BISMUTHI TRISNITRAS, L.—TRISNITRATE OF BISMUTH.

(Bismuthum album, E.—Bismuthi Subnitras, D.)

History.—This compound was first prepared by Lemery. It has had various appellations, such as *Pearl White, Magistry of Bismuth* (also a name for subnitrate of bismuth), *Spanish White, Subnitrate or Tetarto-nitrate of bismuth*.

Preparation.—All the British Colleges give directions for the preparation of this salt.

The *London College* orders of Bismuth, 3/4; Nitric Acid, 1/4; Distilled Water, 1/2. Mix a fluidounce of the water with the Nitric Acid, and dissolve the Bismuth in them; then pour off the solution. To this add the rest of the water, and set by that the powder may subside. Afterwards, the supernatant liquor being poured off, wash the Trisnitrate of Bismuth with distilled water, and dry it with a gentle heat.

The process of the *Edinburgh College* is essentially similar. The precipitate is then collected on a calico filter, washed quickly with distilled water, and dried in a dark place.

The *Dublin College* directs it to be prepared with Bismuth reduced to powder, 4 parts; Diluted Nitric Acid, 20 parts; Distilled Water, 100 parts.

In the first part of this process we obtain a nitrate of bismuth by the action of three equivalents or 216 parts of bismuth, on four equivalents or 216 parts of nitric acid. One equivalent or 30 parts of binoxide of nitrogen are evolved, and three equivalents or 402 parts of nitrate of bismuth formed.

MATERIALS.

Nitric Acid	51 eq. Binox. Nitrop.	1 eq. Binox. Nitrog. 30	
Bismuth	216	5 eq. Oxygen	25
162	8 eq. Ox. Bism. 280	2 eq. Nitrat. Bism. 402	

When nitrate of bismuth is mixed with water, two bismuthic salts are produced; a soluble supersalt (*ternitrate*), and an insoluble subnitrate (*trisnitate*).
MATERIALS.

1 eq. Nitrate of Bismuth = 124	1 eq. Ternitrate of Bismuth = 97
3 eq. Nitrate of Bismuth = 402	1 eq. Nitric Acid 106
(2 eq. Nitric Acid 106)	(1 eq. Nitric Acid 54)
(3 eq. Oxide of Bismuth = 240)	—————————————
536	1 eq. Trinitrate of Bismuth = 39

PROPERTIES.—It is a dull white, inodorous, tasteless pulvulent substance, which, when examined by a magnifier, is found to consist of very fine silky acicular crystals. It is nearly insoluble in water, but is readily dissolved by nitric acid. By exposure to light it becomes greyish.

Characteristics.—Hydrosulphuric acid, or the hydrosulphates, blacken it, by forming the sulphuret of bismuth. It dissolves in nitric acid without effervescence. Heated on charcoal by the blow-pipe flame it gives out nitrous acid (or its elements), and yields the yellow oxide of bismuth; and, by a continuance of the heat, the oxide is reduced, globules of metallic bismuth being obtained, which may be readily distinguished from globules of lead by their brittleness; for, when struck sharply by a hammer on an anvil, they fly to pieces: from antimony they are distinguished by their solubility in nitric acid.

Composition.—Its composition, according to Mr. Phillips, is as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>R. Phillips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide of Bismuth</td>
<td>5</td>
<td>240</td>
<td>81-64</td>
</tr>
<tr>
<td>Nitric Acid</td>
<td>1</td>
<td>54</td>
<td>18-26</td>
</tr>
<tr>
<td>Trinitrate of Bismuth</td>
<td>1</td>
<td>294</td>
<td>100-00</td>
</tr>
</tbody>
</table>

Purity.—Its freedom from any carbonate (as of lead) is distinguished by its solution in nitric acid without effervescence. Diluted sulphuric acid added to the solution throws down a white precipitate, if lead be present.

It is soluble in nitric acid without effervescence. Diluted sulphuric acid being added to the solution, nothing is thrown down. Ph. Lond.

It forms a colourless solution with nitric acid and without effervescence; is subject to adulteration. Ph. Ed.

Physiological Effects. a. On Animals.—It acts as a local irritant and caustic poison. Moreover, it appears to exercise a specific influence over the lungs and nervous system.

b. On Man.—In small doses it acts locally as an astringent, diminishing secretion. On account of the frequent relief given by it to painful affections of the stomach, it is supposed to act on the nerve of this viscus as a sedative. It has also been denominated ben and antispasmodic. Vogt says, that when used as a counter-cathartic, it has produced a spasmodic trembling of the muscles of the face, ending in paralysis.

Large medicinal doses disorder the digestive organs, occasioning pain, vomiting, purging, &c.; and sometimes affecting the nervous...
and producing giddiness, insensibility, cramps of the extremities, &c.

Following is the only reported case of poisoning with it. A boy two drachms by mistake, and died therefrom on the ninth day in addition to the usual symptoms of gastro-enteritis, there was a disordered condition of the nervous system, indicated by the hands and feet, disordered vision, and delirium. It is also of remark, that there were difficulty of breathing, livid tongue. Post-mortem examination showed inflammation of the alimentary canal; the spinal vessels were gorged with fluid particularly towards the cauda equina; there was fluid in the ventricles; and the inner surface of both ventricles of the brain was very red.

—It has been principally employed in those chronic affections of the stomach which are unaccompanied by any organic disease, but which apparently depend on some disordered condition of the viscus; and hence the efficacy of the remedy is to its supposed action on these parts. It has been particularised and recommended to relieve gastralgia and cramp of the stomach, to allay sickness and vomiting, and as a remedy for intermittent fever, in tic, asthma, &c. Hahnemann has recommended a portion to be sucked into a hollow tooth, to allay tooth-ache. I have used it advantage, in the form of ointment, applied to the septum and ulceration of this part, and as a local remedy in chronic skin conditions.

ADMINISTRATION.—The usual dose of this remedy is from five to a scruple. I seldom commence with less than a scruple of it, and have repeatedly exhibited half a drachm without the inconvenience. It may be administered in the form of liniment. The ointment which I have above referred to was composed of a drachm of the trisulphide, and half an ounce of spermacetum.

NOTES.—No chemical antidote is known. Emollient drinks be administered, and the poison evacuated from the stomach and lily as possible. The antiphlogistic plan is to be adopted, to inflammation.

ORDER XXIV.—TIN.

STANNUM, L. E. D.—TIN.

PROPERTY.—Tin has been known from the most remote periods of history. It is mentioned by Moses* and by Homer*. The alchemists called it Jove, or Jupiter.

* Chrestien's Treatise on Poisons.
* Numbers, xxxi. 22.
* Iliad, xi. 23.
for dyers,—and a second employed in the manufacture of tin-plate, and which is called *tin-plate grain.* Mine *Tin* (of *Tin Stone*) is stamped, washed, roasted, afterward ground, and mixed with Welsh culm and limestone, by which Block *Tin* is produced. The finest kind of which is called *Revised Tin* ⁹.

Besides the two varieties of tin just described, *Malacca Tin* occurs in quills and mids, with flattened bases. *Banca Tin* is met with in the form of small pieces.

Properties.—In its massive form it is a yellowish metal, having a peculiar odour when rubbed or handled. It melts at 442° F. and at a white heat is volatilized, and forms *Sheet Tin* and *Tin Foil* (*Stannum foliatum*), which is most ductile. Its equivalent is 58.

Characteristics.—Boiled in strong hydrochloric acid, a solution of protochloride of tin, which has the following composition: Potash added to it causes a white precipitate, soluble in water, which produces a yellow precipitate; hydrosulphuric acid produces a brown precipitate of tin chloride of gold, a dark or black precipitate. If precipitated with nitric acid, we obtain a perchloride of tin, which is yellowish precipitate with hydrosulphuric acid.

The London and Edinburgh Colleges give the following characteristics of its purity:

Boiled with hydrochloric acid it is almost entirely dissolved, but is precipitated by potash is white, and when added in excess of the specific gravity of tin is 7·29. *Ph. Lond.*

When finely granulated, 100 grains are entirely converted by three fluidrachms of nitric acid (D. 1380); and distilled this powder and filtered, is colourless, and precipitates but faintly.
however, that acid, fatty, saline, and even albuminous sub-
may occasion colic and vomiting by having remained for
in tin vessels. Oxide of tin is poisonous, according to
but Schubarth⁴ found it inactive.
-Powdered tin has been employed with great success by
ractioners, as a vermilige, particularly in tape-worm. Dr.
explains its operation on mechanical principles: he supposes
powder of tin gets betwixt the worms and the inner coat of
entary canal, and causes them to quit their hold, so that
is easily carry them away with the feces. It has, however,
ted that water in which tin has been boiled is anthelmintic,
ays Pitcairn and Pietsch⁵; wine which has been digested
essel is also said to be noxious to worms. If these state-
true, the before-mentioned mechanical explanation is in-
. Some have, therefore, supposed that the efficacy must
in the tin becoming oxidized in the alimentary canal; others
ied that arsenic, which is frequently found in tin, is the
ment; while, lastly, some have imagined that the metal, by its
the fluids of the canal, generated hydrogen, or hydrosulphuric
ch destroyed these parasites.
Monro, Fothergill, and Richter, have used powdered tin in
roduced by worms, and, as it is stated, with advantage.
ration.—It is usually exhibited mixed with treacle: the
monly employed is one or two drachms, but Alston gave
ger quantities. His mode of employing it as a vermilige
owing:—The patient was well purged with senna, and on
ring morning one ounce of tin powder was given in four
treacle: on each of the two following days half this quan-
ten, and then the patient again purged. Tin powder is much
oil of turpentine as a remedy for tape-worm.

PULVIS, E. D. Powder of Tin; Granulated Tin. (The
College gives the following directions for its preparation:

an iron vessel; pour it into an earthenware mortar heated
ove the melting point of the metal; triturate briskly as the
ls, ceasing as soon as a considerable portion is pulverized;
donduct, and repeat the process with what remains in the sieve.

College orders of the purest Tin, any required quantity.
by heat, let it be stronglyagitated until it passes into a
which when cold is to be shaken through a sieve.)—Tin may
ed to powder by shaking it when melted in a wooden box,
of which has been rubbed with chalk. The doses and uses
above described.

ings (Stanni Limatura seu Rasura Stanni) have also been
medicine.

⁴ Toxicol. Gén.
⁵ Quoted by Dr. Christian, Treat. on Poisons.
⁶ Med. Essays, v. 89, 92; also, Lect. on Nat. Med. l. 130.
⁷ Quoted by Richter, Ausf. Arzneim. iv. 533.
⁸ Treat. on Med. and Pharm. Chem. l. 269.
Preparation.—It is usually extracted from pyrometallurgically roasted in reverberatory furnaces, by which it is obtained as a mixture of sulphate and oxide of lead, and after calcining in coal and lime; the first to abstract oxygen, the second to unite with sulphur.

Properties.—It has a bluish-gray colour and a metallic luster. It may be crystallized by cooling in-fourths. It is malleable, but not ductile. Its sp. gr. 11·35. A characteristic odour when handled. It fuses at 612° F. and at a rapid temperature it evaporates. Its equivalent is 104. By exposure to air, it contracts, first oxygen, and then carbonic acid, so as to form carbonate of lead.

Pure distilled water has no action on lead, but if the water contains carbonic acid it forms carbonate of lead; but if these be admitted, the lead will sooner or later form carbonate of lead by the attrition of the lead and water. It is remarkable that the alkali salts—sulphate of soda and chloride of soda—impairs the corrosive action of air and water.

we can easily comprehend the reason why leaden water pipes do not more frequently give a metallic impregnation to the water, why rain-water is more apt than spring-water to become contaminated with lead. The latter, however, by long keeping in the lead, may also become contaminated with lead.

Characteristics.—If lead be dissolved in nitric acid, the lead will readily be recognised by the presence of the lead in the solution of the lead: Alkalis, their carbonates, sulphuric acid and the salts of the alkaloids of potassium, produce white precipitate, respectively hydrated oxide, carbonate, sulphate, and chromate of lead; chromate of potash and iodide of potassium.
delicacy of these tests is, according to Devergie \(^4\) as follows:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Degree of Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphate of Soda</td>
<td>stops at 8,000</td>
</tr>
<tr>
<td>Iodide of Potassium</td>
<td>10,000</td>
</tr>
<tr>
<td>Ferrocyanide of Potassium</td>
<td>18,000</td>
</tr>
<tr>
<td>Potash</td>
<td>20,000</td>
</tr>
<tr>
<td>Carbonate of Soda or of Potash</td>
<td>60,000</td>
</tr>
<tr>
<td>Chromate of Potash</td>
<td>100,000</td>
</tr>
<tr>
<td>Hydrosulphuric Acid</td>
<td>500,000</td>
</tr>
</tbody>
</table>

Biological Effects. 1. Of Metallic Lead.—I believe that so lead retains its metallic form it is inert. In a French journal stated three ounces and six drachms of this metal have been given to a dog without any obvious effects. As, however, it is a which is readily oxidized, it occasionally proves active swallowed. An instance of this kind is mentioned by Paulini,\(^4\) in which colic was produced by swallowing a leaden bullet. Pronst\(^5\) at the alloy of lead and tin may be swallowed with impunity, sequence of its being much less easily oxidized than the pure

The Preparations of Lead. a. On Vegetables.—Marcet found the of acetate of lead injurious to plants; but Wiegmann declares inert, and ascribes its inertness to the formation of an insoluble (bonate) of lead by the carbonic acid of the roots of the plants.

b. Animals.—The preparations of lead are, for the most part, poisons. The Sulphuret, however, appears to be inactive, \(^6\) so; for Orfila\(^6\) gave an ounce of it to dogs without observing effects; four ounces have even been given to horses without pleasant results. The Sulphate, also, according to Orfila, is .

Our knowledge of the effects of the salts of lead on animals is derived from experiments made with the acetate, nitrate, and carbon.

The first two act as corrosives: all affect the nervous system, causing convulsions, palsy, and colica pictorum.\(^7\)

\(^{1}\) Man.—Mr. Braid\(^7\) states that workmen who dig and pulse ore (sulphuret of lead), at the Lead Hills in Lanarkshire, have the lead colic until they work at the smelting furnaces.

If not all, the other preparations are more or less active; the and symptoms, however, vary with the dose.

Small doses these preparations act on the alimentary canal as irritants; checking secretion and causing constipation. These may be noted as the local effects. When absorbed, the constitutional effects of lead are observed: the arteries become reduced in size and the pulse becomes slower and smaller; the temperature is diminished; and sanguineous discharges, whether natural or artificial, are frequently checked, or even completely stopped. This

\(^{1}\) id. Leg. ii. 779.
\(^{2}\) ser. de Méd. de Loron, xxiii. 318.
\(^{4}\) n. de Chim. ivii. 84.
\(^{5}\) loc. cit. 6th Am.
\(^{6}\) treat. on Poisons, 506 et seq. 3d ed.
\(^{7}\) Stimson, op. cit. 518.
constringing and sedative effect seems extended to the secreting and exhaling vessels; the discharges from the mucous membranes, the exhalation from the skin, and the urine, being diminished in quantity. Thus we observe dryness of the mouth and throat, thirst, greater solidity of the alvine evacuations, diminution of the bronchial secretion, and of cutaneous exhalation. From these circumstances it appears that the preparations of lead give rise to a contracted state of the coats of the blood-vessels (at least of the arteries). It is not at all improbable that the absorbent vessels are similarly affected. The wasting of the body produced by lead (Tabes saturnina, or Tabes sicca) may perhaps be referred to this constringing influence on the vessels.

A remarkable effect on the human gums, produced by the absorption of lead, has been pointed out by Dr. Burton⁴. It consists in the formation of a narrow leaden-blue line, about the one-twentieth of an inch thick, which borders the edges of the gums attached to the necks of two or more teeth of either jaw. In every case of lead colic that has fallen under my care I have observed this line. Moreover, in several cases where sugar of lead, in full doses, has been given for many days continuously, I have noticed it; and in most of the cases it was accompanied by abdominal pain. On two patients not known to have been subjected to the influence of lead I have observed some faint indication of a similar line, without, however, any constitutional symptoms of lead poisoning. I have not observed this line in patients under the influence of mercury. In one instance mentioned by Dr. Burton, fifteen grains of acetate of lead, taken in four days, caused the blue line: in another this effect was not produced until the patient had taken one hundred and sixty grains in twenty-one days.

Salivation⁵, turgidity of the gums⁶, and a bluish colour of the saliva⁷, are other effects ascribed to the influence of lead. "I do not wish to assert," observes Dr. Burton, "that salivation and turgidity of the gums are never produced by the internal operation of lead; but I venture to affirm they are rare occurrences, and not characteristic of its influence."

The bluish colour of the saliva, and the blue line on the gums, probably depend on the presence of sulphuret of lead, formed by the action of sulphurated hydrogen, evolved by the lungs, on the lead contained in the salivary and buccal secretion; for I have observed that an alloy of mercury and silver, introduced into the hollow of a tooth, becomes coated in a few days with a black film of metallic sulphuret.

The long-continued use of the preparations of lead rarely fails to give evidence of its effect on the muscular and nervous systems, as which is manifested by a curious train of symptoms, commencing with colic, and terminating in palsy or apoplexy. Lead or painter’s colic (colica pictorum) is variable in its mode of attack; at one time

⁵ Dr. Warren, Medical Transactions, vol. ii. p. 87.
⁷ Dr. Christison, Treatise on Poisons, p. 504. 3d. ed.
LEAD. 793

ring suddenly, and without any very marked premonitory
signs, at another being preceded by dyspeptic symptoms—such
ished appetite, with a painful and constipated state of the
he faces being very hard. During an attack, there is usually
constipation, with acute pain, much increased at intervals;
sometimes a relaxed condition of the bowels has been met with.
fers the continued pain to the small intestines, while the more
and intermitting kind resides principally in the transverse por-
te colon. Pressure rarely increases, and very commonly re-
sive pain. Cases, however, do occur (and I have seen several) in
ere is great tenderness of the bowels. The abdomen is
tracted, sinks in about the navel, and feels very hard. To
ptoms may be added vomiting, cramps of the lower ex-
hard and generally slow pulse, though sometimes it has been
quent.

naen and Merat, on examining the bodies of patients who
fected with lead colic, found a contracted condition of
and this was considered by the last-mentioned writer to
the seat of the disease. But Sir G. Baker, Andral, Louis,
and have not, in some cases, found any alteration. More-
would appear probable from Dr. Abercrombie’s observations
that the empty and collapsed portion of the intestine was
at the colic, but another part found in a state of disten-
or the collapsed or contracted state is the natural condition of
intestine when empty; while the distended portion is, in
cases of ileus, the primary seat of the disease, the distension
m a paralytic condition of the muscular fibres, whereby it
e contract and propel its contents onward. Now this view
ase is the more probable, since the action of lead on the
fibres of the intestine is doubtless of the same kind as
the fibres of the voluntary muscles. Some have found intus-
on, others have noticed marks of inflammation.
olic is accompanied by the blue line on the gums above
o; which, therefore, is an important aid in distinguishing
ety of colic from that which arises from other causes.
ner effect of poisoning by lead is an affection of the cerebro-
system, generally manifested by paralyisis, but occasionally by
ss, convulsions, and coma, and now and then by apoplexy.
ly may occur without colic, or it may come on while the
is suffering with it, but in general it succeeds colic. It is
amed with the blue line on the gums above described. It
pen in both upper and lower extremities, though more fre-
in the former; and it affects the extensor more than the flexor,
so that the hands are generally bent on the arms, which
ngling by the side. Frequently pain is experienced in the
paralyzed part, and sometimes in the region of the spine also. On examining the bodies of persons who have died with this disease, no lesion has hitherto been discovered in the spinal marrow. The muscles of the affected limb are observed to be wasted and very pale, and have sometimes the appearance of a white fibrous tissue.

In very large doses, some of the plumbeous preparations (the acetate, for example) act as irritant and caustic poisons; giving rise to the usual symptoms indicative of gastro-enteritis. However, none of them equal, in the intensity of the local action, the mercurial or even the cupreous compounds.

Modus Operandi. — Tiedemann and Gmelin found lead in the blood of the splenic, mesenteric, and hepatic veins of dogs killed by the acetate; they also found it in the contents of the stomach and intestines, but neither in the chyle nor the urine. Wibmer detected it in the liver, muscles, and spinal cord.

The local or corrosive action of the soluble salts of lead depends on the affinity of these bodies for the organic constituents of the tissues (vide Plumbi Acetas).

The nervous system is specifically affected by lead. The paralysis of the voluntary muscles, the pain in the course of the spine, the occasional giddiness, coma, or apoplexy, seem to establish this. The colic as well as the astringent influence of lead over the coats of vessels are probably secondary effects of the action of lead over the nervous system.

The constitutional effects of lead may be produced in various ways: as, when taken with articles of food and drink into the stomach; when inhaled in the form of dust or vapour with the air; when applied to mucous membranes, ulcers, &c. Hence the persons most liable to these effects are those whose occupations bring them in contact with this metal; for example, painters, plumbers, roasters and smelters of lead, the manufacturers of the plumbeous preparations, glass-blowers, potters, lapidaries, &c.

Dr. Anthony Todd Thomson is of opinion, that carbonate of lead is the only preparation of this metal that can produce colic; and though he has, I think clearly, shewn that lead colic more frequently arises from the carbonate than from any other salt of lead, he has, in my opinion, failed in proving that no other preparation of lead can produce it. Indeed, if his opinion were true, it would constitute an exception to the general effects of the metallic preparations; for we do not find that the specific effects of arsenic, or of mercury, or of copper, or of antimony, are produced by one preparation only; so that, à priori, analogy is against the opinion. Furthermore, it is well known that the vapour of the oxide of lead taken into the lungs may produce colic, and that the ingestion of the acetate, citrate, or tannate of lead, is capable of exciting the same effect. Now Dr. Thomson explains these facts by assuming that the oxide of lead

* Vera. über d. Wege, auf welchen Subst. aus d. Mag. ins Blut gelangen.
* Christieon’s Treatise on Poisons, 3d edit. p. 509.
nates with carbonic acid in the lungs, and is thus converted into carbonate: and that the acetate, citrate, and tartrate, are decomposed in the alimentary canal, and converted into carbonates. But it appears to me to be much more simple and consistent with analogy, to admit that these preparations are of themselves capable of producing colic, than to assume that they undergo the changes here supposed. Moreover, in some instances in which colic was produced, it is unlikely that these changes would have occurred, owing to the excess of acid kept with the salt of lead.

Uses.—The uses of the preparations of lead may be in part inferred from the foregoing account of their effects. These agents are employed when we wish to constringe the capillary vessels and to diminish their vital activity. Thus we administer them internally to check excessive secretion and exhalation, as in catarhal affections of the mucous membranes of a chronic nature; in profuse secretion of pus; in sanguineous exhalations from the mucous membranes; and colliquative sweating. They have also been applied, in some instances with success, in certain chronic affections of the nervous system, as epilepsy; but the practice is altogether empirical, as we have no rational principles to guide us in using them. As topical medicines, we employ the preparations of lead to diminish vascular excitation, to allay preternatural heat, and to check excessive secretion. Thus we apply them to inflamed parts to promote resolution, to ulcers and other secreting surfaces as astringents or desiccants.

In the internal employment of lead, attention must be paid to the condition of the gums, stomach, and bowels, as we find traces of their injurious effects in these organs. The blue line on the gums has been noticed. Constipation is a very frequent result of the medicinal employment of lead. Loss of appetite, indigestion, and griping pains, are also often noticed. The tendency to colic is diminished, according to Dr. A. T. Thomson, by conjoining acetic acid.

Antidotes.—Poisoning by lead usually puts on one of three forms—irritant poisoning, lead colic, and paralysis; and the treatment varies with each.

In **irritant poisoning** administer diluents holding in solution some sulphate (as sulphate of soda, of magnesia, or of potash or alum), so at a sulphate of lead may be formed. If vomiting have not already come on, tickle the throat, and administer emetics of the sulphate of iron or of copper, or the stomach-pump may be employed.

In **lead colic** the best remedy is alum (vide pp. 618 and 619). But in this country lead colic is frequently treated by the combined use of irritatives and anodynes, the purgatives being either castor oil or its and senna, and the anodyne being opium. When the vomiting is very troublesome, and liquid medicines do not remain on the stomach, we may give the compound extract of colocynth, with opium, the form of pill. In several cases in which the pulse was full and strong, the face flushed, and the tongue furred and dry, I have used...
blood-letting with evident advantage. The sulphates have been recommended, as also mercury.

In lead paralysis, nux vomica, and its active principles—strychnia and brucia are perhaps of all internal remedies most deserving of trial, because of their specific effect on the spinal marrow; and the chance of their success is, of course, much increased by the circumstance of there being no discoverable lesion of this portion of the nervous system. Mercury has been recommended by Dr. Clutterbuck. Various local measures have been tried, but without much benefit; for example, electricity and irritants (such as ammonia and cantharides).

2. PLUMBI OXYDUM.—OXIDE OF LEAD.

(Litharge, E.—Plumbi Oxydum semivitrreum, D.)

History.—The ancients were acquainted with oxide (Protoxide) of lead. Hippocrates⁴ employed the semi-vitrified oxide (Litharge, λίθαργιον). Dioscorides¹ and Pliny ² both mention litharge: the latter calls it Molybdaena.

Preparation.—If melted lead be exposed to a current of air, it is rapidly oxidated and converted into the protoxide of this metal. The oxidated skimmings are denominated Massicot. This, when fused at a bright red heat, is separated from some metallic lead with which it was intermixed; the fused oxide forms, on solidifying, a brick-red mass, which readily separates into crystalline scales: these constitute Litharge.

Litharge is obtained as a secondary product in the cupellation of argentiferous lead. The alloy is melted on a porous vessel, called a test or cupel, and exposed to the blast of a bellows, by which the lead is oxidized, half vitrified, and driven off into hard masses of a scaly texture, and in that state is called Litharge or Silver Stone⁵.

Properties.—Oxide of lead presents itself in several forms. One of these is yellow, and is termed Massicot (Cerusca citrina). When semivitrified (Plumbi Oxydum semivitrreum), it is called Litharge (Lithargeum), which occurs in the form of small yellow or reddish scales or flakes, and, according to its colour, is called Gold or Silver Litharge (Lithargeum aureum [Chrysitis] seu Argenteum [Argyritis]). Gold Litharge owes its red tint to the presence of a portion of minium.

Oxide of lead is fusible, and at a very high temperature volatile. It is almost insoluble in water.

Characteristics.—Heated on charcoal by the blowpipe, it is readily reduced to the metallic state. It is blackened by hydrosulphuric acid, and completely dissolves in nitric acid. The characteristics of this solution have been already described (vide p. 790). The varieties of the oxide are distinguished by their physical peculiarities.

¹ De Morb. Mal, ii. ⁴ Lib. v. cap. 26
Oxide of lead is thus composed:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>104</td>
<td>92.83</td>
<td>92.83</td>
<td>93.3</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>7.14</td>
<td>7.12</td>
<td>6.7</td>
</tr>
</tbody>
</table>

It is not subject to adulteration.

Almost entirely soluble in dilute nitric acid. Its other properties are the same as carbonate of lead. Ph. Lond.

Grains dissolve entirely, without effervescence; in a fluid ounce and a half of aqua regia, and the solution, precipitated by 53 grains of phosphate of lime, remains precipitable by more of the test. Ph. Ed.

Presence of a carbonate would be indicated by effervescence on addition of acetic acid.

Physiological Effects.—Inhaled in the form of vapour, or fine dust, it produces the before-mentioned constitutional effects of lead (p. 792).

Effects of this substance, when swallowed, are but little pronounced. It possesses very slightly irritant properties. “The experimenters of Lyons found litharge to be irritant in large doses of ten grains.”

In its external use ill consequences have sometimes resulted.

Uses.—Oxide of lead is never employed internally. Litharge is used in the preparation of Emplastra (see p. 813), Ceratum Saponis (see p. 569), Acetus Plumbi (see p. 806), and Liquor Plumbi Diacetatis (see p. 810).

Plumbi Oxydum Hydratum, L. Hydrated Oxide of Lead. On of Diacetate of Lead, Ovij.; Distilled Water, Cong. iii.; Potash, Ovij., or as much as may be sufficient to precipitate the oxide. Mix. Wash with water what is precipitated, until the alkaline remains. In this process the potash combines with the oxide, and forms acetate of potash, which remains in solution, while hydrated oxide of lead is precipitated. According to Erlich this compound consists of two equivalents of 224 parts of lead, and one equivalent of 9 parts of water: it is therefore dehydrated oxide. It is soluble in a considerable excess of a solution of caustic potash.

It is used in preparing disulphate of quina should be totally dissolved by nitric acid. Its remaining properties resemble those of the preceding.

Directed, by the London College, to be employed in the preparation of Quina Disulphas.

Alcis Plumbis; Plumbite of Lime.—This compound is employed as a Hair Dye (see p. 218).
3. PLUMBII OXYDUM RUBRUM:—RED OXIDE OF LEAD.

(Plumbii Oxidum rubrum, E.)

HISTORY.—It is doubtful whether the ancients were acquainted with this compound, as the substance which Pliny \(^7\) called Minium was Cinnabar (see p. 762). He describes, however, an inferior kind, which he terms Minium secundarium\(^8\), and which may be perhaps the red oxide of lead. Dioscorides\(^9\) distinguished Minium from Cinnabar.

Besides Minium there are several other names for red oxide of lead. In commerce it is usually known as Red Lead. It is sometimes termed Deutoxide of Lead.

NATURAL HISTORY.—Native Minium is found in Yorkshire, Siciaria, Siberia, and some other places.

PREPARATION.—Red lead is prepared by subjecting protoxide of lead (massicot or litharge) to the combined influence of heat and air. It absorbs oxygen and is converted into red lead. A heat of about 600\(^\circ\) is necessary. The finest minium is procured by calcining the oxide of lead obtained from the carbonate\(^8\).

PROPERTIES.—Red oxide of lead has a brilliant red colour. By heat it gives out oxygen gas, and is converted into the protoxide of lead.

Characteristics.—Before the blowpipe on charcoal it is converted into the yellow protoxide, and then into metallic lead. When digested in nitric acid, the nitrate of the protoxide is obtained in solution, while the insoluble brown or peroxide of lead remains. By the action of sulphurous acid on red lead, the white sulphate of the protoxide is obtained.

" Entirely soluble in highly-fuming nitrous acid; partially soluble in diluted nitric acid, a brown powder being left." Ph. Ed.

COMPOSITION.—The composition of real or pure red lead is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>3</td>
<td>332</td>
<td>90-7</td>
<td>Protoxide</td>
<td>2</td>
<td>294</td>
<td>63-11</td>
</tr>
<tr>
<td>Oxygen</td>
<td>4</td>
<td>33</td>
<td>9-3</td>
<td>Peroxide</td>
<td>1</td>
<td>130</td>
<td>34-89</td>
</tr>
<tr>
<td>Red Lead</td>
<td>1</td>
<td>344</td>
<td>100-0</td>
<td></td>
<td>1</td>
<td>344</td>
<td>100-0</td>
</tr>
</tbody>
</table>

Dumas\(^8\) has shown that red lead of commerce is not uniform in composition; but consists of variable mixtures of real lead with protoxide. His results have been confirmed by those of Mr. Phillips\(^9\). That real red lead is not a mere mixture of protoxide and peroxide is apparently shown by its colour as well as by the fact that it is not altered by heating it in a solution of acetate of lead, which is capable of dissolving free protoxide.

PHYSIOLOGICAL EFFECTS AND USES.—Its effects are similar to the protoxide of lead. It is but little employed in pharmacy. The

\(^2\) Idem.
\(^3\) Libri. v. cap. 159.
\(^4\) Graham, Elements of Chemistry, p. 589.
\(^6\) Phil. Mag. N. S. vii. 126.
Edinburgh College directs it to be employed in the preparation of *Aqua Chlorinii* (see p. 230).

4. **PLUM’BI CHLØRIDUM, L.—CHLORIDE OF LEAD.**

Natural History.—Chloride of lead is found native at Churchill, in the Mendip Hills of Somersetshire.

Preparation.—In the London Pharmacopoeia this compound is directed to be prepared as follows:—

Take of Acetate of Lead, 3xix.; Distilled Water, boiling, Oij.; Chloride of Sodium, 3v. Dissolve the Acetate of Lead and Chloride of Sodium separately, the former in three pints of Distilled Water, and the latter in one pint of Distilled Water. Then the liquors being mixed together, wash what is precipitated with distilled water when it is cold, and dry it.

In this process one equivalent or 163 parts of dry acetate of lead are decomposed by one equivalent or 60 parts of chloride of sodium; by which one equivalent or 140 parts of chloride of lead are precipitated, and one equivalent or 83 parts of acetate of soda remain in solution.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Composition</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Acetate of Lead</td>
<td>1 eq. Acetic Acid</td>
<td>1 eq. Acetate Soda 1 eq. Chloride Lead 1 eq. Soda 1 eq. Chloride Lead</td>
</tr>
<tr>
<td>1 eq. Ox. Lead</td>
<td>1 eq. Acetic Acid</td>
<td>1 eq. Acetate Soda 1 eq. Chloride Lead 1 eq. Soda 1 eq. Chloride Lead</td>
</tr>
<tr>
<td>2 eq. Chloride of Sodium</td>
<td>1 eq. Sodium</td>
<td>2 eq. Chloride Lead 1 eq. Chloride Lead 1 eq. Sodium</td>
</tr>
<tr>
<td>60 eq. Chlorine</td>
<td>66</td>
<td>223</td>
</tr>
</tbody>
</table>

Hydrochloric acid occasions the precipitation of more chloride of lead after the action of chloride of sodium is over; so that there must be some compound of lead in solution.

Properties.—It is a white crystalline powder *(Magisterium Saturni Crolldi)*, soluble in thirty parts of cold or twenty-two parts of boiling water. When heated it fuses; and by cooling forms a semi-transparent horny-like mass, called Horn Lead *(Plumbum corneum)*.

Characteristics.—Its aqueous solution causes a white precipitate with nitrate of silver, soluble in ammonia but insoluble in nitric acid; hence it is shown to be a chloride. The solution is known to contain lead by the before-mentioned tests for this metal (vide p. 790).

Totally dissolved by boiling water, the chloride concreting almost entirely into crystals as it cools. On the addition of hydrosulphuric acid it becomes black, and by heat yellow. *Ph. Lond.*

Composition.—The following is its composition:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>1</td>
<td>104</td>
</tr>
<tr>
<td>Chlorine</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Chloride of Lead</td>
<td>1</td>
<td>149</td>
</tr>
</tbody>
</table>

Use.—It is employed in the preparation of hydrochlorate of morphia.

5. PLUM'BI IO'DIDUM, L. E.—IODIDE OF LEAD.

HISTORY.—This compound was introduced into medicine by Cotterean and Verdé-Delisle.

PREPARATION.—The London and Edinburgh Colleges give directions for the preparation of it.

The London College orders of Acetate of Lead, 3ix.; Iodide of Potassium, 3vi.; Distilled Water, cong. j. Dissolve the Acetate of Lead in six pints of the Water, and strain; and to these add the Iodide of Potassium first dissolved in two pints of the water. Wash what is precipitated, and dry it.

The reacting proportions of iodide of potassium and crystallized acetate of lead are 166 parts of the former and 190 parts of the latter. Hence the London College uses a larger proportion of iodide than is requisite, supposing the acetate to be neutral.

This excess is disadvantageous, since it retains a portion of the iodide of lead in solution. To prevent the formation of the pale yellow oxyiodide of lead, a little acetic acid should be added to the acetate of lead, before adding the iodide of potassium. The precipitate should be washed and dried.

By the mutual action of one equivalent or 163 parts of dry acetate of lead, and one equivalent or 166 parts of iodide of potassium, we obtain one equivalent or 230 parts of iodide of lead, and one equivalent or 99 parts of dry acetate of potash.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Acetate</td>
<td>1 eq. Acet. Acid.</td>
<td>2 eq. Pot.</td>
</tr>
<tr>
<td>Lead, 163</td>
<td>1 eq. Ox. Lead</td>
<td>1 eq. Oxg.</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>1 eq. Lead</td>
</tr>
<tr>
<td>Iodide, 49</td>
<td>1 eq. Potassium</td>
<td>40</td>
</tr>
<tr>
<td>Potash, 166</td>
<td>1 eq. Iodine</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 eq. Iod. Lead</td>
</tr>
<tr>
<td></td>
<td></td>
<td>329</td>
</tr>
</tbody>
</table>

The Edinburgh College orders of Iodide of Potassium, and Nitrate of Lead, of each, 3j.; Water, Oiss.; dissolve the salts separately, each in one-half of the water; add the solutions; collect the precipitate on a filter of linen or canvas; and wash it with water. Boil the powder in three gallons of water, acidulated with three fluidounces of pyroglyceric acid. Let any undissolved matter subside, maintaining the temperature near the boiling point; and pour off the clear liquor, from which the iodide of lead will crystallize on cooling.

The reacting proportions are one atom or 166 parts of nitrate of lead, and one atom or 166 parts of iodide of potassium; or equal weights of the materials. The products are one equivalent or 230 parts of iodide of lead, and one equivalent or 102 parts of nitrate of potash.

For pharmaceutical purposes, especially for the preparation of ointments, the pulverulent iodide is preferable to the crystalline or scaly kind.

PROPERTIES.—It is a fine yellow powder, very sparingly soluble in cold water, but readily soluble in boiling water; from which it for the most part separates, as the solution cools, in the form of golden yellow, brilliant, small scales. It is fusible. It combines with the alkaline iodides, forming a class of double salts, called the (plumbi-
Iodide of Lead.

Iodides (iodo-plumbates, Thomson). Caustic potash dissolves it, and forms a plumbo-iodide of potassium and plumbate of potash. It is soluble in acetic acid and in alcohol.

Characteristics. — When heated, it first forms a yellow vapour (iodine of lead), and afterwards a violet vapour (iodine), leaving a residue (lead), which, when dissolved in nitric acid, gives all the characters of solution of lead (vide 790). Boiled with carbonate of potash, it forms carbonate of lead and iodide of potassium.

Composition. — Its composition is as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Henry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>1</td>
<td>164</td>
<td>45·21</td>
</tr>
<tr>
<td>Iodine</td>
<td>1</td>
<td>126</td>
<td>54·78</td>
</tr>
<tr>
<td>Iodide of Lead</td>
<td>1</td>
<td>230</td>
<td>99·99</td>
</tr>
</tbody>
</table>

Purity. — It should be completely soluble in boiling water.

Totally dissolved by boiling water, and as it cools separates in shining yellow scales. It melts by heat, and the greater part is dissipated first in yellow, and afterwards in violet vapours. Ph. Lond.

Bright yellow: five grains are entirely soluble, with the aid of ebullition, in one fluiddrachm of pyrogallic acid, diluted with a fluidounce and a half of distilled water; and golden crystals are abundantly deposited on cooling. Ph. Ed.

Physiological Effects. a. On Animals. — Twenty-four grains of iodide of lead were given to a cat at two doses, with an interval of four hours: the animal suffered violent colic, and died in three days; but no signs of irritation were observed after death. Iodide of lead was given in doses of from gr. v. to 3ss. to a bull-dog: no effect was observed until the fifteenth day, when the animal refused food, and kept in the recumbent posture. He died on the eighteenth day, having swallowed altogether ten drachms and fifty grains of iodide. During the whole period, he had only three or four intestinal evacuations.

β. On Man. — Its effects on man have been imperfectly determined. It does not appear to act as an irritant when applied to the skin or ulcerated surfaces. Under the continued external and internal use of it, enlargements of the lymphatic glands have disappeared, from which we infer a specific influence over the glandular and lymphatic system. In some cases it appeared to occasion irritation of the stomach. I have seen constipation induced by it. After its medicinal use for several weeks I have not observed any blue line on the gums.

Uses. — It has been principally employed to reduce the volume of indolent tumors, especially enlargements of the cervical, axillary, and mesenteric glands. In these cases it should be simultaneously administered internally and externally. I have also employed it in suspected incipient phthisis. I have used it in two cases of enlarged

* Dumas, Traité de Chim. iii. 379.
+ Paton, Journ. de Chim. iii 41, 2nd Sér.
+ Cogswell, Essay on Iodine, 143.
cervical glands, but without benefit. Velpeau and others, however, have been more successful.

Administration.—The dose is three or four or more grains. Dr. O'Shaughnessy says, ten-grain doses are easily borne, without the slightest annoyance. It is given in the form of pill.

UNGENTUM PLUMBI IOSSIDI, L. (Iodide of Lead, 3; Lard, 1; M.)—This is applied, by way of friction, to scrofulous and other indolent swellings.

6. PLUM'BI CAR'BONAS, L.E.D.—CARBONATE OF LEAD.

History.—This substance was employed by Hippocrates, under the name of ψυμιζων. Theophrastus described the method of making it. Dioscorides and Pliny also mention it.

It has been known by several names, as Psammythium, Cerasus (Cerusia), Magistry of Lead (Magisterium Plumbi), White Lead, Flake White, and Subcarbonate of Lead.

Natural History.—This salt is found native, crystallized, or massive, in Scotland, England, &c. It is called White Lead Ore.

Preparation.—Neutral carbonate of lead is obtained by adding an alkaline carbonate to a solution of acetate or nitrate of lead. Procured in this way it is deficient in body, owing to the transparency of the crystalline grains; and it is not, therefore, fitted for the use of the painter, who requires a carbonate having a dense and opaque body.

Within the last few years several patents have been taken out for new modes of preparation. Some of the processes so patented have been subsequently abandoned, either because a profitable remuneration could not be obtained by them; or because the quality of the product was inferior. I am informed that the white lead obtained by the old or Dutch process is superior, as an oil pigment, to that procured by most other methods.

"In the Dutch process, introduced into England about 1780, lead is cast into plates or bars, or into the form of stars, or circular gratings of six or eight inches in diameter, and from a quarter to half an inch in thickness: five or six of these are placed one above another in the upper part of a conical earthen vessel something like a garden-pot, in the bottom of which there is a little strong nitric acid. These pots are then arranged side by side, on the floor of an oblong lead chamber, and are imbedded in a mixture of new and spent tan (ground oak bark as used in the tan-yard). The first layer of pots is then covered with loose planks, and a second range of pots imbedded in tan is placed upon the former, and thus a stack is built up so as entirely to fill the chamber with alternate ranges of the pots containing the lead and nitric acid, surrounded by and imbedded in the tan. Several ranges of these stacks occupy each side of a covered

1 Lugol's Essays, by Dr. O'Shaughnessy, p. 206.
2 Lugol's Essays, p. 207.
3 De Morbibus, lib. ii.
4 De Locupletibus.
5 Lib. v. cap. ciii.
6 Hist. Nat. lib. xxxiv.
Carbonate of Lead.

stack containing about 12,000 of the pots, and from 50 to 60 tons after the stack is built up the tan gradually heats or ferments, exhale vapour, the temperature of the inner parts of the stack r 150°, or even higher. The acetic acid is slowly volatilized, and sing readily through the gratings or folds of lead, gradually cor-
ze of the metal, upon which a crust of subacetate is successively inverted into carbonate, there being an abundant supply of car-
nished by the slow fermentative decomposition of the tanners' course of from 4 to 6 weeks the process is completed, and now, the stacks, the lead is found to have undergone a remarkable form of the castings is retained, but they are converted, with con-
se of bulk, into dense masses of carbonate of lead; this conver-
ces entire, at others it penetrates only to a certain depth, leaving as it were of metallic lead, the conversion being unequal in of the stack, and varying in its perfection at different seasons, and states of the atmosphere. The stacks are so managed that sissively being built up and unpacked. The corroded and con-
s, or cakes, are then passed through rollers, by which the car-
(white lead) is crushed and broken up, and the central core of (blue lead), if any remain, is easily separated: the white lead is ed to the mills, where it is ground up into a thin paste with water, ely reduced, by the process of elutriation or successive washings es, to the state of an impalpable powder; it is then dried in placed upon shelves in a highly-heated stove, and thus brought lasses easily rubbed between the fingers into a fine powder, in croscope does not enable us to discern the slightest traces of crys-
er. If intended for the use of the painter, it is next submitted to linseed oil; and it is found that a hundred-weight of this white into a proper consistence with 8 pounds of oil, whereas precipi-
requires 16 pounds of oil for the same purpose; the one covering h much more perfectly, and having so much more body than the sometimes supposed in this process that the oxygen and carbonic to form the carbonate of oxide of lead are derived from the of the acetic acid; but this is evidently not the case, for not more ads of real acetic acid exist in the whole quantity of the diluted in the several pots of each stack; and in 100 pounds of acetic not more than 47 to 48 pounds of carbon, whereas 6740 pounds tured to furnish the carbonic acid which should convert 50 tons of rage weight of that metal in each stack) into carbonate of lead, no doubt then that the carbon or carbonic acid must come from at the oxygen is partly derived from the same source, and partly sphere: the principal action of the acetic acid therefore is to form tions of subacetate of lead, which are successively decomposed ic acid; the action is, however, of a very remarkable description, es of lead, such as blocks of an inch or more thickness, are thus lverted through and through into carbonate, so that if due time is is no central remnant of metallic lead. The original texture of ch concerned in the extent and rapidity of the conversion. Rolled will not answer, and the gratings, coils, and blocks which are em-
cast-lead. The purest metal is also required; for if it contain lting white lead acquires a tawny hue, and if a trace of silver, it cceptible dinginess when it is subjected to the action of light."

es.—The form of the crystals of the native carbonate of it rhombic prism. Artificial carbonate is a heavy, snow-
less powder, or it occurs in white chalk-like masses. It is water, but dissolves in caustic potash. When heated it rbonic acid, and forms the yellow oxide.

P. aurelia.
PURITY.—Carbonate of lead of commerce is rarely usually adulterated with earthy or metallic sulphate baryta, or lead). These are detected by their insolubility nitric acid. Chalk (which is by some used to adulterate detected as follows:—Dissolve the suspected substance and precipitate the lead by hydrosulphuric acid. Boil the solution, in which will be contained nitrate of lime (if present), recognizable by oxalic acid or oxalate of p. 578).

Dissolved with effervescence in dilute nitric acid. What is potash is white, and is re-dissolved by excess of black on the addition of hydrosulphuric acid. It becomes yellow with the addition of charcoal, it is reduced to metallic lead. Ph.

It does not lose weight at a temperature of 212°: 68 grs. are dissolved in 150 minims of acetic acid diluted with a fluidounce of distilled water, the solution is not entirely precipitated by a solution of 60 grs. of soda. Ph. Ed.

Physiological Effects.—Its local effects are not entirely applied to ulcerated surfaces it acts as a desiccating substance: swallowed in large quantities it does not an irritant, like the acetate. Its constitutional effects are those of the other preparations of lead already described (see p. 704) that carbonate of lead more frequently produces colic than the acetate of lead—a circumstance Christison thinks may be owing to the great obstinacy of the impalpable powder adheres to moist membranous surfaces, consequent greater certainty of its ultimate absorption.

Uses.—It is never administered internally.

Externally it is employed as a dusting powder in children and lusty persons; but the practice is obj
UNGUENTUM PLUMBI CARBONATIS, E. D. Ointment of Carbonate of Lead. (Simple Ointment, 3v.; Carbonate of Lead, 3j. E.—Carbonate of Lead, reduced to very fine powder, 3j.; Ointment of White Wax, j. D. Mix.)—This ointment is valuable as a cooling and desicating application to excoriated surfaces or burns.

7. PLUM'BI NITRAS, E.—NITRATE OF LEAD.

Preparation.—The Edinburgh College gives the following directions for its preparation:—

Take of Litharge, 3j. Diluted Nitric Acid, Oj. Dissolve the litharge to a solution with the aid of a gentle heat. Filter, and set the liquor aside to crystallize. Concentrate the residual liquid to obtain more crystals.

The nitric acid combines with the protoxide of lead to form the nitrate of this metal.

Properties.—This salt crystallizes in regular octohedrons or modifications of these. It is soluble in water and alcohol. Its solution is sweet and austerely. The crystals loudly decrepitate by heat.

Characteristics.—When subjected to heat in a glass tube this salt gives off the reddish-brown vapour of nitrous acid. It possesses also other characters of a nitrate which have been before stated (p. 289). It is known to be one of the plumbeous salts by the before-mentioned tests for these substances (p. 790).

Composition.—This salt is anhydrous. Its composition is as follows:—

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Döbereiner</th>
<th>Berzelius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide of Lead</td>
<td>1</td>
<td>112</td>
<td>67.47</td>
<td>67.4</td>
<td>67.2225</td>
</tr>
<tr>
<td>Nitric Acid</td>
<td>1</td>
<td>54</td>
<td>32.53</td>
<td>32.4</td>
<td>32.7775</td>
</tr>
<tr>
<td>Crystallized Nitrate of Lead</td>
<td>1</td>
<td>166</td>
<td>100.00</td>
<td>100.0</td>
<td>100.0000</td>
</tr>
</tbody>
</table>

Physiological Effects.—Its general effects are similar to those of the other soluble salts of lead. Its local action on the animal tissues depends on its affinity for albumen and fibrin. In a solution of albumen it forms a white precipitate, composed, according to Assainge, of albumen, 89.45, and nitrate of lead, 10.55. This precipitate is soluble in a great excess of albumen, as well as in solutions of ammonia and some neutral salts, as acetate of potash.

Uses.—The Edinburgh College employs it in the preparation of chloride of Lead.

8. PLUM'BI ACETAS, L. E. D.—ACETATE OF LEAD.

History.—Raymond Lully and Isaac Hollandus were acquainted with this salt in the 16th century. It has been known by several appellations, as Sugar of Lead (Saccharum Saturni), Acetated Ceruse (Cerussa acetata), and Superacetate of Lead (Plumbi Superacetatas).

Preparation.—Though directions are given in the British Phar...
macopœias for its preparation, it is never made by the apothecary, but is procured from persons who manufacture it on a large scale.

The London College orders of Oxide of Lead, rubbed to powder, lbv. and 33.; Acetic Acid; Distilled Water, each Oiv. Mix the acid with the water, and add the oxide of lead to them, and, a gentle heat being applied, dissolve it; then strain. Lastly, evaporate the liquor, that crystals may be formed.

The Edinburgh College uses of Pyroligneous Acid (D. 1034) Oij.; Distilled Water, Oij.; Litharge, 3xiv.

The Dublin College employs of Carbonate of Lead, named Ceruse, any required quantity; Distilled Vinegar, ten times the weight of the Carbonate of Lead.

In the above processes the protoxide of lead combines with acetic acid, and forms a definite compound. In the Dublin process carbonic acid is set free.

Acetate of lead is sometimes procured by partially immersing lead in crude acetic acid. The metal attracts oxygen from the air, and the oxide thus formed unites with the acid.

Properties.—The crystals of this salt belong to the oblique prismatic system. Their taste is sweetish and astringent. In a dry and warm atmosphere they slightly effloresce, and are apt to be decomposed by the carbonic acid of the air, and thus to become partially insoluble. When heated they fuse, give out their water of crystallization, and, at a higher temperature, are decomposed; yielding acetic acid, Pyrocetic Spirit (Acetone, C₃H₃O), carbonic acid, inflammable gas, and water: the residuum is a pyrophoric mixture of lead and charcoal. Acetate of lead is soluble in both water and alcohol. The aqueous solution feebly reddens litmus, though it communicates a green colour to the juice of violets. "A solution of the neutral acetate is partially decomposed by carbonic acid: a small quantity of carbonate of lead is precipitated, and a portion of acetic acid is set free, which protects the remaining solution from further change."

Characteristics.—When heated with sulphuric acid, the vapour of acetic acid is disengaged. Its solution is known to contain lead in the tests for this metal already mentioned (vide p. 790). If a small quantity of acetic acid be added to the solution, a current of carbonic acid occasions no precipitate. The ordinary acetate of the above throws down a scanty white precipitate (carbonate of lead) with carbonic acid. When charred, it readily yields globules of metallic lead on the application of the blowpipe flame.

Composition.—The neutral acetate has the following composition:—

<table>
<thead>
<tr>
<th></th>
<th>Atom.</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Berzelius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide of Lead</td>
<td>1</td>
<td>112</td>
<td>36-9</td>
<td>36-72</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>1</td>
<td>51</td>
<td>36-8</td>
<td>36-27</td>
</tr>
<tr>
<td>Water</td>
<td>3</td>
<td>22</td>
<td>14-3</td>
<td>14-29</td>
</tr>
<tr>
<td>Crystallized Acetate of Lead</td>
<td>1</td>
<td>190</td>
<td>100-0</td>
<td>100-0</td>
</tr>
</tbody>
</table>

* Quinns, Traité de Chim., i. v. p. 173.
ACETATE OF LEAD.

Purity.—It should be readily and completely soluble in water. Sulphuric acid, or sulphuretted hydrogen in excess, being added to the solution, to throw down the lead, the supernatant liquor should be completely volatilized by heat: any fixed residue is impurity.

Dissolved by distilled water. By carbonate of soda a white precipitate is thrown down from the solution, and by iodide of potassium a yellow one; by hydrosulphuric acid it is blackened. Sulphuric acid evolves acetic vapours. By heat it first fuses, and is afterwards reduced to metallic lead. Ph. Lond.

Entirely soluble in distilled water acidulated with acetic acid: forty-eight grains thus dissolved are not entirely precipitated by a solution of thirty grains of phosphate of soda. Ph. Ed.

Physiological Effects. a. On Vegetables.—(Vide p. 791.)

b. On Animals.—Orfila found that in large doses the acetate of lead acted on dogs as an irritant, and caused vomiting, pain, and death. When the action was slower, and absorption took place, an affection of the nervous system was observed, marked by difficult progress, and in some cases convulsive movements. The mucous membrane lining the alimentary canal was found whitened (owing to the chemical influence of the poison), and, where the action was more prolonged, reddened. Injected into the veins, or applied to wounds, it affects the nervous system. Schloepfer produced colica pictorum, paralysis, and convulsions, in dogs, by the repeated use of small doses. Dr. A. T. Thomson gave successively, one, two, three, and six drachms to a dog without any ill effect.

c. On Man.—Applied to ulcers, mucous membranes, or other secreting surfaces, it acts as a desiccative and astringent. It reacts chemically on the albumen of the secretions and of the living tissues, and forms therewith compounds which are for the most part insoluble in water and acids. Hence the difficulty with which this salt becomes absorbed. Some of its compounds with organic substances are, however, rendered soluble in water by acids (as the acetic, hydrochloric, and lactic). In large quantities, acetate of lead taken into the stomach acts as an irritant, and causes symptoms of inflammation of the stomach, viz. vomiting, burning in the gullet and stomach, and tenderness at the pit of the stomach; but these are usually accompanied with colica pictorum, and are not unfrequently followed by convulsions, coma, or local palsy. Ten grains taken daily for seven days caused tightness of the breast, metallic taste, constriction of the throat, debility, sallow countenance, slow respiration and circulation, turgid and tender gums, ptyalism, tightness and numbness in the fingers and toes, no nausea, pains of the stomach and abdomen, bowels confined. The observations of Dr. A. T. Thomson and others (Van Swieten, Reynolds, Latham, Laidlaw, Daniell, and others) are in accordance with these. The observations of Dr. A. T. Thomson and others (Van Swieten, Reynolds, Latham, Laidlaw, Daniell, and others) are in accordance with these.

1 Turick, Gén.
2 Quoted by Dr. Christison, p. 507.
3 Lond. Med. Gaz. x. 691.
4 Dr. C. G. Mitsherlich, Brit. Ann. of Med. i. 304.
5 Christison, Treat. on Poisons, 3d edit. p. 512.—In a recent case an ounce of acetate of lead in solution, caused, in a young girl, collapse and syncope followed by vomiting and convulsions. Orfila
6 Detected lead in the urine (Pharm. Trans. No. vi. p. 110).
8 Commentaries, vol. x. p. 235, Eng. ed. Van Swieten says colic was induced by the use of a teaspoon of lead in an enemix every day for ten days.
Christison, &c.) have, however, shewn that injurious effects from the use of large doses are very rare. I have repeatedly given five grains three times a day for ten days, without inconvenience. This dose was taken for a fortnight. The blue line on the gums (see p. 792) was then very distinct, and the patient complained of griping pains in the bowels. Dr. Christison has given eighteen grains daily for eight or ten days without any unpleasant symptoms whatever, except once or twice slight colic. During its employment the gums should be frequently examined, in order that the earliest appearance of the blue line, before referred to, may be detected. Whenever this salt gives rise to any obvious effects, they are those of the plumbous preparations in general, and which have been already described (p. 791). Its medicinal action, therefore, is sedative and astringent.

Uses.—Acetate of lead is administered internally to diminish the diameter of the capillary vessels, and lessen circulation, secretion, and exhalation. Thus, we employ it in profuse discharges from the mucous membranes; as from the lungs, alimentary canal, and even the urino-genital membrane. In the mild cholera, so common in this country towards the end of summer, I have found acetate of lead in combination with opium most efficacious where the chalk mixture failed. I have used this combination in a few cases of malignant cholera, and in one or two with apparent benefit. In colliquative diarrhoea and chronic dysentery it occasionally proves serviceable. In phthisis it has been found beneficial, but only as a palliative; namely, to lessen the expectoration, check the night-sweats, or stop the harassing diarrhoea. Dr. Latham speaks most favourably of the use of sugar of lead and opium in checking purulent or semipurulent expectoration. I have repeatedly seen it diminish expectoration, but I have generally found it fail in relieving the night-sweats, though Fouquier supposed it to possess a specific power of checking them; they are more frequently benefited by diluted sulphuric acid. In sanguineous exhalations from the mucous membranes, as epistaxis, haemoptysis, and haematemesis, and in uterine hemorrhage, it is employed with the view of diminishing the calibre of the bleeding vessels, and thereby of stopping the discharge: and experience has fully established its utility. It may be employed in both the active and passive states of hemorrhage. It is usually given in combination with opium. In bronchitis, with profuse secretion, it proves exceedingly valuable. It has been employed also as a remedy for mortal salivation. It had been applied for this affection in the form of gargle by Somnè. Unless care be taken to wash the mouth care

* In the Journ. de Chim. Méd. (t. vi. 21, 3rd Série, p. 57), a case is related of death from this salt of a patient, a boy of 15 years of age, affected with a phthisical malady, took from a 3 gr. in gr. 6. He times a day, until he had taken 150 grs. without any ill effect. A month after he was seized with colic, which was followed by paralysis and death.

¶ Also, Mitchell, ibid. p. 69; and Latham, op. cit.

‡ Archiv. Gen. de Méd. 1. 458.
y after its use, it is apt to blacken the teeth. On the same prin-
les that we administer it to check excessive mucous discharges, it
been employed to lessen the secretion of pus in extensive absces-
nded with hectic fever.
There are some other cases in which experience has shewn acetate
lead is occasionally serviceable, but in which we see no necessary
ction between its obvious effects on the body and its remedial
ers; as in epilepsy, chorea, intermittents, &c.
As a topical remedy, we use acetate of lead as a sedative, astringent,
desiccant. An aqueous solution of it is applied to inflamed parts,
to secreting surfaces, to diminish profuse discharges. Thus, we
it in phlegmous inflammation, in ophthalmia, in ulcers with
fuse discharges, in gonorrhœa, and gleet. In the sloughing and
eration of the cornea which attend purulent and pustular ophthal-
its use should be prohibited, as it forms a white compound which
eposited on the ulcer, to which it adheres tenaciously, and in the
ling becomes permanently and indelibly imbedded in the structure
the cornea. The appearance produced by this cause cannot be
ken: its chalky impervious opacity distinguishes it from the
ly semi-transparent structure of even the densest opacity pro-
ced by common ulceration. The white compound consists of
[acetate?] of lead, animal matter, much carbonate of lead,
ce of phosphate and chloride of the same metal.

Administration.—Acetate of lead may be administered internally
doses of one or two grains to eight or ten grains, repeated twice or
ice daily. Dr. A. T. Thomson advises its exhibition in diluted
stilled vinegar, to prevent its change into carbonate, which renders
more apt to occasion colic. It is usually exhibited in the form of
frequently in combination with opium. Acetate of lead and
ium re-act chemically on each other, and produce acetate of mor-
and meconate, with a little sulphate, of lead. Experience, how-
fully established the therapeutic value of the combination.
sulphuric acid (as in infusion of roses), sulphates (as of magnesia,
ad soda, and alum), phosphates, and carbonates, should be prohibited.
sulphuric acid, the sulphates, and phosphates, render it inert: the
bonates facilitate the production of colica pictorum. Common
especially spring) water, which contains sulphates, carbonates, and
ides, is incompatible with this salt. The liquor ammonice ace-
tis is incompatible with it, on account of the carbonic acid usually
used through this solution.

1. *Ceratum Plumbi Acetatis*, L.; *Unguentum Plumbi Acetatis*,
D.; *Unguentum Saturninum*; *Cerate of Sugar of Lead*. (Acetate of
ad, powdered, 3ij.; White Wax, 3ij.; Olive Oil, 13vij. L.—Simple-
ment, 3xx.; Acetate of Lead, in fine powder, 3j. E.—Ointment of
ite Wax, Ibis.; Acetate of Lead, 3j. D. Mix).—An excellent

Dr. Apljohn, *op. cit.* p. 492.
soothing application to irritable ulcers, painful excoriations, and blistered surfaces.

2. **PILULE PLUMBI OPIATE.** E. Acetate of Lead and Opium Pills. Acetate of Lead, six parts; Opium, one part; Conserve of Red Roses, about one part. Beat them into a proper mass, which is to be divided into four-grain pills.—This pill may be made also with twice the quantity of opium).—Each pill contains three grains of acetate of lead, and half a grain of opium. I have before stated that, notwithstanding a mutual decomposition is effected between acetate of lead and opium, the resulting compound is a most efficacious one. The Edinburgh College, therefore, has done wisely in countenancing the combination, but the permission to vary the strength of the pill is highly objectionable. In hemoptysis, profuse secretion of bronchial mucus, obstinate diarrhea, and dysentery, its effects are most valuable. Dose, one to three grains.

9. **LIQUOR PLUM'BI DIACETATIS, L.—SOLUTION OF DIACETATE OF LEAD.**

(Plumbi Diacetatis Solutio, E.—Plumbi Subacetatis Liquor, D.)

HISTORY.—This compound was known to Basil Valentine in the fifteenth century. It owes its reputation, as a medicine, principally to the praises bestowed on it by M. Goulard, in the latter end of the last century. He called it Extract of Saturn (Extractum Saturni). It is frequently termed Goulard's Extract.

PREPARATION.—The following are the directions of the British Colleges for its preparation:

The London College orders, of Acetate of Lead, lbij. and 3ij.; Oxide of Lead, rubbed to powder, lbij. and 3iv.; Water, Ovj. Boil them for half an hour, frequently stirring, and when the liquor is cold, add of distilled water as much as may be sufficient to measure with it six pints; lastly, strain [the solution].

The Edinburgh College employs, of Acetate of Lead, 3vj. and 5vj.; Litharge, in fine powder, 3iv.; Water, Oiss.

The acetate of lead combines with an additional equivalent of oxide of lead to form the diacetate. This process yields an uniform product.

The Dublin College employs, of Litharge, one part; Distilled Vinegar, two parts. Boil together in a glass vessel until eleven parts of the fluid remain; then let the liquor rest, and when the impurities have subsided, let it be filtered.

In this process the acetic acid unites with the oxide of lead to form a subsalt. This method of preparation is objectionable, since the strength of the solution depends on the strength of the vinegar, which is subject to variation.

A Treatise on the Effects and various Preparations of Lead, particularly of the Extract of Saturn for different Chirurgical Disorders, 2nd ed. London: 1778.
DIACETATE OF LEAD.

Properties.—It is a transparent and colourless liquid. Prepared according to the London Pharmacopoeia, its specific gravity is 1·260; according to the Dublin Pharmacopoeia, it is 1·118. Its taste is acid and astringent. By evaporation it yields crystals of the diaceto-l-lead, which, according to Dr. Barker, are flat rhomboidal, with dihedral summits.

Characteristics.—The presence of lead and acetic acid in this solution may be known by the tests before mentioned (p. 790) for acetate of lead. In the neutral acetate it is distinguished by the copious precipitate which it produces with carbonic acid, as well as with mucilage. On evaporation of the diacetate of lead forms a precipitate with most vegetable colouring matters.

Composition.—This liquid is an aqueous solution of the diacetate of lead. The solid hydrated diacetate has, according to Dr. Thomson, the following composition:

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide of Lead</td>
<td>2</td>
<td>224</td>
<td>61·37</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>1</td>
<td>51</td>
<td>13·07</td>
</tr>
<tr>
<td>Water</td>
<td>10</td>
<td>90</td>
<td>24·60</td>
</tr>
<tr>
<td>Solid Hydrated Diacetate of Lead</td>
<td>365</td>
<td>100·00</td>
<td></td>
</tr>
</tbody>
</table>

Utility.—When this compound has been prepared with care, it has a brown colour.

p. gr. is 1·260. Its other properties are similar to those of the last preparation. Ph. Lond. Leucoproteins precipitate is gradually formed when the breath is propelled through the naso-pharynx. Ph. Ed.

Physiological Effects.—Its effects are analogous to the acetate. When administered internally it acts on the living tissues depends on its affinity for albumen and fibres. In a solution of albumen it occasions a white precipitate, composed of albumen and diacetate of lead. According to Saussure, the precipitate caused in an albuminous liquor by the state of lead consists of albumen 71·67, and trisacetate of lead 28·33. This precipitate is soluble in an excess of the solution of diacetate, as well as in concentrated solutions of several salts of lead and nitrate of potash, and of caustic ammonia. Dr. Thomson asserts, from his experiments on animals, that the result has more tendency to cause colic than the neutral acetate, as it is more readily converted into carbonate of lead. It is employed in medicine as a local astringent and sedative. Paralysis due to have resulted from its external use.

Uses.—It is employed, when diluted, to promote the resolution of inflammation, to check profuse discharges from suppurring, ulcerated, and mucous surfaces, and to alleviate local pains. Thus
it is applied to parts affected with either phlegmonous or erysipelatous inflammation, to whitloes, to inflamed tendons, aponoeuroses, or absorbent glands; in ophthalmia, to contusions, sprains, burns, wounds (whether incised or lacerated), to blistered surfaces, ulcers, abscesses, &c.

It is said to have proved successful, when administered internally, in hydrophobia.

Administration.—It is employed diluted with water, added to poultices, or mixed with fatty matters, and applied as an ointment.

4. Liquor Plumbi Diacetatis Dilutus, L. Plumbi Subacetatis Liquor compositus, D. (Solution of Diacetate of Lead, f3iss.; Distilled Water, Oj.; Proof Spirit, 3ij. M.)—This preparation is an imitation of the Water of Saturn, or Vegeto-Mineral Water of Gouard. It is commonly termed, in the shops, Gouard Water. It should be transparent and colourless; but when prepared with common water it is more or less milky, owing to the formation of carbonate, sulphate, and chloride of lead. The small quantity of spirit employed can be of no service. The quantity of the solution of diacetate of lead employed in making Gouard water is much too small; it should be, at least, three times, and in some cases I have used six times as much. I have never seen any ill effects from its use, though it is said to have become absorbed in some cases. The same objection applies to the use of this compound as to that of the neutral acetate, in ulceration of the cornea (vide p. 509).

Gouard water is used as a cooling, sedative, and astringent wash in the cases already enumerated for the Gouard’s extract. A poultice, composed of crumb of bread, boiled in Gouard water, is sometimes a very useful application to phlegmons, painful wounds, irritable ulcers, &c. &c.

2. Ceratum Plumbi Compositum, L. (Solution of Diacetate of Lead, f3ij.; Wax, 3iv.; Olive Oil, Oss.; Camphor, 5ss. Mix the melted Wax with eight fluidounces of the Oil; then remove them from the fire, and, when first they begin to thicken, gradually add the solution of Diacetate of Lead, and stir them constantly with a spatula until they cool; lastly, with these mix the Camphor dissolved in the rest of the oil.) This is the Cerate of Saturn of M. Gouard, and is commonly called Gouard’s Cerate. It is employed as a dressing to wounds and ulcers, for the purpose of allaying irritation and appeasing pain. With the same views it is also applied to excoriated surfaces, burns, scalds, blistered surfaces, and irritable cutaneous affections. Opium is sometimes advantageously combined with it.

3. Ceratum Saponis, L.—This contains a subacetate of lead. It has been before described (p. 509).
10.EMPLAS'TRUM PLUM'BI, L.—PLASTER OF LEAD.
(Emplastrum Lithargyri, H. D.)

History.—This compound was known to the ancients: both
Pliny and Celsus gave a formula for a plaster used by the Roman
surgeons, which is almost identical with that for the officinal plaster
of lead. It is commonly sold in the shops as Diachylon or Dia-
chylum.

Preparation.—The following are the directions of the British
Colleges for its preparation:

The London College orders of Oxide of Lead, rubbed to very fine powder, lbvj.;
Olive Oil, Cong. j.; Water, Oij. Boil them together with a slow fire, constantly
stirring, until the Oil and Oxide of Lead unite into the consistence of a plaster;
but it will be proper to add a little boiling water, if nearly the whole of that
which was used in the beginning should be evaporated before the end of the
boiling.

The Edinburgh College orders of Litharge, in fine powder, 3v.; Olive Oil,
fr3ij.; Water, fr3ij. Mix them; boil and stir constantly till the oil and
litharge unite, replacing the water if it evaporate too far.

The process of the Dublin College is similar to that of the London College.

Olive Oil is a compound of Oleine (Olate of Glycerine) and Margarine (Margarate of Glycerine). When subjected to heat with
litharge and some water, the oxide of lead combines with the oleic
and margaric acids, and sets free the glycerine, which remains dis-
solved in the water. The mixture of oleate and margarate of lead
constitutes emplastrum plumbi. The water employed in this process
serves two purposes: it moderates the heat and facilitates the union
of the acids with the oxide of lead.

Materials.

<table>
<thead>
<tr>
<th>Water</th>
<th>Oleine</th>
<th>Oleic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olive Oil</td>
<td>Glycerine</td>
<td>Margarine</td>
</tr>
<tr>
<td>Oxide of Lead</td>
<td>Oxide of Lead</td>
<td>Margarate of Lead</td>
</tr>
</tbody>
</table>

Products.

- Solution of Glycerine.
- Olate of Lead.
- Margarate of Lead.
- Pitch.

Properties.—It is met with in the shops in cylindrical rolls, of a
greyish or yellowish-white colour, brittle when cold, but softening
and ultimately fusing by heat. It is insoluble in water, and nearly
so in alcohol. It has no taste, but a slight though peculiar odour.

Characteristics.—When heated it fuses, then decomposes, gives
out inflammable gas, and leaves a carbonaceous residue, which, when
heated in a close vessel, yields globules of lead. Ether dissolves
oleate but not margarate of lead.

Composition.—Lead plaster consists of Oxide of Lead, Oleic Acid,
and Margaric Acid. The proportions have not been precisely ascer-
tained. The two compounds which oleic and margaric acids form with oxide of lead are probably basic salts.

Effects and Uses.—This plaster is employed in surgery, on account of its adhesiveness and the mildness of its local action; for it rarely excites irritation. It is used to keep the edges of wounds together in persons with delicate skins. Spread on calico it forms a good strapping for giving support and causing pressure in ulcers of the leg,—a most successful mode of treating them, and for which we are indebted to Mr. Baynton.

In pharmacy it serves as a basis for various other plasters.

1. Emplastrum Resinæ, L.; Emplastrum Resinosum, E.; Emplastrum Lithergyri cum Resina, D.; Resin Plaster. (Resin, lbs. [5j. E.]; Lead Plaster, lbij. [3v. E.]; lbijss. D). To the plaster of lead, melted with a slow fire, add the resin, powdered, and mix).—This is the common Adhesive Plaster (Emplastrum Adhesivum), and is kept in the shops ready spread. It is employed to retain the lips of wounds in contact, as in cuts, surgical operations, &c. It is more adhesive than lead plaster, but at the same time somewhat more irritating, and occasionally causes excoriation. It is employed as a strapping for dressing ulcers on Baynton’s principles.

2. Emplastrum Saponis, L. E. D. This contains lead plaster, (see p. 569).

3. Unguentum Plumbi Compositum, L. (Prepared Chalk, 3vij.; Distilled Vinegar, 5vj.; Plaster of Lead, lbij.; Olive Oil, OJ. Mix the chalk with the vinegar; and, when the effervescence has ceased, add gradually the solution to the plaster and oil melted with a slow fire, and stir constantly until they are cooled).—By the action of the acetic acid on the chalk, an acetate of lime is procured, and carbonic acid evolved, and the acetate of lime is then mixed with lead plaster and oil. This compound is an imitation of Kirkland’s Neutral Ointment, used as a dressing to indolent ulcers. It is employed by Mr. Higginsbottom, under the name of Neutral Ointment, as a defence for ulcers after the application of nitrate of silver.

Order XXVI.—Zinc and Its Compounds.

I. Zin’cum, L.E.D.—Zinc.

History.—Although the ancients were acquainted with the method of converting copper into brass by means of an ore of zinc, yet we have no positive evidence that they were acquainted with metallic zinc, one of the constituents of this alloy. Albertus Magnus, who died in 1280, is the first writer who expressly mentions this metal.1

1 Essay on the Use of Nitrate of Silver, 2nd ed. p. 119.
2 Beckmann, in his History of Inventions and Discoveries, vol. iii. p. 71, has given a good account of the history of zinc.
3 An anonymous reviewer (British and Foreign Medical Review, vol. viii. p. 301), in commenting on the above paragraph, observes, that a passage in Strabo authorises the belief that the ancients knew this metal in its separate state, and that it is the ?alec silver (?αλέζιρον) of the same geographer.
Zinc.

Dumas had various appellations, such as Contrefeyn, Golden Marl, Indian Tin (Stannum Indicum), Spiaultier, Speltre or Spelter trum).

Natural History.—It occurs only in the mineral kingdom. It is found in the form of Oxide (Red Zinc), of Sulphuret (Blende or Jack), of Carbonate (Calamine), of Sulphate (White Vitriol), Aluminate (Electric Calamine), and Aluminate (Automalite or Alite).

Preparation.—Zinc is usually procured from the native sulphuret carbonate of that metal. It may also be obtained from the sulphuret and carbonate are roasted; by this process the sulphuret is transformed into sulphurous acid, which is, and the zinc is oxidized; while the carbonate loses carbonic acid and water. The oxide is then mixed with some carbonaceous substance and submitted to heat, by which the metal is reduced and vaporized. Sometimes the reduction is effected in a covered earthen crucible, the bottom of which is perforated by a tube, which terminates over a vessel of water situated in an inclosure below the furnace. The gaseous products and zinc escape through the tube; and the latter is condensed in the water. This is called *distillatio per decensum.* In Silesia, however, *distillatio per sum* is employed.

The zinc used in this country is principally imported in ingots from Silesia, by way of Hamburg, Antwerp, Danzig, &c.

Properties.—It is a bluish-white metal, of considerable lustre. It crystallizes in four-sided prisms and needles; its texture is lamellar and crystalline. Its sp. gr. is from 6.8 to 7.2. At common temperature it is tough; from 212° to 300° it is ductile and malleable, but readily rolled into thin leaves (Sheet Zinc); at 400° it is brittle that it may be reduced to powder. It readily fuses, and, at high heat, may be volatilized.

Characteristics.—It is soluble in dilute sulphuric acid, with the formation of hydrogen gas. Ferrocyanide of potassium forms, in solution, a gelatinous white precipitate (ferrocyanide of zinc): if present the precipitate is bluish-white. If the liquid be al, hydroxysulphuric acid and the soluble hydroxysulphates also form a white or yellowish-white precipitate (hydrated sulphuret of zinc). Alkalies and their carbonates likewise throw down white precipitates; that occasioned by the alkalies is soluble in excess of alkali. The delicacy of these tests is, according to Devergie, as follows:

<table>
<thead>
<tr>
<th>Degree of Dilution</th>
<th>Ferrocyanide of Potassium</th>
<th>Ammonia</th>
<th>Potash, or Carbonate of Ammonia</th>
<th>Carbonate of Potash, or Hydrosulphate of Ammonia</th>
<th>Hydrosulphuric Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td></td>
<td>6,000</td>
<td>8,000</td>
<td>10,000</td>
<td>15,000</td>
</tr>
</tbody>
</table>

* Dumas, *Traité de Chimie, iv. p. 82.*
* Méd. Litg. ii. 737.*
PURITY.—The zinc of commerce is never pure. It always contains iron and carbon, and not unfrequently traces of arsenicum. By the action of diluted sulphuric acid the zinc and the iron are dissolved, while the arsenicum, when present, escapes in the form of arsenuioretted hydrogen gas. A black matter remains undissolved, which has a carbonaceous appearance, but contains iron.

Almost entirely dissolved by diluted sulphuric acid. The solution is free from colour. Its other properties as above [see Zinci sulphas]. The specific gravity is 6°86. Ph. Lond.

It dissolves in a great measure in diluted sulphuric acid, leaving only a scanty grayish-black residuum; this solution presents the characters just given [see Zinci sulphas] for the solution of sulphate of zinc. Ph. Ed.

Physiological Effects.—In the metallic state it is inert. The compounds of zinc are somewhat analogous in their action on the system to those of copper, silver, and bismuth, but are much less energetic. They act topically, according to their degree of concentration, as desiccants, astringents, irritants, and caustics. Taken internally, they excite, more or less readily, nausea and vomiting, and in large doses operate as irritant and caustic poisons. They exercise a specific influence over the nervous system, though this is much less obvious than in the preparations of the other metals just referred to. The stupor and inactivity, mentioned by Orfila, as being produced by the sulphate, are evidence of the affection of the nervous system. The antispasmodic power evinced by zinc, in certain diseases, can only be explained by referring it to the action of this metal on the nervous centres.

Uses.—As topical agents we employ the compounds of zinc as caustics, astringents, and desiccants. Thus the chloride is used as a caustic; the sulphate and acetate as astringents; and the oxide and carbonate as desiccants.

Internally, the compounds of zinc are administered in large doses to excite vomiting; in smaller doses as tonics and antispasmodics in intermittent diseases and chronic affections of the nervous system.

2. ZIN'C'I OXY'DUM, L. D.—OXIDE OF ZINC.

(Zinci Oxidum, E.)

History.—The oxide was first prepared by Hellot in 1733. It has received various names, some of them of a fantastic nature; as Nihil album, Lana philosophica, Pompholyx, Flowers or Calx of Zinc (Flores seu Calx Zinci).

Natural History.—Oxide of zinc is found in America, mixed or combined with the sesquioxide of manganese, and constituting the Red Oxide of Zinc of the mineralogist. It is also found in various localities, in combination with carbonic, sulphuric, or silicic acid.

Preparation.—All the British Colleges give directions for the preparation of this compound.

* Turicul, Gén.
oxide of zinc.

London College orders of Sulphate of Zinc, lbj.; Sesquicarbonate of Ammonia, ijiss.; Distilled Water, cong. iiij. Dissolve the Sulphate of Zinc and carbonate of Ammonia, separately, in twelve pints of the distilled Water, then mix. Wash what is precipitated frequently with water; and, burn it for two hours in a strong fire.

Edinburgh College employs of Sulphate of Zinc, 3ixj.; Carbonate of Ammonia, 3vj. The process is otherwise the same as that of the London College.

These processes double decomposition takes place; sulphate of amonia is formed in solution, and carbonate of zinc precipitates. Solution of the carbonic acid of the sesquicarbonate of ammonia is.

<table>
<thead>
<tr>
<th>IALS.</th>
<th>COMPOSITION</th>
<th>PRODUCTS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>gnicarb.</td>
<td>3 eq. Carbonic Acid 22</td>
<td>1 eq. Carbonic Acid 22</td>
</tr>
<tr>
<td>nia. 100</td>
<td>2 eq. Carbonic Acid 44</td>
<td>2 eq. Sulphate of Ammonia 114</td>
</tr>
<tr>
<td>... 160 (2 eq. Oxide of Zinc 80)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carbonate of zinc is decomposed by the subsequent ignition, carbonic acid expelled, leaving the oxide.

Dublin College directs Oxide of Zinc to be prepared as follows:—Take of the metal some portion of zinc, and throw it into small fragments, any required quantity. Let portions of the metal be thrown at separate intervals of time into a crucible heated to white-hot, of sufficient depth; its mouth inclining somewhat toward the door of the furnace; and after the injection of each piece of zinc, let another crucible be inverted over that which receives the metal, but loosely, that the air may be excluded: let the sublimed light powder and the whitest part of it be reserved for use.

The process the metal attracts oxygen from the air, and is thereby converted into oxide of zinc.

Manufacturing chemist who prepares oxide of zinc (so called) tells me that he obtains it from a solution of chloride of zinc, he procures from the workers of palladium. This liquid is with small pieces of zinc and some caustic soda, to get rid of the liquor; and to the clear liquor is then added a solution of carbonate of soda (soda ash), by which the white carbonate of zinc is precipitated. This is washed, dried, and sold as oxide of zinc.

Properties.—The form of the crystallized native oxide of zinc (being the oxides of iron and manganese) is a right rhombic block.

Artificial oxide of the Pharmacopoeia is a white, or, when heated, a yellowish-white, tasteless, odourless powder. It is fusible, yielding a yellow glass, and at a white heat is volatilized. When mixed with charcoal it is readily reduced. It is insoluble in water, but readily dissolves in most acids and in alkalis. It forms two series of salts: one (the zincic salts), in which it is the base; a (zinicate) series, in which it acts the part of an acid.

Characteristics.—It dissolves in dilute sulphuric acid. The chemical reactions of the solution have been already detailed (p. 815).
of caustic ammonia or potash, which should be con
in an excess of the precipitant.

If the substance sold as oxide of zinc have be
adding a caustic alkali to a solution of sulphate of
found to be in reality a subsulphate instead of an
solution in nitric acid yields traces of containing sul
tested with a salt of baryta.

Oxide of cadmium has been sometimes found in
mistaken for arsenious acid. Iron and manganese
present in oxide of zinc, and communicate a yellow t
oxide is,—

White: tasteless: entirely soluble in diluted nitric acid with
this solution is not affected by nitrate of baryta, but gives with
precipitate entirely soluble in an excess of the test. Ph. Ed.

Physiological Effects. a. On Animals.—Oral
three to six drachms of it to small and weak dogs
tacked with vomitings, without suffering much.

β. On Man.—Applied to ulcerated or other secre
tacts as a desiccant and astringent substance. On
insolubility, the absorption of it must be very slow.

in the stomach in large doses, it acts as a slight irritant
vomiting, and sometimes purging. It is said to ha
occasional giddiness and temporary inebriation. In
may be taken for a considerable period without caus
effects. Sometimes, under its employment, certain n
nervous system (as epilepsy, chorea, &c.) subside;
infer that it exercises some specific influence over th
it is, therefore, termed tonic, antispasmodic, and sed
nature of its influence is not very obvious, and is infer
OXIDE OF ZINC.

...took daily, at an average, twenty grains of oxide till he had consumed 3246 grains, which must have taken him about five months. At the end of this time he was found of a pale, earthy hue, wasted way, and almost idiotical: his tongue was thickly coated, the bowels were constipated, the inferior extremities cold and edematous, the abdomen tumid, the superior extremities cold and shrivelled, and eir skin dry, like parchment; the pulse was about sixty, thready, and scarcely perceptible. Under the use of purgatives, a light nutritive diet, with tonic and diuretic medicines, he rapidly recovered, but he remained subject to epileptic attacks.

Uses.—Internally it has been commended in some spasmodic seases, viz. epilepsy, chorea, hysteria, catalepsy, and hoopings; and in some painful affections, as neuralgia and gastrodynia. Though occasionally serviceable in some of these maladies, it has so frequently failed, that practitioners have ceased to place much confidence in it.

Externally, it is employed in the form of powder, or lotion, or ointment. As a dusting powder it is useful, by its mild, absorbent, and esiccant properties, and is applied to impetiginous and other chronic diseases of the skin, attended with profuse secretion. It is also used to allay or prevent excoriation in children and bedridden persons, and to remove chaps and cracks of the nipples. In painful ulcers, with copious discharge, it is not unfrequently beneficial by its desiccant and sedative properties. Diffused through water or a mucilaginous solution (in the proportion of two drachms of the oxide to six or eight ounces of liquid), it is occasionally useful in chronic ophthalmia, especially ophthalmia tarsi. Sommé employed an injection, composed of half an ounce of oxide and two pints of water, in gonorrhœa and leucorrhœa, with success.

Administration.—Internally, it is administered in the form of pill powder, in doses of from two or three grains gradually increased to eight, ten, or more.

1. INGUENTUM ZINCI, L. E.; Unguentum Zinci Oxydi, D. (Oxide Zinc, 5 j.; Lard, 5 vy. M. L.—The Edinburgh College substitutes Liniment for Lard.—The Dublin College uses of Ointment of White Wax, lb. j.; Oxide of Zinc, prepared in the same manner as alk, 5 j. M.)—This compound is employed as a mild drying ointment in porrigio, impetigo, and other skin diseases attended with prodischarges, after extensive burns, blisters, sinapisms, &c.; to suppurate ulcers with excessive secretion, to the eye when affected with trichiasis, &c.

2. ZINCI OXYDUM IMPURUM.—This substance is known in the shops under the name of Tuttia (Tutia seu Tuthia), or Furnace Cadmia (Cadmium seu factitia). It is found in the chimney of the fur...
nace in which zinc ores are roasted, or in which zinciferous lead ores are smelted. When prepared by levigation and elutriation it is called Prepared Tuttty (Oxydum Zinci impurum preparatum; Tutia Prepara-

tata). It is applied as a dusting powder, or as a cooling ointment
(Unguentum Oxydum Zinci impuri; composed of Simple Limiment or
Lard, 5 parts; Tuttty, 1 part; M.) to excoriated surfaces.

3. ZINCI CHLORIDUM.—CHLORIDE OF ZINC.

History.—This compound, which has been long known to che-
mists, was first introduced into medicine by Papenguth a, and subse-
quently has been recommended by Professor Hancke, of Breslau b,
and by Dr. Canquoin, of Paris c. It is termed Muriate, Hydrochlorate,
or Butter of Zinc.

Preparation.—The easiest and cheapest method of obtaining it is
by dissolving zinc, or its oxide, in hydrochloric acid, evaporating to
dryness, and fusing in a glass vessel with a narrow mouth, as a Flo-
rence flask. In solution it is obtained as a secondary product in the
preparation of some other metals, as of palladium (see p. 817).

Properties.—It is a whitish-grey semi-transparent mass, having
the softness of wax. It is soluble in water, alcohol, and ether. It
is fusible; and, at a strong heat, may be sublimed and crystallized in
needles. It is very deliquescent. It unites with both albumen and
gelatine to form difficultly soluble compounds, and hence it occasions
precipitates with liquids containing these principles in solution. A
patent has been obtained by Sir William Burnett for the preservation
of wood by a solution of the chloride of zinc.

Characteristics.—Dissolved in water it may be recognised to be a
chloride by nitrate of silver (see p. 226). That zinc is the base of
the salt may be shewn by the tests already mentioned for the salts of
this metal (p. 815).

Composition.—Its composition is as follows:—

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>J. Davy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc</td>
<td>1</td>
<td>32</td>
<td>47</td>
</tr>
<tr>
<td>Chlorine</td>
<td>1</td>
<td>36</td>
<td>53</td>
</tr>
<tr>
<td>Chloride of Zinc</td>
<td>1</td>
<td>68</td>
<td>100</td>
</tr>
</tbody>
</table>

Physiological Effects.—Its local action on living tissues is that
of a caustic or escharotic, depending partly on its affinity for albumen
and gelatine; so that when placed in contact with living parts into
whose composition these organic compounds enter, the chloride
exercising its affinity, destroys the life of the part, and unites
with the albuminous and gelatinous matters present, and forms the
an eschar. Other chemical changes of a comparatively unimportant

b Rust's Magazin, 1826, Bd. 23. S. 373.
c Dr. Alex. Urn, Lond. Med. Gaz. vi. 521.
ure are also effected: thus, various salts found in the solids or acids of the part may be decomposed. For example, when the chloride is applied to a cancerous sore, it decomposes the carbonate of ammonia found in the secretion of the sore. The effects produced by the application of chloride of zinc are the owing:—Soon after it has been applied a sensation of warmth is in the part, quickly followed by violent burning pain, which continues for seven or eight hours; that is, until the parts in contact with the chloride are dead. A white eschar is now observed, which usually separates in from eight to twelve days. Unless used in the neighbourhood of loose cellular tissue, there is rarely much swelling. As a caustic, chloride of zinc is not inferior in power to chloride of antimony; nay, Vogt says it appears to him to be more powerful to penetrate deeper. It decomposes the organic tissues as quickly as the nitrate of silver, but excites more burning, and for a longer time, owing to its action extending to parts placed more deeply; for it is well known that the operation of the nitrate is confined to superficial parts. Both Vogt and Canquin agree that chloride of zinc, besides corroding the parts with which it is in contact, exercises an influence over the vital actions of neighbouring parts. To this circumstance is owing, in great part, the efficacy of chloride in various diseases in which it has been applied, and especially the appearance of the sore after the separation of the eschar. There is no danger of any constitutional disorder arising from the ingestion of the poison, as is the case with the arsenical and mercurial caustics.

Taken internally, in large doses, it acts as an irritant or caustic, and affects the nervous system. Thus it produces a burning sensation in the stomach, nausea, vomiting, anxiety, short breathing, all quick pulse, cold sweats, fainting, and convulsions. Taken in small doses, no obvious effects are produced, except sometimes amelioration of certain diseases. It is supposed, in these cases, to influence the nervous system.

Uses.—Internally chloride of zinc has been given in small, but finally-increased doses, in scrofula, epilepsy, chorea, and (in combination with hydrocyanic acid) in neuralgia of the face. Commonly, however, it is employed externally: thus Papenguth uses a dilute solution of it as a lotion in fistulous ulcers of a scrofulous nature. As a caustic it has been applied, by Professor Hanke Dr. Canquin, to produce an issue, to destroy navi materni, and, by application to parts affected with malignant diseases, such as hematodes and cancer, or to other intractable forms of disease, as old syphilitic or scrofulous ulcers. The benefit is supposed to depend merely on the escharotic effect, but on the chloride in a new action in the surrounding parts.

Administration.—Internally it may be given in doses of one or two grains. Hupeiland recommends it to be taken dissolved in ether;

4 Pharmacodynamik, i. 363. 2nd Ed.
his formula for the *Aether Zinci*, as it is called, is the following:—
1. Zinci Chlor. 3 ss.; Alcoholis, 5 j.; Ætheris Sulph. 5 j. Post aliquot dies decanta. The dose of this solution is from four to eight drops, taken twice daily.

Externally it has been used as a *Lotion*, composed of two grains of the chloride and an ounce of water; or in the form of *Paste*: this may be composed of one part of chloride of zinc, and from two to four parts of wheaten flour.

4. ZIN'CI SUL'PHAS, L.E.D.—SULPHATE OF ZINC.

History.—This salt is said by Schwartz* to have been known towards the end of the 18th, or at the commencement of the 19th century;* but Beckmann affirms it was not known before the middle of the 16th century†. It has had various names, as *Sal Vitrioli*, *White Vitriol*, and *Gilla Theophrasti*.

Natural History.—It occurs native at Rammelsberg, near Goslar, in the Hartz; at Holywell, in Flintshire; and other places.

Preparation.—It is readily prepared by dissolving zinc in diluted sulphuric acid.

The *London College* orders of Zinc, in small pieces, 5 v.; Diluted Sulphuric Acid, 0. J. Pour gradually the diluted Sulphuric Acid upon the pieces of Zinc, and, the effervescence being finished, strain the liquor; then boil it down until a pellicle begins to form. Lastly, set it aside that crystals may be formed.

The *Edinburgh College* observes that this salt may be prepared either by dissolving fragments of zinc in diluted sulphuric acid till a neutral liquid be obtained, filtering the solution, and concentrating sufficiently for it to crystallize on cooling—or by repeatedly dissolving and crystallizing the impure sulphate of zinc of commerce, until the product, when dissolved in water, does not yield a black precipitate with tincture of galls, and corresponds with the characters laid down for sulphate of zinc in the List of the Materia Medica (see p. 823).

The *Dublin College* orders of Zinc, in small fragments, thirteen parts; Sulphuric Acid, twenty parts; Water, one hundred and twenty parts.

In this process 1 equivalent or 9 parts of water are decomposed; an equivalent or 1 part of hydrogen escapes, while an equivalent or 8 parts of oxygen unite with 1 equivalent or 32 parts of zinc, to form 1 equivalent or 40 parts of the oxide, which, with 1 equivalent or 48 parts of sulphuric acid, form 1 equivalent or 80 parts of the sulphate.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Water</td>
<td>9 eq. Hydrogen 1</td>
<td>1 eq. Hydrogen...</td>
</tr>
<tr>
<td>1 eq. Zinc</td>
<td>32 eq. Oxygen... 8</td>
<td>3 eq. Ox. Zinc 40</td>
</tr>
<tr>
<td>1 eq. Sulphuric Acid 40</td>
<td></td>
<td>1 eq. Sulphate of Zinc...</td>
</tr>
</tbody>
</table>

81

The impurities in commercial zinc have been already stated (see p. 816). If a piece of zinc be added to the impure solution of sulphate, and the liquid heated in contact with air, the iron is precipitated and is deposited.

Pharm. Tabell. 2d. Aug. 779.

† Hist. of Insect, Ill. 85.
SULPHATE OF ZINC.

A casting blende (sulphuret of zinc) in reverberatory furnaces, an sulphate is obtained, which is lixiviated, and the solution
ated by evaporation, so that on cooling it forms a crystalline embling lump sugar. This is distinguished among druggists ame of White Vitriol, a term which they confine to this com-
mnd of sulphate. This impure salt contains iron, and usually
and lead.

\textbf{Properties.}—Crystals of sulphate of zinc are right rhombic prisms: they are transparent and colourless, and have a
metallic astringent taste. They are soluble in \(2\frac{3}{4}\) times their weight of cold water, and less than their
own weight of boiling water. They are insoluble in
alcohol. In dry and warm air they effloresce. When heated they undergo the watery fusion; and
if the liquid be rapidly cooled, it congeals into a
granular, crystalline, white mass: if the heat be
continued the salt becomes anhydrous, and, at an
intense heat, is decomposed, leaving a residue of
zinc.

\textbf{Characteristics.}—That this salt is a sulphate, is
by the action of chloride of barium on it; a white precipitate
ced, insoluble in nitric acid (see p. 469). Acetate of lead
ions a white precipitate. The presence of oxide of zinc in
action is recognized by the tests already mentioned for this
(see p. 815).

\textbf{Composition.}—This salt has the following composition:

\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
Atoms. & Eq. Wt. & Per Cent. & Dornetius. & Mitscherlich. \\
\hline
\hline
Cd & 1 & 49 & 28 & 32.585 & 55.24 \\
Zn & 7 & 63 & 44 & 35.450 & 44.76 \\
\hline
\textbf{Sulphate of Zinc} & 1 & 143 & 100 & 100.00 & 100.00 \\
\hline
\end{tabular}
\end{center}

\textbf{Preparation.}—Ammonia added to a solution of sulphate of zinc throws a
white precipitate soluble in excess of ammonia. If any
iron or magnesia be present it remains undisolved; while
the copper would form an azure blue solution (cuprate of
). Arsenie or cadmium may be detected by adding excess n
ric acid to the solution of the sulphate, and then passing a
hydrosulphuric acid through it: the arsenic and cadmium
m in the form of sulphurets. The impure sulphate
white Vitriol occurs in irregular masses, here and there stained
with the iron.

\textbf{Properties.}—What is thrown down by ammonia is white, and
ammonia is added in excess it is again dissolved. On the addition of
barium or acetate of lead they are decomposed. Ph. Lond.

\textbf{Solution in six waters} is boiled with a little nitric acid, and solution of
then added till the oxide of zinc first thrown down is all redisolved,
precipitate remains, or a trace only, and the solution is colourless.

\textbf{Medical Effects.}—In small and repeated doses it acts as
agent on the alimentary canal, checks secretion, and promotes
ated condition of the bowels. It exercises a specific in-
fluence over the nervous system, manifested by its power of removing certain spasmodic affections: hence it is reputed antispasmodic. To the same influence is to be referred its power of preventing the recurrence of intermittent maladies, from which it has principally derived its denomination of a tonic. Its astringent effect is not confined to the bowels, but is manifested in the pulmonary and urethral mucous membranes, the secretions from which it diminishes: hence the advantage of its use in catarrhal affections of these parts. It does not appear to possess any power of checking cutaneous exhalation.

In full medicinal doses it is a powerful but safe emetic; it excites speedy vomiting without giving rise to that distressing nausea occasioned by emetic tartar, though this statement is not in accordance with the experience of Dr. Cullen, who observes that "in order to render its effects certain, the dose must generally be large; and if this is not thrown out again immediately it is apt to continue a disagreeable nausea, or even a vomiting, longer than is necessary." But this observation does not agree with the experience of other practitioners.

In excessive doses it acts as an irritant poison, causing vomiting, purging, coldness of the extremities, and fluttering pulse.

The local action of it is that of an astringent and desiccant, and in a concentrated form it is a powerful irritant and caustic. Its external use is said to have been found fatal in one case, by causing vomiting, purging, and convulsions. Its causticity depends on its affinity for albumen and fibrin.

Uses.—As an emetic it is almost exclusively employed in poisoning, especially by narcotics. In these cases it is the best evacuant we can administer, on account of its prompt action. As an internal astringent it is administered in chronic dysentery and diarrhea, in chronic bronchial affections attended with profuse secretion, and in gleet and leucorrhœa. In the latter cases it is usually associated with terebinthinate medicines, and is sometimes decidedly beneficial. As an antispasmodic it has been employed with occasional success in epilepsy, chorea, hysteria, spasmodic asthma, and hooping-cough. I have little faith in its efficacy in any of these cases. As a tonic it has been sometimes serviceable in agues, but it is far inferior to sulphate of quina or arsenious acid.

As a topical astringent sulphate of zinc is most extensively employed. We use its aqueous solution as a collyrium in chronic ophthalmia, as a wash for ulcers attended with profuse discharge, or with loose flabby granulations; as a gargle in ulcerations of the mouth, though I have found it for this purpose much inferior to a solution of sulphate of copper; as a lotion for chronic skin diseases; and as an injection in gleet and leucorrhœa.

Administration.—As an emetic the dose should be from ten to

8 Treat. of the Mat. Med.
twenty grains; as a tonic, antispasmodic, or expectorant, from one to five grains.

For external use, solutions are made of various strengths. Half a grain of the sulphate to an ounce of water is the weakest. The strongest I ever knew employed consisted of a drachm of sulphate dissolved in an ounce of water: it was used with success as an injection in gleet. But solutions of this strength must be applied with great caution, as they are dangerous.

Antidotes.—Promote the evacuation of the poison by demulcents. Afterwards allay hyperemesis by opium, blood-letting, and the usual antiphlogistic regimen. Vegetable astringents have been advised.

5. ZIN'CI ACETAS.—ACETATE OF ZINC.

History.—This salt was discovered by Glauber.

Preparation.—It may be procured by dissolving oxide of zinc in acetic acid, and crystallizing the saturated solution; or it may be readily obtained by double decomposition: 149 grains of crystallized sulphate of zinc, dissolved in water, and mixed with 190 grains of crystallized acetate of lead in solution, will produce 152 grains of sulphate of lead, which, being insoluble, precipitates, while 91 grains of the anhydrous acetate of zinc (equal to 154 grains of the crystallized acetate) are left in solution; or it may be procured by immersing a piece of zinc in a solution of acetate of lead, until the liquid forms a white precipitate with hydrosulphuric acid. In this process the lead is reduced to the metallic state (forming the Arbor Saturni, or Lead Tree), while the zinc replaces it in solution.

Properties.—It usually crystallizes in rhomboidal plates, having a pearly or silky lustre, closely resembling talc. The form of the crystals is the oblique rhombic prism. The salt is odourless, but has a bitter metallic taste. It dissolves readily in water, and is slightly efflorescent.

Characteristics.—When heated it fuses, and gives out an inflammable vapour, having the odour of acetic acid. When sulphuric acid is added to the salt, the vapour of acetic acid is evolved: this is easily recognized by its odour. These characters show it to be an acetate. That it is a zincic salt is proved by the tests before mentioned for a solution of this salt (p. 815).

Composition.—Its composition is, according to Dr. Thomson, as follows:—

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide of Zinc</td>
<td>40</td>
<td>26.00</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>31</td>
<td>31.11</td>
</tr>
<tr>
<td>Water</td>
<td>63</td>
<td>40.90</td>
</tr>
<tr>
<td>Crystallized Acetate of Zinc</td>
<td>154</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Physiological Effects.—Its effects are analogous to those of the sulphate of zinc. Its local action is astringent. Taken internally, in small doses, it acts as a tonic and antispasmodic; large doses occa-
sion vomiting and purging. Devaux and Dejaer\(^1\) deny that it is a poison, even in large doses.

 Uses.—It is rarely administered internally; but is applicable as an emetic, tonic, and antispasmodic, in the same cases in which the oxide or sulphate of zinc is employed.

 As a topical remedy, it is used on account of its astringent qualities in chronic ophthalmia, gleet, and leucorrhœa. In the latter stages of gonorrhœa I have found it far more successful than the sulphate. Its beneficial effects were first described by the late Dr. Wm. Henry, of Manchester\(^1\). Sir A. Cooper\(^2\) recommends, as the best injection which can be used, a mixture of six grains of sulphate of zinc and four ounces of liquor plumbi subacetatis dilutus. Of course double decomposition takes place, and the active ingredient is the acetate of zinc.

 Administration.—When exhibited internally, as a tonic or antispasmodic, the dose is one or two grains gradually increased. As an emetic it is rarely administered: the dose is from ten grains to a scruple; its operation is very safe. As a lotion or injection, it is employed in the form of aqueous solution, containing two or more grains of the salt to an ounce of water.

ZINCI ACETATIS TINCTURA, D. (Sulphate of Zinc; Acetate of Potash, as one part. Triturate them together, and add sixteen parts of Rectified Spirit; macerate for a week with occasional agitation, and filter through paper.)—Here we have double decomposition: sulphate of potash and acetate of zinc are formed. The first is precipitated, being insoluble in spirit, the second remains in solution. One dram contains a quantity of acetate of zinc equal to about four grains of the crystallized acetate. When diluted with water it is used as a collyrium and injection.

6. **ZINCI CARBONAS.**—**CARBONATE OF ZINC.**

(Calamina; Carbonas Zinci impura, L.—Calamina preparata; Levigated impure Carbonate of Zinc, B.—Carbonas Zinci impurum; Calamina, D.)

 History.—The native carbonate of zinc was perhaps known to the ancients, though they were unacquainted with its nature. The term Calamine is applied both to the native carbonate and native silicate of zinc: the latter is termed by way of distinction Electric Calamine.

 Natural History.—Native carbonate of zinc (Calamine) is found in great abundance in several parts of England (in the counties of Somerset, Derby, Durham, &c.), as well as in various parts of the continent of Europe (in Carinthia, Hungary, Silesia, &c.) It occurs crystallized or in compact or earthy masses. Its colour varies, being more or less grey, yellow, or brown. Its sp. gr. is 4·2 to 4·5.

\(^{1}\) Orfila, *Toxicol. Gra.*
PREPARATION.—Calamine (Calamina), or the impure carbonate of zinc (Carbonas Zinci impura), is directed to be calcined, in order to make it pulverizable. But in this process water and more or less of the carbo nic acid is expelled. It is then reduced to a very fine powder (usually in mills), and is afterwards submitted to the process of elutriation. By this means we obtain Prepared Calamine (Calamina Preparata, L. E.; Zinci Carbonas impurum preparatum, D.).

PROPERTIES.—Prepared calamine is met with in the shops in the form of a heavy pinkish or flesh-coloured powder, or made up into little masses. When pure, it dissolves in nitric, hydrochloric, or sulphuric acid, with effervescence. Various impurities mixed with calamine are insoluble in these acids.

Characteristics.—The effervescence with the mineral acids shows calamine to be a carbonate. The presence of zinc in the solution is determined by the tests before mentioned for this metal (p. 815). The action of these tests, however, is more or less impeded by the presence of foreign matters in calamine.

COMPOSITION.—Carbonate of zinc has the following composition:

<table>
<thead>
<tr>
<th></th>
<th>Smithson.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide of Zinc</td>
<td>1</td>
</tr>
<tr>
<td>Carbonate Acid</td>
<td>1</td>
</tr>
</tbody>
</table>

Carbonate of Zinc... 1 62 100^0 100^0 100^0 100^0

IMPURITIES.—The substance sold in the shops as prepared calamine frequently contains only traces of zinc. If hydrochloric acid be poured on it, effervescence (owing to the escape of carbo nic and hydro sulphuric acids) takes place, and a portion is dissolved; but the greater part remains undissolved. Mr. Brett found from 78 to 87.5 per cent. of sulphate of baryta. The remainder of the powder consisted of oxide of iron, carbonate of lime, lead [sulphuret of?] and traces of zinc.

PHYSIOLOGICAL EFFECTS.—Pure carbonate of zinc is probably similar in its action to the oxide.

USES.—Calamine is employed as a dusting powder for children, and as a mild desiccant and astringent in excoriations, superficial ulceration, &c.

1. CALAMINA PREPARATA, L.; Zinci Carbonas impurum preparatum, D. Lapis Calaminaris preparatus. (Burn the Calamine, then sieve it. Afterwards let it be made into a very fine powder in the same manner as we have directed chalk to be prepared, L.—The directions of the Dublin College are essentially similar). Some marks on the preparation have been previously offered. The Edinburgh College gives no direction for the preparation of calamine.

2. CERATUM CALAMINE, L. E.; Unguentum Calamine, D.; Turner's Cerate; Ceratum Epulicum. (Calamine; Wax, 1/2 lb.; Olive

Oil, fœxv. Add the calamine to the melted wax and oil when they begin to thicken, L.—The Edinburgh College uses of prepared Calamine, one part; and Simple Cerate, five parts.—The Dublin College employs of prepared Calamine, lb. j.; and Ointment of Yellow Wax, lbv. M. It is an excellent desiccant and astringent application (when prepared with good calamine) to burns, scalds, excoriations, superficial ulcerations, &c.

NON-OFFICINAL PREPARATION OF ZINC.

ZINCI CYANIDUM; Hydrocyanate, Cyanide, or Cyanuret of Zinc. This salt was introduced, by the German physicians, as a substitute for hydrocyanic acid. It is prepared by adding recently-made oxide of zinc to hydrocyanic acid; or by adding a solution of sulphate of zinc to a solution of cyanide of potassium. It is a white powder, insoluble in water or alcohol. If a strong mineral acid be added to it, hydrocyanic acid is developed, and a soluble salt of zinc obtained. The latter is recognised by the tests before mentioned for a solution of zinc (p. 815). It consists of one equivalent or 33 parts of Zinc, and one equivalent or 26 parts of Cyano- gen. Its effects have not been carefully ascertained, but they are supposed to be similar to those of hydrocyanic acid. It has been used principally in affections of the nervous system, as epilepsy, hysteria, and chorea. It has also been employed in cardialgia and cramps of the stomach, and as an anthelmintic in children. The dose is a quarter of a grain to a grain and a half three times a day. It may be taken in the form of powder mixed with calcined magnesia.

ORDER XXVII.—IRON AND ITS COMPOUNDS.

I. FER’RUM, L. E. D.—IRON.

(Ramenta, L. — Filum; Limatura, E. — Fila; Scobo, Oxydi Squame, D.)

History.—This metal (called by the alchemists Mars) was known in the most ancient times. It was employed medicinally at a very early period, namely, above 3200 years ago. Indeed, it appears to have been the first mineral used internally; and a curious anecdote is given of its introduction into medicine. Melampus (a shepherd supposed to possess supernatural powers) being applied to by Iphicles, son of Philacus, for a remedy against impotence, slaughtered two bulls, the intestines of which he cut to pieces, in order to attract birds to an augury. Among the animals which came to the feast was a vulture, from whom Melampus pretended to learn that his patient, when a boy, had stuck a knife, wet with the blood of some rams, into a consecrated chestnut-tree, and that the bark had subsequently enveloped it. The vulture also indicated the remedy, namely, to procure the knife, scrape off the rust, and drink it in wine, for the space of ten days, by which time Iphicles would be lusty, and capable of begetting children. The advice thus given by Melampus is said to have been followed by the young prince with the most perfect success!

* Le Cere, Hist. de la Me decine.
NATURAL HISTORY.—Iron is met with in both kingdoms of nature.

IN THE INORGANISED KINGDOM.—Few minerals are free from iron. It is in the metallic state (native iron), in combination with oxygen (haematite, anfe iron, brown iron stone, and magnetic iron ore), with sulphur (iron pyrites, magnetic pyrites), with chlorine (pyroxmalite), and with oxygen and an acid (sulphate, phosphate, sulphate, arseniate, tungstate, tantalate, titianate, chromate, etc., and silicate).

IN THE ORGANISED KINGDOM.—It occurs in the ashes of most plants, and in the blood and some other parts of animals.

EXTRACTION.—In Sweden, iron is extracted from magnetic iron and micaceous iron; in England, principally from clay iron ore (bonate of iron).

Clay iron ore (technically called Mine) is burned with coal in large kilns, by which it loses carbonic acid, water, and sulphur. It is then converted into Pig Iron. The smelted iron is run into moulds, and is called Cast Iron (Ferrum fusum) or Pig Iron. This contains oxygen, silicon, and often sulphur and phosphorus. To smelt these, it is submitted to several processes (called refining, puddling, and welding), by which it is converted into Wrought Iron (Ferrum castum).

PROPERTIES.—The primary form of the crystals of native iron is the octahedron. Pure iron has a whitish grey colour, or, acting to Berzelius, is almost silver white. When polished it has a brilliance; its taste is peculiar and styptic; when rubbed it becomes odorous. Its ductility and tenacity are great; its malleability comparatively small. Its sp. gr. is 7.888, but diminishes by drawing. It is attracted by the magnet, and several of its products are capable of becoming permanent magnets; but pure iron retains its magnetic property for a short time only. It requires very intense heat to fuse it; and it is not volatile at any known temperature; while in the softened state, previous to melting, it is liable of being welded. Its equivalent or atomic weight is 56.

CHARACTERISTICS.—Iron readily dissolves in diluted sulphuric acid, and in the evolution of hydrogen gas. The solution contains the phosphate of iron, and produces, on the addition of caustic potash soda, a greenish-white precipitate (the hydrated, protoside): this precipitate, by exposure to the air, attracts oxygen, and is converted into the red or sesquioxide. Auro-chloride of sodium forms a purple precipitate with the protosalts of iron. By boiling the solution of protosulphate with a little nitric acid, we obtain a persulphate of iron, recognized by ferrocyanide of potassium, causing a blue precipitate; sulphocyanic or meonic acid, a red colour; gallic or tannic acid, or infusion of galls, a purple or bluish black; and succinic or benzoate of ammonia, a yellowish precipitate.

PHYSIOLOGICAL EFFECTS. a. Of the Metallic Iron.—Iron is probably not so long as it retains its metallic form, but it readily oxidizes in
the alimentary canal, and thereby acquires medicinal power. As acids promote this chemical change, acid wines and fruits assist in rendering the metal active, while alkalies and their carbonates have an opposite effect. The oxidization of the iron is attended with the evolution of hydrogen gas, which gives rise to unpleasant erections. If sulphur be taken along with iron, hydroxysulphuric acid is developed. Like the ferruginous preparations generally, the internal employment of iron causes blackening of the stools. The nature of the effects produced by oxide of iron formed in the alimentary canal will be best examined hereafter, under the head of ferruginous preparations. I may, however, remark here, that it is one of the few metals which by oxidizement is not rendered more or less poisonous.

\[\beta \] Of the Ferruginous Compounds, & c. On Vegetables.—Most of the compounds of iron do not appear to be hurtful to plants; at least this is the case with the oxides. The sulphate, however, is injurious.

\[\beta \beta \] On Animals.—The effects of the ferruginous compounds on animals generally are similar to those on man. It is stated that in animals to whom iron has been given for a considerable time, the spleen has been found smaller, harder, and denser—an effect which is supposed to be owing to the increased contractile power experienced by the veins of the abdomen. The liver is also said to have been affected in a similar manner, though in a somewhat slighter degree.

\[\gamma \gamma \] On Man.—The local effects of the sulphate and chloride of iron are those of irritants, and these preparations accordingly rank among poisons; but they are not equal in power to the mercurial or cupreous salts. Most of the ferruginous preparations are astringent; that is, they constringe the parts with which they are in contact, and thereby diminish secretions and check sanguineous discharges. Thus, when swallowed, they repress the secretions and exhalation of the gastro-intestinal membrane, and thereby render the alvine evacuations more solid, and even occasion costiveness. The sulphate and chloride of iron are the most powerful of the ferruginous astringents. Administered in large quantities, or when the alimentary canal is in an irritable condition, all the compounds of iron are capable of exciting heat, weight, and uneasiness at the precordia, nausea, and even vomiting, and sometimes purging.

The constitutional or remote effects of the chalybeates are principally observed in the alteration induced in the actions of the vascular and muscular systems, and are best seen in that state of the system denominated anaemia, or more properly hypaemia, in which both the quantity and quality of the blood appear defective.

We have a good illustration of this state in chlorotic patients. The skin appears pale and almost exsanguineous, the cellular tissue is oedematous, and...
death, the larger vessels as well as the capillaries are found to be imperfectly supplied with blood. Patients with this condition of system are affected with great feebleness, loss of appetite, and palpitation; and in females the catamenial secretion is frequently, but not invariably, defective. That the want of uterine action is not the cause, but in some cases is, perhaps, the effect of this condition of system, seems tolerably clear from the circumstance of the same constitutional symptoms of anemia sometimes occurring with a perfect regularity of the uterine functions; moreover, we occasionally meet with anemia in men. It is sometimes the consequence of hemorrhages— at other times it occurs spontaneously, and without any known cause

If in this condition of system we administer iron, the appetite increases, digestion is promoted, the pulse becomes fuller and stronger, the skin assumes its natural tint, the lips and cheeks become more florid, the temperature of the body is increased, the edema disappears, and the muscular strength is greatly augmented. The alvine evacuations assume a black colour, as they always do under the use of the ferruginous preparations. After continuing the use of iron for a few weeks, we frequently find excitement of the vascular system (particularly of the brain); thus we have throbbing of the cerebral vessels, and sometimes pain in the head, a febrile condition of system, with a tendency to hemorrhage. Mr. Carmichael considers the sanguine temperament (marked by a high complexion, celerity of thought, remarkable irritability of fibre, and a quick pulse) as depending on an excess of iron in the system; whereas the leucoplegmatic, or relaxed, temperament (characterized by a pale bloated countenance, dull eyes, mind heavy and slow in receiving and forming ideas, little irritability of fibre, and pulse small and feeble) as depending on a deficiency of iron.

When by the use of iron the state of the general system improves, the secretions resume their natural condition; and thus at one time we observe this metal promoting the uterine discharge, at another checking it, according as chlorosis or menorrhagia had been previously present; we cannot, therefore, regard the preparations of this metal as having any direct emmenagogue effect, as some have supposed.

Some refer all the other symptoms of anemia to the abnormal state of the blood, and ascribe the beneficial influence of iron to the improvement in the quality of this liquid. It is certain that, under the use of the preparations of this metal, the blood frequently acquires a more scarlet colour, owing probably to an increase in the number of its colouring particles; and the crassamentum becomes firmer and more solid, and even increased in quantity. This alteration of the physical and chemical properties of the blood must render it more stimulating, and thus the different organs, receiving a fluid of a more healthy character, resume their normal condition, and perform their functions in a proper manner. Tiedemann and Gmelin have detected it in the serum of the blood of the portal and mesen-

1 Andrè, Pathol. Asat. by Townsend and West, t. 97.

teric veins of horses and dogs, to whom they administered either the sulphate or chloride. Occasionally, too, iron has been found in the urine. Moreover, Menghini* asserts, that the quantity of iron in the blood of dogs may be increased by feeding them on substances mixed with this metal. Furthermore, it is not to be forgotten, that iron exists in no inconsiderable quantity in healthy blood, and is supposed to contribute to its colour, and probably to its stimulant properties; so that it is not unlikely any variation in the quantity of this metal would be attended with an alteration in the action of every organ.

Iron is a substance not readily absorbed, for it remains in the stomach and intestines many days after it is swallowed: in order, therefore, that the ferruginous preparations should have much effect on the general system, it is necessary that they be employed for some considerable time. It does not, like most other metals, act as a poison when it gets into the blood.

Another circumstance connected with the operation of iron is likewise deserving of notice; namely, that it has no primary or specific effect on the nervous system, as arsenic, mercury, copper, zinc, bismuth, silver, and many other metals. It must not, however, be imagined from these remarks, that the preparations of iron never operate injuriously. On the contrary, we see them sometimes acting as local irritants on the alimentary canal, as already noticed; and by the use of them in too large quantities, or for too long a period of time, they bring on a hypersthenic or phlogistic diathesis.

Uses. a. Of Metallic Iron.—Iron filings have been used in those cases where the chalybeate preparations generally have been administered, and which will be hereafter noticed. In some instances, however, the efficacy of iron depends on its being employed in the uncombined state. Thus, when used as an antidote to poisoning by the salts of copper, it is necessary that the iron be administered in the metallic state, in order to reduce the cuprous salts. Iron filings have been regarded as anthelmintic, especially in the small threadworm (the *Ascaris vermicularis*); they have been used also as an astringent application, to repress fetid secretion of the feet.

b. Of the Ferruginous Compounds.—By a careful attention to the known physiological effects of the ferruginous compounds, the indications and contra-indications for their employment may be in great part learned. Thus, the impropriety of administering them where there is irritation or inflammation of the alimentary canal, in plecteric habits, and in persons disposed to inflammatory diseases, or to apoplexy, will be obvious from the foregoing remarks. On the other hand, in all cases characterized by feebleness and inertia of the different organs of the body, by a soft lax condition of the solids, and by a leucophaemgmatic state of the system—where the patient appears to be suffering from a state of general anemia, already described—the preparations of iron are indicated. It is hardly within the scope.

present object to instance particular diseases where this metal is used, but rather to point out those conditions of system which require employment of iron in diseases generally. I may notice a few by way of illustration.

Iternal or local agents we rarely employ the preparations of iron owing to the more efficacious and powerful remedies, namely, however, they have been used as astringents, styptics, and the like. Thus solutions of the sulphate and chloride have been used in the form of injection, in discharges from the urethra and vagina, and the tincture of the chloride is now and then applied as a poultice.

Ferruginous preparations are usually resorted to with the view of acting upon the general system. They are frequently given to promote uterine functions, as in chlorosis, amenorrhea, dysmenorrhea, and menorrhagia, and often with success. When chlorosis exists, or at least is accompanied by anaemia, the ferruginous preparations are frequently useful; but if it occur in patients of a full habit or if it arise from inflammation of some organ (as the lungs, liver, or bowels), chalybeates will do harm. In cases of impotence, ed with or arising from general feebleness, it may be now and then useful: but in nine out of ten cases which we are called on to treat condition arises from indulgence in bad habits, which no remedy can affect. Sometimes iron is resorted to in sterility.

Dioscorides says the rust of iron hinders women from conceptions, but the conditions under which it is likely to be useful are not the same as those before mentioned for other diseases. In discharges of the genital organs, as gluteal and leucorrhrea, the internal emetic of the tincture of the chloride of iron, sometimes conjoined with the tincture of cantharides, has been found useful.

Me periodical diseases—namely, ague, asthma, and tic douloureux—ferruginous preparations have gained considerable repute. First of these diseases (that is, ague), the sulphate of iron has been Marcet's and others; the subcarbonate by Buchwald; the amal chloride by Hartmann; but it has been almost wholly abandoned, of late years, by the sulphate of quinine and by arsenic. Dr. Bree, who was himself a sufferer from the disease, iron as preferable to all other remedies. However, the experiment of others has not confirmed his favourable opinion of it. Quinidox is said to be extensively employed, at gummification of Mr. B. Hutchinson, in tic douloureux, with apparent success; in some cases acting in a most extraordinarily favourable manner, in others being of no avail.

Diseases of the spleen and liver, the ferruginous compounds are generally found useful. I have already alluded to the influence of iron...
which they are supposed to possess over these organs; a supposition the more probable from the occasional remarkable effects produced by them in diseases of these organs. "I regard iron as a specific," says Cruveilhier*, "in hypertrophy of the spleen, or chronic splenitis; whether primitive or consequent to intermittent fevers." After noticing the symptoms attending this condition (such as paleness of the lips, &c. great lassitude, abdominal and cephalic pulsations, brought on by the slightest exertion, pain at the left side, disordered state of the digestive organs, accelerated pulse, and heart easily excited), he goes on to remark, "By the aid of iron I have obtained the complete resolution of enlargements of the spleen, which have occupied half, or even two-thirds, of the abdomen." In hypertrophy of the liver, iron has not been equally serviceable.

Some years ago the preparations of iron were strongly recommended in cancer by Mr. Carmichael†. The grounds on which he was led to the use of them were the probability that cancer had an independent life—in other words, that it was a kind of parasite, as some preceding writers, more particularly Dr. Adams, had presumed; and secondly, the efficacy of iron in destroying intestinal worms, which led him to hope that it would be equally destructive to other parasites. With these views he employed (externally and internally) various ferruginous compounds—namely, the ferroartrate of potash, the sub-carbonate (sesquioxide) of iron, and the phosphates. Whatever hopes may have at one time been entertained of these remedies as curative agents, in this most intractable disease, they are now completely destroyed. That these medicines are occasionally useful as palliatives may perhaps be admitted; but they have no curative powers. Indeed this might have been suspected, from the hypothetical grounds on which they were introduced into use. The proofs of the parasitical nature of cancer must be much stronger than any yet offered, ere we can admit this hypothesis. Moreover, the preparations of iron, though useful, are not so "very effectual" in worms as Mr. Carmichael's remarks would lead us to imagine.

In certain affections of the digestive organs, the preparations of iron are occasionally used with benefit; as in some forms of dyspepsia, but only in the conditions of system already noticed.

In some affections of the nervous system which occur in weak debilitated subjects, it is also useful; for example, in epilepsy, chorea, hysteria, and the shaking palsy produced by the vapour of mercury.

These are the most important diseases for which we employ the ferruginous compounds. There are many other diseases for which chalybeates are occasionally beneficial; but the general principles regulating their use will be readily comprehended from the foregoing remarks, and I have only to add, that in all diseases attended by debility and marked by atony and inertia of organs, more especially those indicating a disordered state of the hematose functions, the pre

† Op. supra cit.
tions of iron will be found in most instances more or less service-
Furthermore, I may enumerate scrofula, rickets, dropsy, and
as diseases in which iron has been at times used with advantage.

ADMINISTRATION.—Iron in substance is administered in the form
ings. These are procured from the workshop of the smith, and
usually impure, being mixed with the filings of other metals, &c.
magnet is generally employed to separate the ferruginous from
particles, but it does this imperfectly, as various impurities cling
to iron particles. The only way to procure them pure is by filing
pieces of pure iron with a clean file. The dose of iron filings is from
to thirty grains, given in the form of an electuary made with
honey, or some other thick substance.

2. FER'RI OX'YDUM N'GRUM, D.—BLACK OXIDE OF IRON.

(Ferri Oxidum Nigrum, E.)

HISTORY.—It was first employed as a medicine by Lemery in 1735.
the Martial Ethiops (Æthiops Martianus) of some writers, and
Oxydum ferroso-ferricum of Berzelius. It is sometimes termed
Magnetic Oxide.

NATURAL HISTORY.—It occurs in the mineral kingdom under the
t of Magnetic Iron Ore, the massive form of which is called
ive Loadstone. It is found in Cornwall, Devonshire, Sweden, &c.

PREPARATION.—Directions for its preparation are given by both the
burgh and Dublin Colleges.

The Edinburgh College orders of Sulphate of Iron, 3vij.; Sulphuric Acid (con-
ical) f3ji.; and f39ij.; Pure Nitric Acid, f3iv.; Stronger Aqua Ammonia,
s.; Boiling Water, Oij. Dissolve half the sulphate in half the boiling water,
add the sulphuric acid; boil; add the nitric acid by degrees, boiling the
d after each addition briskly for a few minutes. Dissolve the rest of the
ate in the rest of the boiling water; mix thoroughly the two solutions; and
ediately add the ammonia in a full stream, stirring the mixture at the same
briskly. Collect the black powder on a calico-filter; wash it with water
he water is scarcely precipitated by solution of nitrate of baryta; and dry it
temperature not exceeding 180°.

The object of the first part of this process is to convert the sul-
te of the protoxide of iron into the sulphate of the sesquioxide.
scriptions is effected by adding nitric acid to the boiling solution. The
fives oxygen to the protoxide, while binoxide of nitrogen gas
es. The additional quantity of sulphuric acid is required to
le the salt to preserve its neutrality, and prevent the deposition of
ic sulphate of the sesquioxide. If, however, the sulphate of iron
t to be used be a pure protosulphate, the additional quantity
phuric acid ordered by the Edinburgh College is not sufficient
the purpose. On the addition of ammonia to the mixed solution
ite protosulphate and sesquisulphate of iron, a compound of the
rated protoxide and sesquioxide of iron is precipitated. This is
ashed with water until all traces of sulphuric acid are got rid

When dried at 180° it constitutes the Ferri Oxidum nigrum of
Edinburgh Pharmacopœia.
The Dublin College orders it to be prepared as follows:—Let the scales of Oxide of Iron \([\text{Ferr} \text{ Oxid} \text{ Squeama}]\), which are to be found at the smiths’ anvils, be washed with water; and when dried, let them be detached from impurities by application of a magnet. Then let them be reduced to powder, of which let the most subtle parts be detached, according to the mode directed for the preparation of chalk.

Scales of iron are composed of a mixture or combination of protoxide and sesquioxide; but they are not uniform in constitution. The process of the Dublin Pharmacopoeia has the advantage of cheapness.

There are several other methods of procuring this compound. In the Paris Codex it is directed to be prepared by covering iron with water and exposing the mixture to the air: then, by elutriation, separating the black powder.

Properties.—The crystalline form of the magnetic iron ore is the regular octahedron. The black oxide of iron of the Pharmacopoeia is a greyish-black powder, with a velvety appearance, and is strongly magnetic. It dissolves in hydrochloric acid without effervescence. Prepared according to the Edinburgh Pharmacopoeia its properties are as follows:—

"Dark grayish-black; strongly attracted by the magnet; heat expels water from it; muriatic acid dissolves it entirely; and ammonia precipitates a black powder from this solution." Ph. Ed.

Composition.—The following is the composition of this oxide:

<table>
<thead>
<tr>
<th></th>
<th>Eq. Wt. Per Cent. Gay Lussac</th>
<th>Or</th>
<th>Eq. Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>3</td>
<td>84</td>
<td>73.434</td>
</tr>
<tr>
<td>Oxygen</td>
<td>4</td>
<td>32</td>
<td>27.586</td>
</tr>
<tr>
<td>Black Oxide of Iron</td>
<td>116</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

It has been above stated that the constitution of scales of oxide of iron is variable. The following is their composition according to Mosander:—

<table>
<thead>
<tr>
<th>Outer Layer</th>
<th>Inner Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protoxide of Iron</td>
<td>3</td>
</tr>
<tr>
<td>Sesquioxide of Iron</td>
<td>1</td>
</tr>
<tr>
<td>Scales of Iron</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>108</td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>148</td>
</tr>
</tbody>
</table>

Purity.—Black oxide of iron should be readily soluble in hydrochloric acid without effervescence; by which the absence of metallic iron is shown.

Physiological Effects and Uses.—These are similar to those of the chalybeates in general, and which have been already described. It does not produce local irritation. It is a more valuable preparation than the sesquioxide, in consequence of being more readily soluble in the fluids of the stomach.

Administration.—Dose from grs. v. to 3j. or more, twice or thrice daily.

(Ferri Oxidum rubrum, E.—Ferri Oxydum rubrum; Ferri Rubigo; and Ferri Carbonas, D.)

History.—Geber c was acquainted with this substance, which he calls Crocus Martis. It was probably known long before his time. It is the Red or Peroxide of Iron of some chemists.

Natural History.—It is found native in the crystallized state (Specular Iron or Iron Glance) and in globular and stalactitic masses (Red Haematite): the finest specimens of the first occur in the Isle of Elba; the second is found near Ulverstone, in Lancashire, and in Saxony. The hydrated sesquioxide of iron (Brown Iron Stone) is met with in Scotland, and at Shotover Hill, Oxfordshire.

Preparation.—There are several modes of preparing this compound:—

1. By precipitation from Sulphate of Iron.

The London College orders of Sulphate of Iron, lbiv.; Carbonate of Soda, lbiv. and xii. Water, boiling. Cong. v. Dissolve the Sulphate of Iron and Carbonate of Soda, separately, in three gallons of Water; then mix the liquors together, and set them by, that the powder may subside. Lastly, the supernatant liquor being poured off, wash what is precipitated with water, and dry it.

The Edinburgh College employs, of Sulphate of Iron, xiv.; Carbonate of Soda, xv. Boiling Water, Oss.; Cold Water, Oijas. Dissolve the sulphate in the boiling water, add the cold water, and then the carbonate of soda, previously dissolved in about thrice its weight of water. Collect the precipitate on a calico filter; wash it with water till the water is but little affected with solution of nitrate of baryta, and dry it in the hot-air press, or over the vapour bath.

The Dublin College orders it [Ferri Carbonas, D.] to be prepared with twenty-five parts of sulphate of iron, twenty-six parts of carbonate of soda, and eight hundred parts of water.

In this process one equivalent or 76 parts of sulphate of iron are decomposed by one equivalent or 54 parts of carbonate of soda: and the products of their mutual reaction are one equivalent or 58 parts of carbonate of the protoxide of iron which are precipitated, and one equivalent or 72 parts of sulphate of soda which remain in solution.

<table>
<thead>
<tr>
<th>MATERIALS.</th>
<th>COMPOSITION.</th>
<th>PRODUCTS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 eq. Carbon. Soda.</td>
<td>1 eq. Sod. ..</td>
<td>1 eq. Sulphate of Sod.</td>
</tr>
<tr>
<td>1 eq. Carbonic Acid.</td>
<td>2 eq. Carbonic Acid.</td>
<td></td>
</tr>
<tr>
<td>1 eq. Sulphate Iron</td>
<td>2 eq. Sulphuric Acid</td>
<td>1 eq. Carbonate of Iron</td>
</tr>
<tr>
<td>36</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>

By exposure to the air during the washing and drying, the carbonate of the protoxide of iron is decomposed, the oxygen of the air combines with the protoxide, and thereby converts it into sesquioxide, while carbonic acid is disengaged.

When prepared according to the above directions its colour is reddish chocolate brown, and it usually contains a small portion of undecomposed carbonate of the protoxide of iron. Manufacturers, however, usually calcine it in an iron pot, by which it acquires a brownish red colour and is more saleable.

* Invention of Verity, p. 259.
Sesquioxide of iron, as thus procured, is frequently termed Carbonate or Subcarbonate of Iron (Ferris Carbonas, D.), or Precipitated Carbonate of Iron (Ferris Carbonas Precipitatus).

2. By calcining Sulphate of Iron.

The Dublin College orders it (Ferris Oxydum Rubrum, D.) to be prepared as follows:—Let sulphate of iron be exposed to heat until the water of crystallization shall be expelled; then, with a strong fire, let it be roasted so long as acid vapour rises. Let the red oxide be washed until the washings, when examined by litmus, shall appear free from acid. Lastly, let it be dried on bibulous paper.

In this process the water and sulphuric acid of the crystallized sulphate of iron are evolved. The iron is peroxided at the expense of a portion of the sulphuric acid, while some sulphurous acid is developed.

Sesquioxide of iron, prepared by this process, is known in commerce as Colchicar, Caput Mortuum Vitrioli, Trip, Brown-red, Rouge, Crocus.

3. From Rust of Iron.

The Dublin College orders Rust of Iron (Rubigo Ferris, D.) to be thus prepared: Take of iron wire any required quantity. Moisten it with water, and expose it to the air until it is corroded into rust. Then let it be rubbed in an iron mortar; and, by the affusion of water, let the most subtilie powder be washed off and dried.

It is directed to be prepared from iron wire on account of its purity. Rust of iron is usually reduced to an impalpable powder by levigation and elutriation; and is then made up into small conical leaves like prepared chalk.

Properties.—The primary form of the crystals of native sesquioxide of iron is the rhombohedron.

The artificial sesquioxide of the shops is a brownish red powder: when it has been exposed to an intense heat it has a purplish tint. It is odourless, insoluble in water, and not magnetic. Prepared according to the London Pharmacopoeia it has a styptic taste; when calcined it is tasteless. When quite free from carbonate of iron, it dissolves in hydrochloric acid without effervescence.

Characteristics.—Its hydrochloric solution affords a deep blue precipitate with the ferrocyanide of potassium; a purplish black precipitate with tincture of nutgalls; a brownish-red precipitate with the alkalis; and a red colour with sulphocyanic or meconic acid.

Composition.—Sesquioxide of iron has the following composition:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt</th>
<th>Per Cent</th>
<th>Gay-Lussac</th>
<th>Berzelius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>1</td>
<td>28</td>
<td>70</td>
<td>70:27</td>
</tr>
<tr>
<td>Oxygen</td>
<td>14</td>
<td>12</td>
<td>30</td>
<td>29:73</td>
</tr>
<tr>
<td>Sesquioxide of Iron</td>
<td>1</td>
<td>40</td>
<td>100</td>
<td>100:09</td>
</tr>
</tbody>
</table>

Purity.—Adulteration is hardly to be apprehended. If it should contain copper, its hydrochloric solution will deposit this metal on a bright rod of iron. After the sesquioxide has been thrown down by
mmonia from the hydrochloric solution, the supernatant liquor would give no indications of containing any other metal in solution; and chloride of barium ought not to occasion any precipitate. Sir H. obtained traces of arsenic in the sesquioxide of commerce, by boiling this substance for five hours with pure sulphuric acid, and facing the solution in Marsh's apparatus.

Dissolved totally by dilute hydrochloric acid with very slight effervescence, but it is precipitated by ammonia. *Ph. Lond.*

"Entirely soluble in muriatic acid, aided by gentle heat." *Ph. Ed.*

PHYSIOLOGICAL EFFECTS.—It is termed alterative, tonic, and emmenagogue. Its obvious effects on the body are very slight. It produces laxness of the stools; and in large doses occasions nausea, a sensation of weight at the pit of the stomach, and sometimes dyspeptic symptoms. It possesses very little astrigency. The constitutional effects, arising from the continued use of it, are those produced by the ferruginous compounds generally, and which have been before described.

USES.—It may be employed in any of the before-mentioned caess in which the ferruginous tonics are indicated.

It has been strongly recommended by Mr. Benjamin Hutchinson[1] as a remedy for neuralgia, and in some cases it gives complete, in others partial, relief. But in many instances no benefit whatever is obtained from its use, and in one case in which I prescribed it the patient fancied it increased her sufferings. Mr. Carmichael, as already stated (p. 834), has recommended it as a remedy for cancerous diseases.

ADMINISTRATION.—The usual dose, as a tonic and emmenagogue, is from grs. x. to 5ss. In tic douloureux it is given in much larger quantities, as from 5ss. to 3ij. or 3v. It may be administered in the form of an electuary. To enable it to sit easily on the stomach, it may be combined with aromatics.

EMPLASTRUM FERRI, E.; **Emplastrum Thuris, D.**; **Emplastrum Toborans; Iron, Frankincense, or Strengthening Plaster.** (Litharge Plaster, 3ij.; Resin, 3ij.; Olive Oil, 13ijss.; Bees'-wax, 3ij.; Red Oxide of Iron, 3ij. Tiriturate the oxide of iron with the oil, and add he mixture to the other articles previously liquefied by gentle heat. Mix the whole thoroughly, *Ed.*—Litharge Plaster, 1bij.; Frankincense *Thus* 1bss.; Red Oxide of Iron, 3ij. M. D.) Spread on leather, it is employed as a mechanical support and slight stimulant, in muscular relaxation, lumbago, weakness of the joints, &c.

4. **FER'RI SESQUIOX'YDUM HYDRA'TUM.—HYDRATED SESQUI-
OXIDE OF IRON.**

(Ferrugo, E.)

HISTORY.—In the year 1834 this preparation was proposed by Drs. Unser and Berthold as an antidote for poisoning by arsenious acid[2].

PREPARATION.—The Edinburgh Pharmacopoeia gives the following directions for its preparation:—

Take of Sulphate of Iron, 3iv.; Sulphuric Acid (commercial), f3iijs.; Nitric Acid (D. 1.390) f3ix.; stronger Aqua Ammonia. f3iijs.; Water, Oil. Dissolve the sulphate in the water, add the Sulphuric Acid, and boil the solution; add then the Nitric Acid in small portions, boiling the liquid for a minute or two after each addition, until it acquires a yellowish-brown colour, and yields a precipitate of the same colour with ammonia. Filter; allow the liquid to cool; and add in a full stream the Aqua Ammonia, stirring the mixture briskly. Collect the precipitate on a calico filter; wash it with water till the washings cease to precipitate with nitrate of baryta; squeeze out the water as much as possible; and dry the precipitate at a temperature not exceeding 180°.

When this preparation is kept as an antidote for poisoning with arsenic, it is preferable to preserve it in the moist state, after being simply squeezed.

The sulphate of the protoxide of iron is converted, by the nitric and sulphuric acids, into the sulphate of the sesquioxide (see p. 883). On the addition of caustic ammonia, the hydrated sesquioxide of iron is precipitated, while sulphate of ammonia remains in solution. The oxide retains in combination with it some ammonia, but this does not prove injurious to its therapeutic use. If potash or soda be substituted for ammonia, we obtain, unless the alkali be in excess, a subsulphate, instead of the hydrated oxide of iron: and if we use excess of alkali, a portion of it combines with the oxide. Oxide which has been precipitated by potash has been found not to be equally efficacious as an antidote for arsenic, to that obtained by ammonia.

PROPERTIES.—Hydrated sesquioxide of iron has a deep reddish-brown colour. Prepared for use, as an antidote to arsenic acid, it should be in the form of a soft or gelatinous moist magma. Though it may be dried at ordinary temperatures without undergoing decomposition, yet, in this moist state, it more readily renders arsenic acid insoluble; and, therefore, to preserve it in this condition, it should be kept under water in a stoppered bottle. If this hydrated sesquioxide (prepared by ammonia) be added in considerable excess to a solution of arsenious acid, and well agitated, the filtered liquor gives no traces of the presence of arsenic. Dr. Maclagan states that “at least twelve parts of oxide, prepared by ammonia, are required for each part of arsenic; and that when the oxide has either been precipitated by potash, or been dried even at a low temperature, that about three or four times larger quantities are requisite.” That the arsenious acid has been rendered insoluble is shown by the fact that by washing it cannot be removed from the magma. In the first instance the arsenious acid combines with the sesquioxide of iron to form a subarsenite of the sesquioxide; the composition of which Guibourt is approximatively represents as being, sesquioxide of iron (calcined to red-

1 See Bunsen’s Memoir before quoted; also Dr. Maclagan On the Action of Hydrated Sesquioxide of Iron in Arsenia, in the Edinburgh Medical and Surgical Journal, No. 144.

2 This proportion of twelve parts of the moist ammoniacal oxide to each part of arsenic, is the which has been indicated by several of the French experimentalists as being required to insure an antidotal effect.

3 Journal de Chimie Métd. t. v. 2e Série, p. 312.
ness), 65·0; arsenious acid, 14·50; water, 20·50. According to Graham\(^5\), the mutual reaction of the hydrated sesquioxide and the arsenious acid gives rise to the formation of the arseniate of the protoxide of iron, \(2 \text{Fe}_3\text{O}_5 + \text{As}_2\text{O}_3 = 4 \text{FeO} + \text{As}_2\text{O}_4\). The same authority observes, that the constitution of this arseniate is probably \(2 \text{FeO} \cdot \text{HO} + \text{As}_2\text{O}_4 + 2 \text{FeO}\).

Composition.—It consists of sesquioxide of iron, water, and a small portion of ammonia. One hundred parts of the magma, deprived of water by decantation, yielded Guibourt from 3·2 to 3·5 of calcined sesquioxide. According to the same authority, 1 litre of the magma, equal to about 14 imperial pints (1.7608 imperial pints), contains 32·35 grammes or 499·6 troy grains (499·6134 troy grains) of the calcined sesquioxide. So that one imperial pint contains about 286 grains of the calcined sesquioxide.

Physiological Effects.—These are similar to those of the anhydrous sesquioxide before mentioned.

Uses.—The power of hydrated sesquioxide of iron to act as an antidote to arsenious acid is proved by three facts:

\(\mathbf{a.}\) It renders this poison insoluble.

\(\mathbf{b.}\) Experiments on animals have shewn its efficacy as an antidote.

\(\mathbf{c.}\) In poisoning in the human subject it has proved successful.

I have already explained the nature of the reaction between arsenious acid and hydrated sesquioxide of iron, in virtue of which the former is rendered insoluble.

Drs. Bunsen and Berthold\(^1\) were the first to shew that arsenious acid proved innocuous to animals when the hydrated sesquioxide was speedily administered. Their statements have been confirmed by the experiments of Soubeiran and Miquel\(^m\), of Orfila and Lesueur\(^n\), of Bouley, jun.\(^o\), of Borelli and Demaria\(^p\), of Dr. Mackenzie\(^q\), of the Committee (composed of Drs. Deville, Nonat, and Sandras) appointed by the Société de Médecine of Paris\(^s\), and of other experimentalists\(^t\). Opposed to this mass of evidence we have only the unfavourable results of Mr. Brett\(^\dagger\) and Mr. Orton\(^u\). But of these experimentalists I may remark, in the words of my friend Dr. Maclagan, that "with respect to the former, it may be observed, that he appears uniformly to have used too small quantities of the oxide; and the experiments of the latter hardly seem to have been made with sufficient care, as appears, in one instance at least, from his having injected both poison and antidote into the lungs instead of the stomach of the rabbit."

A very respectable testimony of the antidotal efficacy of the hydrated sesquioxide of iron in poisoning by arsenic, can now be

\(^5\) Elements of Chemistry, p. 636.

\(^1\) Op. cit.

\(^m\) Journ. de Chim. Méd. t. i. 2\(\text{e}\) Sér. p. 3.

\(^n\) Ibid. p. 45.

\(^o\) Ibid. p. 46.

\(^\dagger\) Ibid. p. 393.

\(^p\) Quoted by Dr. Maclagan.

\(^q\) Journ. de Chim. Méd. t. v. 2\(\text{e}\) Série, p. 317.

\(^u\) Lancet, Nov. 8, 1834.
adduced from its effects on man. In thirty-one cases \(^*\) in which it was given, it proved successful in twenty-nine. In one of these nearly two drachms of arsenic had been taken \(^*\). In the two unsuccessful cases the antidote could not be retained on the stomach.

It appears to me, therefore, that the threefold evidence of the antidotal power of this preparation is complete.

Administration.—The mode of administering this substance as an antidote in poisoning by arsenic has been already pointed out \(^*\). It must be especially remembered that very large doses of it are required to prove efficacious. It should, therefore, be given in the quantity of a tablespoonful every five or ten minutes, or as often as the patient can swallow it. If hydrated sesquisoxide be not at hand, let the common red oxide of iron (see p. 837) be given with water as a substitute; for though not equally efficacious with the hydrated oxide, it appears to possess some antidotal power \(^*\).

5. Tinctura Fer’ri Sesquichlo’ridi, L.—Tincture of Ses-chloride of Iron.

(*Ferri Muriatisa Tinctura, E.—Muriatis Ferri Liquor, D.*)

History.—This compound has been long in use, and is commonly termed the Tincture of the Muriate of Iron.

Preparation.—All the British Colleges give directions for its preparation:

The *London* and *Edinburgh* Colleges order of Sesquisoxide of Iron, \(\nu\); Hydrochloric Acid, \(\text{Oj.}\); Rectified Spirit, \(\text{Oij.}\). Pour the Acid upon the Sesquisoxide of Iron in a glass vessel, and digest for three days, frequently shaking. Lastly, add the Spirit, and strain.

The *Dublin* College orders, of Rust of Iron, *one part*; Muriatic Acid; Rectified Spirit, of each, *six parts*. Pour the acid on the rust passed into a glass vessel, and occasionally stir the mixture during three days; then set it apart that the dregs may subside, and pour off the clear liquor; by slow evaporation reduce this to one-third part, and when cold add it to the spirit.

By digestion in hydrochloric acid the sesquisoxide becomes the sesquichloride of iron, while water is formed.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 eq Hydrochloric Acid 111</td>
<td>3 eq. Hydrogen 3</td>
<td>3 eq. Water 5</td>
</tr>
<tr>
<td>3 eq. Chlorine 108</td>
<td>3 eq. Oxygen 24</td>
<td>2 eq. Iron 56</td>
</tr>
<tr>
<td>2 eq. Sesquisoxide of Iron 98</td>
<td>2 eq. Sesquichlor.Iron 64</td>
<td></td>
</tr>
</tbody>
</table>

As the sesquisoxide of iron employed frequently contains a small portion of protocarbonate of iron, a little protochloride of iron is formed, and slight effervescence, owing to the escape of carbonic acid, takes place. Both the chlorides of iron are soluble in water as well as in spirit.

\(^*\) Dr. T. R. Beck, *op. cit.*
\(^*\) *London Medical Gazette*, vol. xix. p. 177.
\(^*\) *Extrait de Chim. Med. * v. 73, cxciv., p. 265, et seq.*
TINCTURE OF SESQUICHLORIDE OF IRON.

Properties.—This tincture is of a reddish brown colour, and stains white paper yellow. It has a sour styptic taste, and an odour of hydrochloric ether, from which it would appear that a mutual reaction takes place between the hydrochloric acid and the alcohol. It reacts on vegetable colours as an acid. "Its sp. gr. is about 0·992, and a fluidounce yields, when decomposed by potash, nearly 80 grains of sesquioxide of iron."

Characteristics.—Its reaction on vegetable colours, its inflammability, its remarkable odour, its affording chloride of silver when treated by nitrate of silver, and its reaction, like the other ferruginous compounds (p. 829), are properties sufficient to characterize it. It forms a brown semitransparent jelly with mucilage of gum arabic.

Composition.—This tincture consists of Rectified Spirit, a small portion of Hydrochloric Ether, Hydrochloric Acid, Sesquichloride of Iron, and a little Proto-chloride of Iron. Unless excess of hydrochloric acid be present, sesquioxide of iron is thrown down when the tincture is exposed to the air, owing to the iron of the chloride attracting oxygen, and becoming sesquioxide.

Sesquichloride of iron has the following composition:

\[
\begin{array}{cccc}
\text{Atoms} & \text{Eq. Wt.} & \text{Per Cent.} & \text{J. Davy.} \\
\hline
\text{Iron} & 1 & 28 & 34·15 & 33·1 \\
\text{Chlorine} & 14 & 54 & 65·85 & 64·9 \\
\hline
\text{Sesquichloride of Iron} & 1 & 82 & 100·00 & 100·0
\end{array}
\]

Purity and Strength.—The commercial tincture of sesquichloride of iron varies in its strength, owing to the varying density of the hydrochloric acid employed. Moreover, a diluted spirit is frequently substituted for rectified spirit. These differences can only be discovered by examining the colour and specific gravity of the tincture, as well as the quantity of oxide which it yields.

Physiological Effects.—Tincture of sesquichloride of iron is, in its local action, one of the most powerful of the preparations of iron. It acts as an energetic astringent and styptic, and in large doses as an irritant. The large quantity of free hydrochloric acid which the tincture of the shops frequently contains, contributes to increase its irritant properties; and in Dr. Christison's Treatise on Poisons is a brief notice of a case in which an ounce and a half of this tincture was swallowed, and death occurred in about six weeks—the symptoms during life, and the appearances after death, being those indicative of inflammation of the alimentary canal. When swallowed in large medicinal doses it readily disorders the stomach. The general or constitutional effects of this preparation agree with those of other ferruginous compounds. It appears to possess, in addition, powerfully diuretic properties. Indeed it would seem to exercise some specific influence over the whole of the urinary apparatus; for on no other supposition can we explain the remarkable effects which it sometimes produces in affections of the kidneys, bladder,

7 Mr. R. Phillips, Transl. of the Lond. Pharm.
urethra, and even of the prostate gland. It colours the faces black, and usually constipates the bowels.

Uses.—It is sometimes, though not frequently, used as a topical agent. Thus it is applied as a caustic to venereal warts, and to spongy granulations. As an astringent it is sometimes employed as a local application to ulcers attended with a copious discharge; or as a styptic to stop hemorrhage from numerous small vessels.

Internally it may be employed as a tonic in any of the cases in which the other ferruginous compounds are administered, and which I have already mentioned. It has been especially commended in scrofula.

In various affections of the urino-genital organs it is frequently used with great success. Thus, in retention of urine, arising from spasmodic stricture, its effects are sometimes beneficial. It should be given in doses of ten minims every ten minutes until benefit is obtained, which frequently does not take place until nausea is excited. It has been used with success in this malady by Mr. Cline; by Drs. Thomas, Eberle, and Francis; and by Dr. Davy. However, Mr. Lawrence, alluding to Mr. Cline’s recommendation of it, observes, “I believe general experience has not led others to place any very great confidence in the use of this remedy.”

In gleet and leucorrhoea it is sometimes serviceable. I have found it occasionally successful, when given in conjunction with the tincture of cantharides, in the latter stage of gonorrhoea, after a variety of other remedies had failed. In passive hemorrhage from the kidneys, uterus, and bladder, it is likewise employed with benefit.

Administration.—The dose of it is from ten to thirty minims gradually increased to one or two drachms, and taken in some mild diluent.

Antidotes.—In a case of poisoning by it the treatment should be the same as for the mineral acids (see pp. 281 and 473).

6 FE'RRI AMMO'NIO-CHLOR'IDUM, L.—AMMONIO-CHLORIDE OF IRON.

History.—This compound, which was known to Basil Valentine, has had various appellations, such as Flores Salis Ammoniaci martiales, Ferrum ammoniacale, or Ferrum ammoniatum.

Preparation.—In the London Pharmacopeia it is directed to be thus prepared:—

Take Sesquioxide of Iron, 3iij.; Hydrochloric Acid, Oss.; Hydrochlorate of Ammonia, Ibijs.; Distilled Water, Oij. Mix the sesquioxide of iron with the hydrochloric acid in a proper vessel, and digest them in a sand-bath for two hours; afterwards add the hydrochlorate of ammonia, first dissolved in the wa-

*Eberle’s Treat. of Med. Med. ii. 279, 2d ed.
*Paris’s Pharmacologia, i. 478, 6th ed.
AMMONIO-CHLORIDE OF IRON.

845

tilled water; strain and evaporate the liquor. Lastly, rub what remains to powder.

By the mutual reaction of sesquioxide of iron and hydrochloric acid we obtain sesquichloride of iron and water, as explained at p. 842. A small portion of protochloride of iron will be produced if any carbonate of the protoxide of iron be mixed with the sesquioxide. By evaporating the solution thus procured with a solution of hydrochlorate of ammonia, we obtain a mixture of these bodies. There is no reason to believe that any chemical combination takes place.

Properties.—It is met with in the shops in the form of reddish orange-coloured crystalline grains, having a feeble odour and a styptic saline taste. It is deliquescent, and is soluble in both water and alcohol.

Characteristics.—Rubbed with quicklime or caustic potash, ammonia is evolved. Its solution affords chloride of silver when mixed with the nitrate of silver. It reacts as a persalt of iron (see p. 829).

Composition.—It is a mechanical mixture of hydrochlorate of ammonia and sesquichloride of iron, in the following proportions:—

<table>
<thead>
<tr>
<th></th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sesquichloride of Iron</td>
<td>15</td>
</tr>
<tr>
<td>Hydrochlorate of Ammonia</td>
<td>85</td>
</tr>
<tr>
<td>Ferri Ammonio-Chloridum, Ph. L.</td>
<td>100</td>
</tr>
</tbody>
</table>

It yields about 7 per cent. of sesquioxide of iron when decomposed by an alkali (Mr. R. Phillips).

The yellow bands sometimes found in cakes of hydrochlorate of ammonia are probably a true chemical compound of sesquichloride of iron and hydrochlorate of ammonia (vide p. 317).

Totally soluble in proof spirit and in water. Potash added to the solution throws down sesquioxide of iron; afterwards, when added in excess, it evolves ammonia, Ph. Lond.

Physiological Effects.—It produces the general effects of the ferruginous preparations; but, on account of the small and variable quantity of iron present, it is a compound which is of little value. The hydrochlorate of ammonia, which it contains, renders it alternative, and in large doses aperient.

Uses.—It has been employed as a deobstruent in glandular swellings, in amenorrhœa, and other cases where the preparations of iron are usually employed.

Administration.—It may be given in substance in doses of from four to twelve or more grains.

TINCTURA FERRI AMMONIO-CHLORIDI, L. (Ammonio-Chloride of Iron, šiv.; Proof Spirit, Qj. M.)—“A fluidounce yields by decomposition 5'8 grains of sesquioxide of iron.” It should be expelled from the Pharmacopœia.
7. Ferri Iodidum, L. E.—Iodine

History.—We are indebted to Dr. A. T. T. for the introduction of this substance into medicine. To the compounds of iodine and iron it is sometimes applied under the names of Iron. Other names for it are Ioduret, Hydride, Iron.

Preparation.—Directions for the preparation of this substance are given both by the London and Edinburgh Colleges.

The London College orders of Iodine, 3 vols. 4. Iron and Ovum. Mix the Iodine with four pints of the water and heat them in a sand-bath, and when it has acquired the liquor. Wash what remains with the half-pint of mixed and strained liquors evaporate at a heat not too strong, that the salt may be dried. Keep it in a well-closed bottle.

The Edinburgh College orders any convenient quantity of Iodine and Distilled Water in the proportions for making Ferri Iodidi Syrupus. Proceed as directed before filtering the solution concentrate it to one-third removing the excess of iron-wire. Put the filter evaporating basin, along with twelve times its weight of water, in some convenient apparatus in which it is small and not communicating with the general apparatus in a hot air-press, or otherwise, until the water is evaporated and preserve the dry iodide in small well-closed bottles.

Fine soft iron-wire employed by the Edinburgh College preferred to the iron filings used by the London College be recently cleaned to prevent it from rusting.

In this process one equivalent or 12 parts of iron is equivalent to 25 parts of iodine, and therefore 15 parts of protiodide of iron.

The Edinburgh College directs a considerable variation in this process. The object of this is to prevent the introduction of iron (formed by the union of part of the oxygen of the air) during the evaporation of the iodide. For the same reason also, the general process to be excluded during the evaporation, which on over quicklime, in order that the latter may be vapour.

Properties.—By evaporation with as little heat as possible, solution of iodide of iron yields green b. The solution be evaporated to dryness and the iron is heated, this salt is fused, and on cooling becomes a grey crystalline mass, with a metallic lustre.

1 Osborn, on the Preparation and Medical Employment of Iodine, 1834.
2 Mr. R. Phillips, Translation of the Pharmacopoeia.
Iodide of iron has a styptic taste. It is fusible, volatile, very de-liquefied, and very soluble in both water and alcohol. It readily attracts oxygen from the air, and is thereby converted into a mixture of sesquioxide and sesquiiodide of iron. "A solution of protoiodide of iron dissolves iodine abundantly, becoming brown, and possibly containing the sesquioxide Fe₂I₃, but it is more likely that the iodine is not combined, as it is sensible to the test of starch."

Characteristics.—When heated in the air it evolves violet vapours of iodine, while the iron attracts oxygen from the air and is converted into sesquioxide. If this be dissolved in an acid (hydrochloric, nitric, or sulphuric), the liquid reacts as a solution of a persalt of iron (see p. 899). Alkalis throw down from it the reddish brown sesquioxide of iron. Solution of protiodide of iron, like that of other protosolts of iron, is green.

Composition.—The composition of crystallized iodide of iron is, according to Mr. R. Phillips, as follows:—

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>1</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>Iodine</td>
<td>1</td>
<td>126</td>
<td>63.3</td>
</tr>
<tr>
<td>Water</td>
<td>5</td>
<td>45</td>
<td>22.7</td>
</tr>
</tbody>
</table>

Hydrated Iodide of Iron: 1 129 100.0

Purity.—It should be perfectly soluble in water. By exposure to the air it forms sesquioxide and sesquiiodide of iron¹: the latter is soluble, the former is insoluble, in water. To preserve a solution of this salt, a coil of soft iron wire is to be kept immersed in it; this prevents the formation of sesquioxide of iron.

Emits violet vapours by heat, and sesquioxide of iron remains. When fresh prepared it is totally soluble in water. From this solution, when kept in a badly-stoppered vessel, sesquioxide of iron is very soon precipitated; but with iron wire immersed in it, it may be kept clear in a well-stoppered vessel. Ph. Lond.

Entirely soluble in water, or nearly so; forming a greenish solution. Ph. Ed.

Physiological Effects. a. On Animals.—Three drachms of iodide of iron were administered to a dog: vomiting and purging were produced, but in three days the animal was well. One drachm dissolved in a drachm of water killed a rabbit in three hours and a half, with the appearance of gradually-increasing debility: the stomach was found congested, and its lining membrane decomposed. Forty grains injected into the jugular vein of a dog killed the animal within twelve hours: the symptoms were dilatation of the pupils, staggering, vomiting, and bloody stools.

b. On Man.—In small and repeated doses its effects are not very obvious, save that of blackening the stools. It sometimes sharpens the appetite and promotes digestion. It passes out of the system in the urine, and both of its constituents may be detected in this fluid. When it does not purge, it frequently acts as a diuretic. In full doses, as ten grains, it on one occasion caused uneasy sensation at the epigastrium, nausea, slight headache, copious black stool, and, in two

¹ Kane, Elements of Chemistry, p. 732.
³ Sesqui-iodide of iron is said to produce the same effects, but to be more active than the iodide.

hours, a larger quantity of urine, containing both iron and iodine. Its medicinal influence on the body seems to be stimulant, tonic, and alterative or obstrucent. It possesses the combined properties of iron and iodine.

Uses.—Iodide of iron is indicated as a tonic and resolvent in cases of debility accompanied with a soft and relaxed condition of the solids, and paleness of the skin. It is especially applicable in scrofulous and stramous affections of the glandular system, in which the use both of iodine and iron is indicated.

In tabes mesenterica, and swellings of the cervical lymphatic glands, it often proves highly advantageous. In chlorosis, and in atomic amenorrhœa, Dr. Thomson found it serviceable; and his testimony of its good effects has been supported by that of others. Its operation must be promoted by exercise and an invigorating diet. In a case of anaemia, without any disturbance of the uterine function, I found it useless; while the compound iron mixture was of essential service. In secondary syphilis, occurring in debilitated and scrofulous subjects, it is in some cases, according to the testimony of both Dr. Thomson and Ricord, a valuable remedy. The last-mentioned writer employed it in the form of injection (composed of from half a drachm to a drachm of iodide dissolved in eight ounces of water) in blennorrhœas, and in that of lotion in venereal and carious ulcers. Dr. Pierquin employed it internally and externally in leucorrhœa and amenorrhœa. It has also been used in incipient cancer and in atomic dyspepsia (Thomson).

Administration.—The dose of it is three grains gradually increased to eight or ten or more. Ricord has given forty grains per day. It may be exhibited in the form of tincture or of aqueous solution, flavoured with a little tincture of orange-peel. It must be remembered that acids, alkalis, and their carbonates, most metallic salts, all vegetable astringents, and many organic solutions, decompose it. Pierquin gave it in chocolate, Bourdeaux wine, distilled water, diluted spirit, or made into lozenges with saffron and sugar. In leucorrhœa and amenorrhœa he employed an ointment (composed of a drachm of iodide to an ounce of lard), by way of friction in the upper part of the thighs.

FERRI IODIDI SYRUPUS, E.—Syrop of Iodide of Iron. (Iodine, dry, 200 grs.; Fine Iron-wire, recently cleaned, 100 grs.; White Sugar, in powder, 3ivss.; Distilled Water, f3vjs. Boil the iodine, iron, and water together in a glass matrass, at first gently to avoid the expulsion of iodine-vapour, afterwards briskly, until about two fluidounces of liquid remain. Filter this quickly, while hot, into a matras containing the sugar. Dissolve the sugar with a gentle heat; and add distilled water, if necessary, to make up six fluidounces.—Twelve minims contain one grain of iodide of iron). This preparation is a very convenient form for the exhibition of iodide of iron, as it is not so readily
decomposed as an aqueous solution of this salt. In the Edinburgh Pharmacopoeia it is described as being "colourless, or pale green; transparent; without sediment, even when exposed to the air."

8. FE.R'I SULPHURE'TUM, E. D.—SULPHURET OF IRON.

NATURAL HISTORY.—In the mineral kingdom sulphur and iron are frequently met with in combination. Common Iron Pyrites, commonly termed Mundy, is a bisulphuret of iron. White Iron Pyrites, or Cockscomb Pyrites, differs from mundy in its specific gravity, the shape of its crystal, and its tendency to decompose on exposure to the air, and thereby to furnish sulphate of iron. Magnetic Iron Pyrites contains a less proportion of sulphur.

PREPARATION.—Directions for the preparation of sulphuret of iron are given in both the Edinburgh and Dublin Pharmacopoeias.

The Edinburgh College states that "the best sulphuret of iron is made by heating an iron rod to a full white heat in a forge, and rubbing it with a roll of sulphur over a deep vessel filled with water, to receive the fused globules of sulphuret which form. An inferior sort, good enough, however, for pharmacetical purposes, is obtained by heating one part of sublimed sulphur and three of iron filings in a crucible in a common fire till the mixture begins to glow, and then removing the crucible and covering it, until the action, which at first increases considerably, shall come to an end."

The Dublin College direct, that a rod of iron should be exposed to the strongest heat of a forge, until it becomes white hot, and, when taken from the fire, let it instantly be applied to a solid mass of sulphur. Let the sulphuret of iron be received in water; and, when separated from the sulphur and dried, let it be preserved in closed vessels.

The sulphur and iron enter into combination, and form sulphuret of iron.

PROPERTIES.—The appearance of sulphuret of iron varies somewhat according to the mode of procuring it. If properly prepared it gives out abundance of sulphuretted hydrogen gas, when mixed with either diluted sulphuric or muriatic acid, while a ferruginous solution is obtained.

COMPOSITION.—Its composition is liable to some variation. The best is a protosulphuret of iron, and consists of 1 equivalent or 10 parts of sulphur, combined with 1 equivalent or 28 parts of iron. Sometimes, however, a compound containing a larger proportion of sulphur is found.

USES.—It is employed as the source of sulphuretted hydrogen (see p. 478).

For some observations on the chemical properties of Syrup of Iodide of Iron, see Wackenrader in his Pharmacopolia Central-Blatt für 1839, S. 628. See also some remarks on Ioduretum Ferris acetabrum, by Kern, in Berlinisches Jahrbuch für die Pharmacie, Bd. xiii. S. 212, 1839.
FERRO-SESQUICYANIDE OF IRON.

Yields water, hydrocyanate of ammonia, then carbonate of ammonia, and leaves a black, carbonaceous, and ferruginous mass.

The blue precipitate which falls when red prussiate of potash is added to a protosalt of iron, is called TURNBULL’S BLUE. It consists of 5 eq. Iron and 6 eq. Cyanogen; or 3 eq. Protocyanide of Iron and 2 eq. Sesquicyanide of Iron. Liebig calls it Ferricyanide of Iron. It is distinguished from Prussian blue by a circumstance that when boiled in a solution of yellow prussiate of potash, it affords red prussiate of potash, which dissolves, and a grey insoluble residue of ferrocyanide of iron and ferrocyante of potassium.

Basic Prussian Blue, or the Basic SesquiFerrocyanide of Iron, is a compound of 1 eq. Prussian Blue and two equivalents of Sesquioxide of Iron. It is soluble in water. It is formed by exposing ferrocyanide of potassium and iron (the bluish white precipitate formed when yellow prussiate of potash is added to a protosalt of iron) to the air. Oxygen is absorbed, and two products are obtained—viz. Basic Prussian Blue and Yellow Prussiate of Potash. 2 eqs. of Ferrocyanide of Potassium and Iron Fe₁₀(Cy₁₂K₂), with 3 eqs. Oxygen (O₂), yield 1 eq. Yellow Prussiate of Potash (FeCy₃K₂), 1 eq. Prussian Blue (Fe₇Cy₉), and 2 eqs. Sesquioxide of Iron (Fe₉O₈).

Composition.—The following is the composition of pure and anhydrous Prussian blue:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Ct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>7</td>
<td>136</td>
</tr>
<tr>
<td>Cyanogen</td>
<td>9</td>
<td>234</td>
</tr>
</tbody>
</table>

Ferrocesquiyanide of Iron 1... 430... 1000

Prussian blue appears to contain also the elements of water, of which it cannot be deprived without the destruction of the compound.

Purity.—Prussian blue of commerce usually contains alumina and sesquioxide of iron. These may be detected by boiling the suspected compound with diluted hydrochloric acid, which dissolves both the impurities. Caustic ammonia added to the filtered solution throws down the impurities; excess of the alkali will redissolve the alumina.

It is pure if, after being boiled with dilute hydrochloric acid, ammonia throws down nothing from the filtered solution. Ph. Lond.

Physiological Effects. a. On Animals.—Coullon gave it to dogs and sparrows without killing them; and Schubarth states that the only effect produced on a dog by two drachms was dejection. b. On Man.—Its effects on man are not very obvious. It is reputed alterative, tonic, and febrifuge. Sachs calls it a resolvent tonic.

Uses.—It has been recommended by Dr. Zollicksoffer as a more certain, prompt, and efficacious remedy for intermittent and remitting fevers than cinchona; and particularly adapted for children, on account of its insipidity and smallness of dose. It may be administered during the paroxysm as well as in the intermission, and does

* Treatise on the Use of Prussian Blue in Intermittent and Remitting Fevers, Maryland, 1823.
not disagree with the most irritable stomach. Hosack, Eberle, and others, have borne testimony to its good effects. Subsequently, Zollickeoff found it useful in dysentery. Kirkhoff* used it for many years in epilepsy, with the best results, having cured some cases of several years’ standing. It has also been employed by Dr. Bridges, of Philadelphia, in a case of severe and protracted facial neuralgia, with very considerable relief. Lastly, it has been used in the form of ointment, as an application to foul ulcers.

In pharmacy it is employed in the manufacture of bicyanide of mercury.

Administration.—The dose of commercial Prussian blue is from four to six or more grains every four hours. The ointment above referred to may be prepared with a drachm of Prussian blue and an ounce of lard.

History.—This salt was accidentally discovered at the commencement of the last century. It has had a variety of appellations, such as Prussiate of Potash, Ferroprussiate of Potash, and Ferrocyanate of Potash.

Preparation.—The usual method of obtaining it is the following:—"Into an egg-shaped iron pot, brought to moderate ignition, project a mixture of good pearl-ash and dry animal matters, of which hoofs and horns are the best, in the proportion of two parts of the former to five of the latter. Stir them well with a flat iron paddle. The mixture, as it calcines, will gradually assume a pasty form, during which transition it must be tossed about with much manual labour and dexterity. When the conversion into a chemical compound is seen to be completed by the cessation of the fœtid animal vapours, remove the pasty mass with an iron ladle. If this be thrown, while hot, into water, some of the Prussic acid will be converted into ammonia, and of course the usual product diminished. Allow it to cool, dissolve it in water, clarify the solution by filtration or subsidence, evaporate, and, on cooling, yellow crystals of the ferroprussiate of potash will form. Separate these, re-dissolve them in hot water, and by allowing the solution to cool very slowly, larger and very regular crystals may be had."

* Froirop's Notizen, Bd. xvii. 340.
* United States Dispensatory.
* Urc's Dictionary of Chemistry.
"Mr. Charles Mackintosh, of Glasgow, who is one of the largest manufacturers of this salt, informs me that the animal matters employed as the source of cyanogen are chiefly chips of horns, animal hoofs, woollen rags, and the substance called *greaves*, which is the refuse of tallow-melters, and consists chiefly of cellular membrane from which the fat has been expressed: these are burned, and in fact, fused at a very high heat with potash, to form what is called *prussiate cake*; this, when cold, is lixiviated with water, and the evaporated solution yields a first crop of very impure ferroprussiate; it is redissolved, and the second crystallization is allowed to go on very slowly, it being at least a fortnight before the contents of the coolers are disturbed. The iron requisite to the constitution of this salt is derived from the iron pots and stirrers used in the operation, or, if requisite, iron filings are added" (Brande).

The following explanation of the theory of this process is from Liebig*. When animal substances containing carbon and nitrogen are fused with potash at a red heat, the potassium is reduced by the carbon, and forms by its reaction on the other ingredients cyanuret of potassium. The fused mass at a red heat contains no ferrocyanogen, but iron and carburet of iron in the form of a suspended powder. When it is lixiviated with cold water and immediately evaporated, it furnishes no ferrocyanuret; but when the solution is gently heated for several hours in the contact of air, oxygen is absorbed, it acquires a yellow colour, and now contains much ferrocyanuret of potassium. This explains why a solution of cyanuret of potassium in pure water and in the presence of finely-divided metallic iron, absorbs the oxygen of the air in passing into the state of oxide of potassium and dissolving the metal; the potassium of the cyanuret, in yielding to the iron the cyanogen with which it was combined, and so forming cyanuret of iron, enables it to combine with the remaining undecomposed cyanuret of potassium to form ferrocyanuret of potassium. In close vessels the solution of iron by cyanuret of potassium evolves hydrogen. The fused mass

See Phil. Mag. for June, 1841; also Proceedings of the Chemical Society, v. 2.
also contains free potassa, which, by being boiled with water, decomposes it into formiate of potassa and anhydrous sulphate of iron, and that the evolved potassium combines also with the nitrogen of the atmosphere; and that the evolved potassium results from this action. He proposed the Truncated octahedron of ferrocyanide of potassium. (Fig. 129.)

They have a peculiar toughness or flexibility, and are transparent, permanent, inodorous, and soluble in cold water. When heated to redness in contact with iron of the salt is decomposed, and the residue consists of sesquioxide of iron and carbonate of potassium, oxide of iron, and carbon; but hydrocyanic acid and ammonia are evolved.

Mr. L. Thompson has observed that they are abundantly formed when an ignited mixture of carbonic oxide and iron filings is exposed to the air. In that process he says the potassium is combined with iron, and that the evolved potassium combines also with the nitrogen of the atmosphere; and that the potassium results from this action. He proposed the manufacture of Prussian blue."
Characteristics.—A solution of this salt throws down, with the protosalts of iron, a white precipitate (ferrocyanide of potassium and iron, see p. 851), which by exposure to the air becomes blue (Basic Prussian Blue, see p. 851). With the persalts of iron it forms a deep blue (Prussian Blue); with the salts of copper a deep brown (Ferro-cyanide of Copper); and with those of lead a white precipitate (Ferro-cyanide of Lead). Heated with dilute sulphuric acid, hydrocyanic acid is evolved, and a white precipitate formed, which, by exposure to the air, becomes blue. Hydrosulphuric acid, the sulphures, alkalis, or tincture of galls, give no precipitate with a solution of this salt; showing that the iron which it contains is in some remarkable state of combination. If a solution of the ferrocyanide of potassium be boiled with binoxide of mercury, bicineane of mercury is formed in solution, and a mixture of sesquioxide and cyanide of iron is precipitated. The presence of potassium is best shown by calcining the salt, and detecting potash by the usual tests in the residuum. If chlorine be passed through a solution of ferrocyanide of potassium, it abstracts one equivalent of potassium from every two equivalents of the ferrocyanide, by which one equivalent of the ferrosesquicynide of potassium (Red Prussiate of Potash) is formed in solution, and by evaporation this salt may be obtained in the form of red crystals, which throw down a blue precipitate (Turnbull's Blue, see p. 851) with the protosalts of iron, but occasion no change with the persalts of iron.

Composition.—Crystallized ferrocyanide of potassium has the following composition:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanogen</td>
<td>3</td>
<td>78</td>
<td>3664</td>
<td>Cyanide of Iron</td>
<td>1</td>
</tr>
<tr>
<td>Iron</td>
<td>1</td>
<td>28</td>
<td>1314</td>
<td>Cyanide of Potassium</td>
<td>1</td>
</tr>
<tr>
<td>Potassium</td>
<td>2</td>
<td>80</td>
<td>37300</td>
<td>Water</td>
<td>3</td>
</tr>
<tr>
<td>Water</td>
<td>3</td>
<td>27</td>
<td>12975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryst. Ferrocyanide</td>
<td>54</td>
<td>213</td>
<td>100990</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Totally dissolved by water. A gentle heat evaporates 126 parts from 100 parts. It slightly [if at all] alters the colours of turmeric. What it throws down from the preparation of sesquioxide of iron is blue, and that from the preparations of zinc is white. When burnt, the residue dissolved by hydrochloric acid is again thrown down by ammonia; 187 parts of sesquioxide of iron are yielded by 100 parts. Ph. Lond.

Physiological Effects. a. On Animals.—Schubarth gave two drachms to one dog, and half an ounce to another, without observing any injurious consequences. Callies found the commercial ferrocyanide of potassium slightly poisonous, but when prepared with care he remarked that several ounces might be given with impunity. These and other experiments show that this salt possesses very little activity. The rapidity with which it is absorbed and gets into the secretions, as the urine, is most remarkable. Westrum recognised

2. Wibmer, op. cit.; also Christison's Treat. on Poisons.
3. Müller's Physiology, by Baly, i. 217.
11. \textit{Ferri Sulphas, L.E.D.—Sulphate of Iron.}

\textbf{History.}—Sulphate of iron is one of the substances which Pliny termed \textit{Chalcantum}. This is evident from the circumstance of his statement that the Romans called it \textit{Atramentum Sutorium}, or \textit{Shoemaker’s Black}. It is frequently termed \textit{Copperas}, and in consequence has been sometimes confounded with the salts of copper: \textit{Green Vitriol (Vitriolum Viride), Vitriol of Mars (Vitriolum Martis), Salt of Mars (Sal Martis), Vitriolated Iron (Ferrum Vitriolatum)}, are other names by which it is known.

\textbf{Natural History.}—It is found dissolved in some mineral waters, (\textit{sulphated chalybeates, vide p. 266}), as those of the Hartfell Spa, Scotland. In the \textit{aluminous chalybeate} waters it is associated with sulphate of alumina; as in the water of Sand Rock, Isle of Wight. The strong Moffatt chalybeate, and Vicar’s Brig chalybeate, contain the sulphate of the sesquioxide of iron. Sulphate of iron is also found in the waters of several copper mines.

Sulphate of the protoxide of iron is rarely met native in the crystallized state. It occurs, however, in Rammelsberg mine, near Goslar; at Schwartzenburg, in Saxony; at Hurlet, near Paisley; and in New Englanda.

Dr. Thomson1 has described two native sulphates of the sesquioxide of iron, and an aluminous protosulphate.

\textbf{Preparation.}—Sulphate of the protoxide of iron is prepared by dissolving clean unoxidized iron in diluted sulphuric acid.

The \textit{London College} orders, of Iron Filings, \textit{iiiij.}; Sulphuric Acid, \textit{xxiv.}; Water, \textit{Ov.} Mix the Sulphuric Acid with the Water, and add the Iron to them; then apply heat, and when bubbles have ceased to escape, strain the liquor, and set it aside that crystals may be formed. Evaporate the liquor poured off, that it may again yield crystals. Dry them all.

The \textit{Edinburgh College} observes, that if the Sulphate of Iron of commerce be not in transparent green crystals, without efflorescence, dissolve it in its own weight of boiling water, acidulated with a little sulphuric acid; filter, and set the solution aside to crystallize. Preserve the crystals in well-closed bottles.

The \textit{Dublin College} orders, of Iron Wire, \textit{four parts}; Sulphuric Acid, \textit{seven parts}; Water, \textit{sixty parts}.

In this process an equivalent or 28 parts of iron decompose one equivalent or 9 parts of water, combining with an equivalent or 8 parts of oxygen, and setting free an equivalent or 1 part of hydrogen, which escapes in the gaseous form. The equivalent or 36 parts of protoxide iron, thus formed, combines with an equivalent or 40 parts of sulphuric acid, to form an equivalent or 76 parts of sulphate of iron.

1 \textit{Hist. Nat.} xxxiv. 32.
a Dr. Cummin, \textit{Loud. Med. Gaz.} xix. 40.
b \textit{Philip’s Mineralogy}, by Allan.
1 \textit{Outlines of Mineralogy}, vol. 1.
tals, and by the blue colour produced on the addition of ferrocyanide of potassium.

Colour bluish green; dissolved by water. Iron put into the solution does not precipitate copper. Ph. Lond.
Pale bluish green crystals, with little or no efflorescence. Ph. Edinb.

The Common Green Vitriol, or Copperas of the shops, is a mixture of the sulphates of the protoxide and sesquioxide of iron. It sometimes contains copper, which may be recognised by immersing a clean iron spatula in a solution of it; the iron becomes encrusted with copper: or it may be detected by adding excess of caustic ammonia, and filtering the liquor. If copper be present, the liquor will have an azure blue tint. The ammoniacal liquid should yield, by evaporation, no fixed residuum.

Physiological Effects. a. On Vegetables.—Sir H. Davy\(^1\) ascribes the sterility of a soil to the presence of sulphate of iron.

b. On Animals.—C. G. Gmelin\(^2\) found that two drachms of sulphate of iron given to a dog caused vomiting only; that forty grains had no effect on a rabbit; and that twenty grains, thrown into the jugular vein of a dog, produced no effect. Dr. Smith\(^3\), however, found that two drachms proved fatal to a dog when taken into the stomach or applied to a wound. Orfila\(^4\) obtained similar results. The effects were local inflammation and a specific affection of the stomach and rectum. According to Weinhold\(^5\), the spleen of animals fed with it becomes remarkably small and compact.

g. On Man.—This salt acts locally as a powerful astringent, and, when employed in a concentrated form, as an irritant. The latter effect depends on its chemical action on the organic constituents (albumen, &c.) of the tissues. The remote effects of sulphate of iron are analogous to those of other ferruginous compounds, and which have been already described.

Swallowed in small doses it has an astringent operation on the gastro-intestinal mucous membrane, and thereby diminishes the quantity of fluids secreted or exhaled: hence its continued use causes constipation. It blackens the stools like other compounds of iron. It becomes absorbed, and operates on the system as a tonic, stimulant, emmenagogue, and astringent. In large medicinal doses it readily excites pain, heat, or other uneasiness at the pit of the stomach, and not unfrequently causes nausea and vomiting: this is especially the case in irritable conditions of this viscus. In excessive doses it operates as an irritant poison. A girl took, as an emmenagogue, an ounce of it in beer, and was seized, in consequence, with colic pains, constant vomiting and purging for seven hours. Mucilaginous and oily drinks soon cured her\(^6\).

\(^1\) Apricot. Chem. 4th ed. 185.
\(^2\) Vers. n. d. Wirk. &c. 84.
\(^3\) Quoted by Wilmer and by Christison.
\(^4\) Tasciol. Gen.
\(^5\) Quoted by Richter, Ausf. Arzneim. v. 55.
\(^6\) Christison, from Rust’s Magazin, xxl. 247.
tituting the mineral called Spathose Iron. It is also found in the carbonated chalybeate waters (see p. 266).

Preparation.—It is prepared by adding a solution of an alkaline carbonate to a solution of a protosalt (as the sulphate) of iron, the atmospheric air being carefully excluded. The carbonate of the protoxide of iron is precipitated. When we attempt to collect and dry it, decomposition takes place; oxygen of the air is absorbed, carbonic acid escapes, and sesquioxide of iron remains (see Ferri
Sesquioxydum, p. 887). Hence when employed in medicine it must be prepared extemporaneously.

Properties.—Native protocarbonate of iron is yellow; the primary form of its crystals is the obtuse rhombohedron. Carbonate of iron prepared as above directed is a white precipitate, which by exposure to the air becomes at first greenish, then brown (sesquioxide). It is insoluble in water, but dissolves in sulphuric or hydrochloric acid with effervescence. It also readily dissolves in carbonic acid water: the acidulo-chalybeate waters are natural solutions of this kind (see pp. 266 and 268).

Characteristics.—It dissolves in diluted sulphuric acid with effervescence. The solution possesses the before-mentioned properties of the ferruginous solutions (see p. 829).

Composition.—Carbonate of the protoxide of iron is thus composed:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Stromeget.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prot oxide of Iron</td>
<td>1</td>
<td>35</td>
<td>62</td>
<td>60 6726</td>
</tr>
<tr>
<td>Carbonic Acid</td>
<td>1</td>
<td>22</td>
<td>38</td>
<td>38 0332</td>
</tr>
<tr>
<td>Carbonate of Iron</td>
<td>1</td>
<td>58</td>
<td>100</td>
<td>97 6658</td>
</tr>
</tbody>
</table>

Physiological Effects and Uses.—It is one of the most valuable of the ferruginous compounds, on account of the facility with which it dissolves in the fluids of the stomach, and becomes absorbed. Its local effects are very mild.

Its uses are those of chalybeates in general, and which have been before mentioned.

1. FERRI CARBONAS SACCHARATUM, E. Saccharine Carbonate of Iron. (Sulphate of Iron, 5iv.; Carbonate of Soda, 5iv.; Pure Sugar, ii.; Water, Oiv.) Dissolve the sulphate and carbonate each in two pints of the water; add the solutions and mix them; collect the precipitate on a cloth filter, and immediately wash it with cold water, squeeze out as much of the water as possible, and without delay triturate the pulp which remains with the sugar previously in fine powder. Dry the mixture at a temperature not much above 120°.)—Dr. Becker, of Mühlhausen, suggested this compound. His idea was carried out by Klauser; and hence this preparation is known on the continent as Klauser's Ferrum Carbonicum Saccharatum. The sugar checks, though it does not completely prevent, the further oxidation of the iron. This preparation is a greenish powder, composed of sesquioxide of iron,

\[\text{For some observations on its chemical properties see a paper by A. Buchner in the Pharmaceutisches Central-Blatt für 1837, S. 755.}\]
sugar, and carbonic acid, with some sesquioxide of iron. Its characters are, according to the Edinburgh College, as follows:—

Colour grayish-green; easily soluble in muriatic acid, with brisk effervescence.

It may be given in doses of from five to ten grains.

2. MISTURA FERRI COMPOSITA. L. E. D.; Compound Mixture of Iron; Griffith's Mixture. (Myrrh, powdered, 3ij.; Carbonate of Potash, 3j.; Rose Water, f3xviiij.; Sulphate of Iron, powdered, 3iij.; Spirit of Nutmeg, fij.; Sugar, 3ij. Rub together the Myrrh with the Spirit of Nutmeg and the Carbonate of Potash; and to these, while rubbing, add first the Rose Water with the Sugar, then the Sulphate of Iron. Put the mixture immediately into a proper glass vessel, and stop it. L. The processes of the Edinburgh and Dublin Colleges are essentially the same.)—This is a professed imitation of Dr. Griffith's celebrated antihectic or tonic mixture.

In the preparation of it, double decomposition takes place: by the mutual reaction of carbonate of potash and sulphate of iron we obtain sulphate of potash, which remains in solution, and carbonate of protoxide of iron, which precipitates. To prevent the latter attracting more oxygen, it is to be preserved in a well-stoppered bottle. The quantity of carbonate of potash directed to be used is almost twice as much as is required to decompose the quantity of sulphate of iron ordered to be employed. The excess combines with the myrrh, and forms a kind of saponaceous compound, which assists in suspending the carbonate of iron in the liquid.

When first made, this mixture has a greenish colour, owing to the hydrated ferruginous carbonate; but by exposure to the air it becomes reddish, owing to the absorption of oxygen, by which sesquioxide of iron is formed, and carbonic acid evolves: hence it should only be prepared when required for use.

It is one of the most useful and efficacious ferruginous preparations, and which is owing to its ready solubility, by which it is easily digested and absorbed. Its constitutional effects are analogous to those of the ferruginous compounds in general, and which have been already described. Its tonic and stimulant operation is promoted by the myrrh: the excess of alkaline carbonate must not be forgotten in estimating the sources of activity of this medicine.

It is admissible in most of the cases in which ferruginous remedies are indicated; but it is especially serviceable in anaemia, chlorotic, atonic amenorrhoea, and hysterical affections. It is also employed with benefit in the hectic fever of phthisis and chronic mucous catarrhs. It is contra-indicated in inflammatory conditions of the gastro-intestinal membrane.

The dose of it is one or two fluidounces three or four times a day. Of course acids and acidulous salts, as well as all vegetable astringents which contain gallic or tannic acid, are incompatible with it.

Pract. Observations on the Cure of Hectic and Slow Fevers, and the Pulmonary Consumpt. 1776.
3. PILULÆ FERRI COMPOSITÆ, L. D. *Pilulae Ferri Carbonatia, E.*; *Pilulae Ferri cum Myrrha; Compound Pills of Iron; Pills of Carbonate of Iron.* (Myrrh, powdered, sij.; Carbonate of Soda; Sulphate of Iron; Treacle, of each, 5j. Rub the myrrh with the carbonate of soda; then having added the sulphate of iron, rub them again; afterwards beat the whole in a vessel previously warmed, until incorporated, L.—The Dublin College orders, a drachm of Brown Sugar instead of Treacle.—The Edinburgh College orders, of Saccharine Carbonate of Iron, *four parts*; Conserve of Red Roses, *one part.* Beat them into a proper mass, to be divided into five-grain pills.)—Prepared according to the London and Dublin Colleges these pills are analogous in composition, effects, and uses, to the preceding preparation. Double decomposition takes place between the two salts employed, and the products are sulphate of soda and carbonate of iron. The carbonate of soda is preferred to the carbonate of potash, on account of the deliquescence of the latter. These pills, like the mixture, should only be made when required for use. The effects and uses of these pills are similar to those of the *Mistura Ferri composita.*—Dose, from grs. x. to grs. xx.

3. SUPERCARBONATED CHALYBEATES.—Carbonate of the protoxide of iron dissolves in water by the aid of carbonic acid. The *Carbonated Chalybeate Mineral Waters* (see p. 266) are solutions of this kind.

Artificial solutions of the carbonated chalybeates are prepared in various ways. A convenient extemporaneous solution is obtained by mixing intimately sulphate of iron and bicarbonate of soda (*soda sesquicarbonas, L.*), and dissolving them in a tumblerful of carbonic acid water (*bottled soda water*). One hundred and thirty-nine grains of crystallized sulphate of iron require eighty-three grains of *soda sesquicarbonas, L.* to yield fifty-eight grains of carbonate of iron. It is advisable, however, to employ an excess of the sesquicarbonate of soda. If 10 grs. of sulphate of iron, and 10 grs. of the sesquicarbonate of soda L. be used, we shall obtain a solution of about 4 grs. of carbonate of iron, 2½ grs. of sulphate of soda, and 5 grs. of sesquicarbonate of soda. The solution should be taken in a state of effervescence.

Another mode of preparing a solution of carbonate of iron is to add bicarbonate of soda to a solution of sulphate of iron acidulated by some acid, as sulphuric, tartaric, or citric acid.

13. POTAS’SÆ FER’RO-TAR’TRAS.—FERRO-TARTRATE OF POTASH.

(Ferri Potassio-Tartras, L.—Ferrum Tartaricatum, E.—Ferri Tartarum, D.)

HISTORY.—This preparation was first described by Angelus Sala at the commencement of the seventeenth century. Mr. R. Phillips* improved its mode of preparation. The late Dr. Birkbeck has described its medical properties. Besides the above, it has had various

* An Experimental Examination of the last edition of the Pharmacopoeia Londinensis. 1811.
The Edinburgh College orders of Sulphate of Iron, 3v.; Bitartrate of Potash, 3v., and 3j.; Carbonate of Ammonia in fine powder, a sufficiency. Prepare the Rust of iron from the sulphate as directed under Ferrugo, and without drying. Mix the pulpy mass with four pints of water; add the Bitartrate; boil till the rust of iron is dissolved; let the solution cool; pour off the clear liquid, and add to this the carbonate of ammonia so long as it occasions effervescence. Concentrate the liquid over the vapour bath to the consistence of a thick extract; or till the residuum becomes on cooling a firm solid; which must be preserved in well-closed vessels.

The explanation of the formation of hydrated sesquioxide of iron (here called Rust) has been already explained (see p. 840). The theory of the other part of the process is the same as that of the process of the London Pharmacopoeia.

The Dublin College orders of Iron, drawn into thin wire, one part; Bitartrate of Potash, in very subtile powder, four parts; Distilled Water, eight parts, or as much as may be sufficient. Let them be mixed, and exposed to the air during fifteen days in a wide vessel. Let the mixture, which is to be occasionally stirred, be kept constantly moist by the daily addition of water, taking care that the iron shall not be entirely covered by the water. Lastly, boil the product in a sufficient quantity of water, and let the filtered liquor evaporate to dryness over a water bath. Let the Tartar of iron be kept in a well-stopped vessel.

By the united agencies of air and water the iron is converted into the sesquioxide, which combines with the bitartrate of potash to form tartarized iron.

Properties.—It is an olive-brown inodorous powder, with a styptic inkly taste. It reacts on vegetable colours, mildly alkaline. It is slightly deliquescent, probably from the tartrate of potash which it contains. It dissolves in about four times its weight of water, and slightly in alcohol.

Characteristics.—Ferrocyanide of potassium does not occasion any blue colour with it, unless a few drops of acid be added. Potash, soda, and their carbonates, do not decompose it at ordinary temperatures, nor does ammonia or its carbonate even by the aid of heat. Tincture of nutgalls causes a dark-coloured precipitate. Sulphuric, nitric, or hydrochloric acid, throws down the sesquioxide of iron from a solution of this salt; an excess of acid redissolves it: the solution has then a very astringent taste. Tartaric acid causes the formation of crystals of tartar. Heated in a covered crucible, ferro-tartrate of potash yields charcoal, carbonate of potash, and protosoxide of iron.

Composition.—The following table exhibits the composition of this salt, according to Soubeiran and Phillips:

<table>
<thead>
<tr>
<th></th>
<th>Phillips</th>
<th>Soubeiran</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atoms, Eq. Wt</td>
<td>Per Cent.</td>
</tr>
<tr>
<td>Tartrate of Sesquioxide of Iron</td>
<td>1 ... 103</td>
<td>49.13</td>
</tr>
<tr>
<td>Tartrate of Potash</td>
<td>1 ... 114</td>
<td>51.87</td>
</tr>
<tr>
<td>Ferro-tartrate of Potash</td>
<td>1 ... 220</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Soubeiran says it contains 13 per cent. of sesquioxide of iron; whereas, according to Mr. Phillips, the quantity is 18.18 per cent.

The ferro-tartrate of potash is to be regarded as a double salt, in
FERRUGINOUS COMPOUNDS.

Composition.—It consists of the Acetate of the Protioxide and Acetate of the Sesquioxide of Iron.

The physiological effects and uses are the same as other ferruginous compounds.—The dose is from ten to twenty-five drops, in water.

1. FERRI ACETATIS TINCTURA, D. (Acetate of Potash, two parts; Sulphate of Iron, one part; Rectified Spirit, twenty-six parts. Rub together the acetate and sulphate, then dry, and add the spirit. Digest for seven days in a well-stoppered bottle; then pour off the clear liquor, and preserve in a vessel perfectly closed.)—In this process sulphate of potash and acetate of iron are formed: the latter, as well as the excess of the acetate of potash, dissolves in the spirit. It is a claret-coloured tincture. It possesses the usual properties of a ferruginous compound. It is said to be an agreeable chalybeate, and was introduced into the Dublin Pharmacopoeia by Dr. Perceval.—The dose is from half a drachm to a drachm.

2. TINCTURA ACETATIS FERRI CUM ALCOHOLE, D. (Sulphate of Iron; Acetate of Potash, \(\frac{3}{4} \); Alcohol, Oij. [wine measure]. Triturate together the sulphate and acetate, then dry them, and when cold add the alcohol. Digest in a well-stoppered bottle for twenty-four hours). —The dose is from twenty drops to a drachm.

OTHER FERRUGINOUS COMPOUNDS.

1. FERRI PERSULPHAS; Persulphate of Iron.—The mode of converting sulphate of the protioxide into sulphate of the sesquioxide of iron has been already pointed out (see p. 840). Persulphate of iron combines with albumen to form a pale yellowish compound; on this property depends its chemical action on the tissues. Dr. Osborne says, Widow Welby's pills are composed of 'sulphate of peroxide of iron, with a small quantity of insipid vegetable matter, probably gum, as much as is requisite for adhesion.' It is more probable, however, that they are prepared with the common sulphate of the shops, which is a mixture of protosulphate and persulphate of iron.

2. FERRI PERNITRAS; Pernitrate of Iron.—A solution of this salt has been employed as an astringent in diarrhoea. It is prepared by dissolving iron in diluted nitric acid to saturation.

3. AMMONIÆ FERRO-TARTRAS; Ferro-Tartrate of Ammonia; Tartrate of Iron and Ammonia; Aikin's Ammoniacal Tartrate of Iron. This salt was first employed in medicine by Mr. Aikin.

It may be prepared by adding caustic ammonia to a solution of tartrate of iron (prepared by digesting together, for two or three days, one part of tartaric acid, dissolved in hot water, with two or three parts of iron filings). The green solution thus obtained is to be evaporated to dryness by a gentle heat. It is in the form of shining brittle fragments of a deep red colour, not very unlike pieces of deep-coloured shell-lac. It is very soluble in water. Its taste is strongly saccarine.

Its general effects are analogous to those of the other ferruginous compounds, except that it has very little if any astringency. Its advantages over other
toxide of manganese. It is infusible before the blow-pipe; dissolves in fused borax with effervescence, and colours the globule of an amethystine colour. If it be digested in hydrochloric acid until chlorine cease to be evolved, and the solution be slightly supersaturated with ammonia, we get rid of the sesquioxide of iron: the filtered liquid throws down a white precipitate with ferrocyanide of potassium.

Composition.—Pure binoxide of manganese has the following composition:

<table>
<thead>
<tr>
<th></th>
<th>Borsch and</th>
<th>Forchammer.</th>
<th>Arfvedson.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atoms.</td>
<td>Bg. Wt.</td>
<td>Per Cent.</td>
</tr>
<tr>
<td>Manganese</td>
<td>1</td>
<td>29</td>
<td>63.5</td>
</tr>
<tr>
<td>Oxygen</td>
<td>2</td>
<td>16</td>
<td>36.5</td>
</tr>
<tr>
<td>Binoxide of Manganese</td>
<td>1</td>
<td>44</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Purity.—The native binoxide is, however, never pure: it usually contains oxide of iron, carbonate of lime, sulphate of baryta, and argillaceous matter. Its purity is judged of by the quantity of oxygen which it is capable of yielding; or of the quantity of chlorine set free when this oxide and hydrochloric acid are allowed to act on each other. The quantity of chlorine set free can be estimated by the quantity of protosulphate of iron which it peroxidizes. The brown varieties are inferior to the black ones.

Muriatic acid aided by heat dissolves it almost entirely, disengaging chlorine: heat disengages oxygen. Ph. Ed.

Physiological Effects.—The effects of this substance are imperfectly known. Kapp first employed it internally. He regards it as a permanent stimulant, and says it promotes the appetite and digestion. Vogt places it among the tonics, and considers it to be intermediate between iron and lead, but his views are altogether theoretical, as he does not seem to have employed it. Dr. Coupar has described several cases of disease which took place among the men engaged in grinding it at the chemical works of Messrs. Tennant and Co. in Glasgow: from these it appears that, when slowly introduced into the system, it produces paralysis of the motor nerves. The disease commences with symptoms of paraplegia. It differs from the paralysis of lead in not causing colica pictonum or constipation, and from mercury in first affecting the lower extremities, and in not exciting tremors of the affected part. C. G. Gmelin tried the effect of the sulphate of the protoxide of manganese on animals, and found that it caused vomiting, paralysis, without convulsions, and inflammation of the stomach, small intestines, liver, spleen, and heart. Gmelin observes, as remarkable, "the extraordinary secretion of bile produced by it, and which was so considerable that nearly all the intestines were coloured yellow by it, and the large intestines had a wax-yellow colour communicated to them." It deserves notice, in connexion

* Graham, Elements of Chemistry, p. 335.
* Pharmacodynamik.
* Versuche, &c. Wirzangos, &c.